心血管异位钙化发病机制的研究进展
2019-04-08赵蕾刘学员邓泽熙何杰
赵蕾 刘学员 邓泽熙 何杰
[摘要] 心血管异位钙化是一种与临床多种心血管事件密切相关的病理改变,是发生恶性事件的独立危险因素,其发生进展是类似骨重塑的主动而复杂的过程,其中包括血管平滑肌、间质细胞及基质细胞的参与,多种细胞因子及介质、外泌因子的调节以及脂肪酸代谢、炎性反应的干预等多因素共同作用。了解其发病机制对于预防及阻断其进展、维护老年人生命健康、降低老年人群的死亡率有着重要意义。
[关键词] 心血管异位钙化;主动调节;发病机制
[中图分类号] R543.5 [文献标识码] A [文章编号] 1673-7210(2019)02(c)-0036-04
[Abstract] Cardiovascular ectopic calcification is a pathological change closely related to clinical events and an independent risk factor of malignant cardiovascular events, its occurrence and development is an active and complex process similar to bone remodeling, including the participation of vascular smooth muscle, interstitial cell, stroma cell, the adjustment of varieties of cytokines, medium and eccrine factors, and the combined action of multiple factors, such as the intervention of fatty acid metabolism and inflammatory reaction. It has great significance of understanding its pathogenesis for preventing and stopping its progress, maintaining elderly life health, and decreasing the mortality rate of the elderly people.
[Key words] Cardiovascular ectopic calcification; Active regulation; Pathogenesis
心血管异位钙化是指钙磷在血管、心肌和心瓣膜的异常沉积[1-2],同时也常被描述为矿化结节和纤维化并存的结局[3]。他是与临床心血管疾病密切相关的一种病理改变,在老年人群中发病率更高、更为集中。越来越多的研究者发现,心血管钙化程度及其积分与全因死亡率、猝死及致命性急性心梗均呈正相关[4],而且与外科术后的康复、进程与预后显著相关[3]。无论是否合并高血压,心血管异位钙化程度都是一个非常有用的危险分层预测因子,对于那些程度较高的患者需要进行更严格的生活方式干预以及更集中的药物对其干预治疗[5]。一直以来都认为心血管异位钙化是一个退化过程,但是越来越多的证据支持其是一个类似骨重塑的主动过程[3,6]。探究心血管异位钙化的发病机制并给予正确的干预,对降低心血管疾病的患病率及死亡率,特别是老年人群生命健康有着非常重要的意义。
1 细胞因子及介质的参与
近年来,研究发现,异位钙化的抑制和触发是体内各种不同的细胞因子和介质所导致的主动过程[7-8],是一个类似骨化和矿化的过程。Davaine等[3]代表的研究团队,在对女性血管钙化患者的研究中发现,动脉钙化是一个类似骨化的过程,高表达的骨保护素受体激活与骨化生显著相关(P = 0.03),在细胞水平,这类患者周细胞显著升高(P = 0.04)。Mari等[9]研究小组通过对主动脉瓣狭窄钙化狭窄(CAS)患者研究发现,肿瘤坏死因子(TNF)-α能够主动诱导人类主动脉瓣间质细胞的异位钙化,从而导致CAS的发生,其中还有基质Gla蛋白(MGP)和骨形态发生蛋白(BMP)等因子的参与。Schurgers等[10]研究认为,血清中去羧基化的MGP细胞因子可作为血管钙化的标志物。Goettsch等[11]研究发现,Sortilin是调节平滑肌细胞钙化的重要细胞因子,其主要通过调节钙化蛋白介质TNAP的附着并进入细胞外囊,从而启动平滑肌细胞囊外钙化。已经有多个相关的研究证据显示,血管钙化是一个类似于软骨骨化和修复的主动过程,其中有许多细胞因子的调控,如BMP、转化生长因子β(TGF-β)、TNF、MGP、骨连素(ON)、骨保护素(OPG)、氧化的脂肪酸和未调节的钙磷代谢物[12-14]。Fukumoto[15]重点研究了成纤维细胞生长因子-23(FGF-23)在异位钙化中的作用,发现这类细胞因子通过降低近曲小管重吸收磷酸盐从而降低血清中磷酸盐水平,同时降低1,25(OH)-2D水平降低肠壁中磷酸盐的重吸收,进而阻止异位钙化的发生。Ragnauth等[16]的团队也发现,TNF可以通过多种途径及机制,激活平滑肌细胞及瓣膜间质细胞的钙化发生。
2 血管平滑肌细胞(VSMCs)及瓣膜间质细胞参与
VSMCs和瓣膜间质细胞通过骨分化和矿化,均可参与心血管异位钙化的发生。Chen等[17]研究发现,瓣膜间质细胞和VSMCs一样,具有很强的潜在成骨活性,同时在钙化的瓣膜中活性更高。Martinez等[18]在其研究中指出,VSMCs在高磷的培养环境中很容易发生成骨转化(VOT)和提早钙化。在压力和应激状态下,VSMCs会由间质起源细胞转化为成骨细胞类型;在血管内的钙化部分,发现VSMCs的细胞表型更加接近于成骨细胞,伴有很多骨相关蛋白质表达的上调,比如Runx2、Osterix、Msx2和Sox9,而这些因子通常被认为参与骨钙化的调节过程[19]。诸多研究[20-21]将Runx2认为是VSMCs发生VOT的关键因素和最早的标志物,无论在体内或是体外,发生钙化的VSMCs均能检测出Runx2。同时,Alesutan等[22]发现VSMCs中酸性细胞的pH值在调节其钙化/软骨化的转化中起到重要的作用。而Husseini等[23]則首次报道了在主动脉瓣钙化中IL-6的超表达,提示瓣膜间质细胞的矿化过程中,IL-6是一个关键的信号,用来提升BMP2的合成。
3 脂肪酸代谢的紊乱和失衡
Vorkas等[24]在其研究中阐明了冠状动脉钙化及其类似相关性疾病(CCAD)与脂肪酸代谢的失衡有关,主要是鞘磷脂和卵磷脂代谢的失调,同时证实了这种失衡状态同时能增加冠脉疾病的严重性,而且在严重的心血管钙化模型中发现,磷脂酰代谢途径中的鞘磷脂的敏感性明显下降。Rizza等[25]通过代谢组学定向分析了49种代谢产物(18种氨基酸、30种酰基肉碱、左旋肉毒碱),发现其中参与了脂肪酸氧化代谢的中长链酰基肉毒碱及左旋肉毒碱可以作为心血管异位钙化的预测因子。Huang等[26]通过对41例外周动脉钙化性(PAD)疾病患者的调查发现,脂肪代谢产物如脂蛋白和磷脂等可以作为PAD患者发生严重心血管事件的预测因子,也可以作为血管异位钙化进展的高危因素。
4 血管平滑肌、外切体酶介导的基质细胞参与
在分子机制层面,心血管的钙化启动有基质细胞的参与和双向调节。Kapustin等[27]和Schlieper等[28]通过电子显微镜发现,基质细胞是血管局部矿化的初始病灶,其中包含有弹性蛋白和胶原纤维。而这一发现被New等[29]证实,他们在基质细胞介导的动脉钙化斑块中发现了VSMCs、巨噬细胞、内皮细胞和血小板。在Bertazzo等[30]的实验中,从早期发生异位钙化的大动脉处提取基质细胞,通过纳米技术用胶原酶溶解法,分析了CD9、CD63、CD68等因子,进一步证实了促进异位钙化发生的基质细胞的VSMC来源。Kapustin等[31]在其研究中描述了血管平滑肌-基质细胞的来源是細胞内多泡体(MVB)的外切体酶,这些外切体酶产生的基质细胞与血管钙化有关,外切体的产生与神经鞘磷脂磷酸二脂酶-3(SMPD3)的表达上调有关,而SMPD3的分泌由成骨细胞及生长因子等调节。Kapustin等[31]和Shroff等[32]在其研究中通过蛋白组学研究,揭示了在VSMCs外泌体介导的基质细胞中包含大量与矿化相关的载体蛋白,能够通过很多额外机制加速体内的钙化,而这些途径需要进一步的深入研究。
5 异位钙化与炎症的关系
诸多研究和实验证明,心血管异位钙化与炎症发生密不可分,这其中包括多种炎性因子的参与和高表达。Agharazii等[33]在慢性肾功不全的大鼠模型中,发现IL-6、IL-1、TNF-α等炎性因子的高表达与胸主动脉中膜钙化相关。Buendia等[34]的研究小组发现,在炎性因子如TNF-α刺激下,血管内皮细胞能够生成BMP-2,导致内皮微粒(EMPs)的产生,而EMPs含有大量的BMP-2,进一步促进血管平滑肌的骨化生和血管异位钙化的发生。Abdelbaky等[35]通过对111例60岁左右无症状的早期主动脉钙化患者追踪调查,运用PET-CT评估早期炎性反应和动脉钙化的程度,发现早期炎性反应能够诱导主动脉瓣钙化的发生进展。Hofmann Bowman等[36]做了大量的研究工作,证实炎症可以促发SM22α-hs100a12靶向调节,诱导成骨细胞标记基因包括DMP1、Runx2、BMP2、Bglap的表达,从而促进正常的VSMCs向钙化的VSMCs转化。而心血管钙化是一种慢性炎症的假说也在2011年被提出[7]。
6 高迁移率族蛋白B1(HMGB1)的调节
Chen等[37]阐述了HMGB1对于血管异位钙化的多种调节作用。HMGB1作为一种细胞核成分存在于几乎所有真核细胞的线粒体中,炎症、外伤、压力等可促使HMGB1释放,通过糖基化终末受体产物/中性鞘磷脂酶2(RAGE/nSMase2)和TGF-β/BMP两个信使通道,作用于VSMCs、瓣膜间质细胞以及周细胞,在膜胞和膜基质释放Runx2、OCN、OPN、BSP等细胞因子,从而促进骨软化分化,最终导致血管钙化的发生。这其中,当然也有炎症、细胞自噬以及活性氧簇等参与调节。这一研究,也给心血管异位钙化的早期防治提供了一条途径。
综上所述,心血管异位钙化是心脑血管疾病、衰老、慢性肾衰竭等多种疾病的共同的病理生理表现,其发病率高,危害性大,特别是针对老年人群,其发生发展是一个可调控的过程,受内环境、多细胞因子、介质、信号通道、炎症、脂代谢等多因素影响。由于其病理生理过程的复杂性、发病机制和细胞来源的多样性,为更深入了解其发生机制,显然需要展开更多的结合最新技术的临床研究和基础实验。
[参考文献]
[1] 陈宇,王士雯.心血管系统异位钙化分子研究进展[J].心血管病学进展,2004,25(2):81-84.
[2] Kim JH,Choi YK,Do JY,et al. Estrogen-Related Receptor gamma Plays a Key Role in Vascular Calcification Through the Up-regulation of BMP2 Expression [J]. Arterioscler Thromb Vasc Biol,2015,35(11):2384-2390.
[3] Davaine JM,Quillard T,Chatelais M,et al. Bone Like Arterial Calcification in Femoral Atherosclerotic Lesions:Prevalence and Role of Osteoprotegerin and Pericytes [J]. Eur J Vasc Endovasc Surg,2016,51(2):259-267.
[4] Brinda AT,Ikeda K,Hirata KI,et al. Macrophages Highly Express Carbonic Anhydrase 2 and Play a Significant Role in Demineralization of the Ectopic Calcification [J]. Kobe J Med Sci,2017,63(2):45-50.
[5] Graham G,Michael JB,Matthew J,et al. Impact of coronary artery calcification on all-cause mortality in individuals with and without hypertension [J]. Atherosclerosis,2012,225(2):432-437.
[6] Bostrom KI. Where do we stand on vascular calcification? [J]. Vascul Pharmacol,2016,84(9):8-14.
[7] New SE,Aikawa E. Cardiovascular calcification:an inflammatory disease [J]. Circ J,2011,75(6):1305-1313.
[8] Haussler MR,Whitfield GK,Haussler CA,et al. 1,25-Dihydroxyvitamin D and Klotho:A Tale of Two Renal Hormones Coming of Age [J]. Vitam Horm,2016,100(1):165-230.
[9] Mari C,Kazuhiko S. Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves [J]. J Pharmacol Sci,2018, 136(1):257-265.
[10] Schurgers LJ,Teunissen KJ,Knapen MH,et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid(Gla)protein:under carboxylated matrix Gla protein as marker for vascular calcification [J]. Arterioscler Thromb Vasc Biol,2005,25(8):1629-1633.
[11] Goettsch C,Hutcheson JD,Aikawa M,et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles [J]. Clin Invest,2016,126(4):1323-1336.
[12] Chang JC,Miura RM. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A [J]. J Chem Phys,2016, 144(15):154906.
[13] Speer MY,Giachelli CM. Regulation of cardiovascular calcification [J]. Cardiovasc athol,2004,13(2):63-70.
[14] Chen NX,Moe SM. Pathophysiology of Vascular Calcification [J]. Curr Osteoporos Rep,2015,13(5):372-380.
[15] Fukumoto S. Vascular Calcification Pathological Mechanism and Clinical Application. Regulation of mineral metabolism and mineralization by FGF-23 [J]. Clin Alcium,2015,2(5):687-691.
[16] Ragnauth CD,Warren DT. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging [J]. Circulation,2010,121(20):2200-2210.
[17] Chen JH,Yip CY,Sone ED,et al. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential [J]. Am J Pathol,2009,174(3):1109-1119.
[18] Martinez JM,Muoz-C JR,Herencia C,et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation [J]. Am J Physiol Renal Physiol,2013,303(8):1136-1144.
[19] Shroff R,Long DA,Shanahan C,et al. Mechanistic insights into vascular calcification in CKD [J]. J Am Soc Nephrol,2013,24(2):179-189.
[20] Rong S,Zhao X,Jin X,et al. Vascular calcification in chronic kidney disease is induced by bone orphogenetic protein-2 via a mechanism involving the Wnt/beta-catenin pathway [J]. Cell Physiol Biochem,2014,34(6):2049-2060.
[21] Yao L,Sun YT,Sun W,et al. High phosphorus level leads to aortic calcification via beta-catenin in chronic kidney disease [J]. Am J Nephrol,2015,41(1):28-36.
[22] Alesutan I,Musculus K,Castor T,et al. Inhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine [J]. Kidney Blood Press Res,2015, 40(5):490-499.
[23] Husseini ED,Boulanger MC,Mahmut A,et al. P2Y2 receptor represses IL-6 expression by valve intertstitial cells through Akt:implication for calcific aortic valve disease [J]. J Mol Cell Cardiol,2014,72(6):146-156.
[24] Vorkas PA,Isaac G,Holmgren A,et al. Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease:An exploratory lipidomic study [J]. Int J Cardiol,2015,197(10):192-199.
[25] Rizza S,Copetti M,Rossi C,et al. Meta-bolomics signature improves the prediction of cardiovascular events in elderly subjects [J]. Atherosclerosis,2014,232(2):260-264.
[26] Huang CC,McDermott MM,Liu K,et al. Plasma meta-bolomics profiles predict near-term death among individuals with lower extremity peripheral arterial disease [J]. Vasc Surg,2013,58(4):989-996.
[27] Kapustin AN,Davies JD,Reynolds JL,et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization [J]. Circ Res,2011,109(1):1-12.
[28] Schlieper G,Aretz A,Verberckmoes SC,et al. Ultrastructural analysis of vascular calcifications in uremia [J]. J Am Soc Nephrol,2010,21(4):689-696.
[29] New SE,Goettsch C,Aikawa M,et al. Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification in atherosclerotic plaques [J]. Circ Res,2013,113(1):72-77.
[30] Bertazzo S,Gentleman E,Cloyd KL,et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification [J]. Nat Mater,2013,12(6):576-583.
[31] Kapustin AN,Chatrou ML,Drozdov I,et al. Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion [J]. Circ Res,2015,116(8):1312-1323.
[32] Shroff RC,McNair R,Figg N,et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis [J]. Circulation,2008,118(17):1748-1757.
[33] Agharazii M,St-Louis R,Gautier BA,et al. Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease related vascular calcification [J]. Am J Hypertens,2015,28(6):746-755.
[34] Buendia P,Montesde OA,Madueno JA,et al. Endothelial microparticles mediate inflammation induced vascular calcification [J]. FASEB J,2015,29(1):173-181.
[35] Abdelbaky A,Corsini E,Figueroa AL,et al. Early aortic valve inflammation precedes calcification:a longitudinal FDG-PET/CT study [J]. Atherosclerosis,2015,238(2):165-172.
[36] Hofmann Bowman MA,Gawdzik J,Bukhari U,et al. S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic gene regulatory program [J]. Arterioscler Thromb Vasc Biol,2011,31(2):337-344.
[37] Chen Q,Wang ZY. Roles of High Mobility Group Box 1 in-Cardiovascular Calcification [J]. Cell Physiol Biochem,2017,42(2):427-440.
(收稿日期:2018-04-27 本文編辑:张瑜杰)