南粳系列水稻品种的食味品质与稻米理化特性
2019-03-29赵春芳岳红亮黄双杰周丽慧赵凌张亚东陈涛朱镇赵庆勇姚姝梁文化路凯王才林
赵春芳,岳红亮,黄双杰,周丽慧,赵凌,张亚东,陈涛,朱镇, 赵庆勇,姚姝,梁文化,路凯,王才林
南粳系列水稻品种的食味品质与稻米理化特性
赵春芳,岳红亮,黄双杰,周丽慧,赵凌,张亚东,陈涛,朱镇, 赵庆勇,姚姝,梁文化,路凯,王才林
(江苏省农业科学院粮食作物研究所/江苏省优质水稻工程技术研究中心/国家水稻改良中心南京分中心,南京 210014)
【目的】明确3个优良食味南粳品种的主要蒸煮食味品质性状的特点及与亲本间的差异,为水稻优质育种提供理论依据。【方法】本研究以南粳系列优良食味粳稻品种南粳46、南粳9108、南粳5055及其父本关东194、母本武粳13和武香粳14为试验材料,比较分析稻米理化特性、支链淀粉分支结构、RVA谱黏滞性、热力学特性、米饭食味特性等25个食味品质相关性状的差异,分析稻米理化性状与米饭食味特征值间的关系、化学成分和支链淀粉分支结构与理化特性间的关系。【结果】3个南粳品种在大多数性状上具有一致性,与常规粳稻亲本武粳13和武香粳14相比,3个南粳品种均具有更小的直链淀粉含量、峰值时间、热浆黏度、最终黏度、回复值、消减值、回生焓、回生率和米饭硬度值,更大的胶稠度、崩解值、米饭黏度值和综合食味值。在支链淀粉分支结构上,3个南粳品种的A链(DP6-12)比例更大,而B1链(DP13-24)更小。3个南粳品种大多数性状均与关东194相似,说明南粳系列品种的食味品质特性遗传自关东194。3个南粳品种中亦存在差异性状,南粳46的蛋白质含量和热力学参数更低,南粳9108的脂肪含量更高,而南粳5055的成糊温度更高。相关性分析表明,除蛋白质含量、糊化温度、峰值时间外,米饭综合食味值与稻米大多数理化性状存在显著或极显著的相关性,而稻米理化特性主要受直链淀粉含量的影响。【结论】3个南粳品种食味品质的优异特性是具有更低的糊化和回生特性,更高的胶稠度和米饭黏性,更短的糊化时间和更大的崩解性能。较低的直链淀粉含量是其优良食味品质形成的主要原因,而蛋白质含量和支链淀粉分支链比例主要对糊化和回生特性起作用。
水稻;蒸煮食味品质;直链淀粉含量;支链淀粉链长;RVA谱
0 引言
【研究意义】随着生活水平的提高,人们对稻米品质特别是食味品质的要求也越来越高。近年来,江苏省农业科学院选育的南粳系列优良食味粳稻品种,因优良的食味品质获得广大消费者的好评。南粳系列品种南粳46、南粳5055和南粳9108,是以低直链淀粉含量的日本优质粳稻品种关东194为父本,以江苏省高产粳稻品种武香粳14、武粳13为母本,常规育种结合分子标记辅助选择而选育的[1-3]。3个南粳品种的米饭易蒸煮,柔软滑润,富有弹性,黏度适中,冷而不硬,食味品质极佳,而江苏省选育的大部分常规粳稻品种与其相差较大。明确南粳系列品种的蒸煮食味品质形成的生理生化基础,及与常规粳稻亲本的主要蒸煮食味品质性状的差异,可为指导优质水稻育种提供理论依据。【前人研究进展】稻米蒸煮食味品质与稻米的物理和化学特性密切相关,因此,一般采用客观的理化特性指标来间接反映稻米的蒸煮食味品质[4]。直链淀粉含量(amylose content,AC)、胶稠度(gel consistency,GC)、糊化温度(gelatinization temperature,GT)是最早被认为衡量稻米蒸煮食味品质的3大理化指标,AC与米饭的黏性和柔软性有关,GC与米饭的弹性和冷却后的硬度有关,GT与米饭的蒸煮时间有关。其中,AC不仅对米饭食味品质和质地起重要作用[5],也与众多的淀粉理化参数如粘滞性、糊化特性、回生特性密切相关[6-7]。RVA谱模拟稻米的蒸煮过程,可以直观地反映随升温、降温时米饭的糊化特性和粘滞性变化,被认为是衡量稻米蒸煮食味品质的最重要指标[8]。RVA谱测定具有简便、快速、重复性好等特点,美国谷物化学协会(AACC)已将其作为评价稻米蒸煮食味品质优劣的一项重要指标。稻米的热力学特性反映了淀粉颗粒因吸热从有序到无序(结晶熔)过程中的热量变化,由差示扫描量热仪(differential scanning calorimetry,DSC)测定,测定参数包括糊化起始温度To、峰值温度Tp、终止温度Tc和糊化焓值∆Hgel。To和Tc表示不同态相淀粉的温度转换边界,Tp反映淀粉晶体的质量,∆Hgel反映淀粉结晶度。研究表明热力学参数与淀粉结构包括直链淀粉、支链淀粉中长链的数量以及直链淀粉和支链淀粉的分子量均有密切关系[9-10]。支链淀粉作为稻米淀粉的主要组分,是淀粉粒晶体结构形成和稻米淀粉理化特性的重要因子,也是造成AC相近的水稻品种蒸煮食味品质差异的主要原因[11]。支链淀粉的链长分布可以用来描述支链淀粉的分支结构,根据支链淀粉分支链的聚合度(degree of polymerization,DP)大小,可以将链长分为:A链(DP 6-12),B1链(DP 13-24),B2链(DP 25-36)和B3链(DP≥37)[12]。支链淀粉分支结构与稻米理化特性具有相关性,特别是支链淀粉的A链与RVA最高黏度、崩解值及淀粉晶体形成等具有紧密关系[13-14]。也有研究表明淀粉糊化和回生特性主要受支链淀粉分支结构特别是短链的影响[9-10,15]。【本研究切入点】影响稻米蒸煮食味品质的内在因素(理化性状和淀粉结构)众多,相互关系复杂。除AC外,众多的稻米理化性状和支链淀粉结构在优良食味南粳系列品种中是否存在共性;常规粳稻亲本的食味品质与南粳系列品种差距较大,主要体现在哪些稻米理化特性或淀粉结构上,尚需要进一步明确。【拟解决的关键问题】本研究利用3个食味品质优良的南粳品种及其亲本为研究对象,对蒸煮食味品质相关性状,包括稻米化学组分、RVA谱粘滞特性、热力学特性等及支链淀粉分支结构进行比较研究,并对米饭食味特征值与各性状、稻米理化性状与化学组分和支链淀粉链长进行相关性分析,以阐明南粳系列品种蒸煮食味品质优异的生理生化基础,明确南粳系列品种与亲本特别是常规粳稻亲本间的差异,为优质水稻品种选育和常规粳稻食味品质改良提供理论依据。
1 材料与方法
1.1 试验材料
供试水稻材料共6个粳稻品种,包括3个低AC的南粳系列品种:南粳46、南粳9108、南粳5055;1个日本粳稻品种:关东194(3个南粳品种的父本);2个常规粳稻品种:武粳13(南粳5055的母本)和武香粳14(南粳46和南粳9108的母本)。上述材料于2016年和2017年正季种植于江苏省南京市江苏省农业科学院试验田内。5月9日播种,6月10日移栽,每个品种种植4行,每行12株,单苗种植,株行距16.7 cm×16.7 cm。按常规大田栽培管理,田间土壤肥力中等。种子成熟后收获、晾干并在室温下保存3个月以平衡水分。2年试验条件相同。
1.2 样品前处理
稻谷经砻谷机(SY88-TH,韩国双龙)去壳出糙,小型精米机(BLH-3120,台州伯利恒)出精后获得精米。用水分分析仪(Metteler,瑞士)测定精米含水量。用旋风式磨(CT193,FOSS,瑞典)研磨米粉,过100目筛筛除大颗粒,获得精米米粉用于品质性状测定。
1.3 稻米理化性状测定
米粉总淀粉含量按照试剂盒(Megazyme,Wicklow,爱尔兰)说明进行测定。米粉蛋白质含量(PC)是用凯氏定氮仪(Kjeltec 8400,FOSS)测定米粉中的全氮含量,再乘以换算系数5.59而计算得到。米粉脂肪含量(LC)参照GB 5009.6—2016进行测定。米粉直链淀粉含量(AC)的测定参照农业部颁发标准NY147-88进行,4个参比样品(AC:1.5%、10.6%、16.4%和25.6%)购自中国水稻研究所。米粉胶稠度(GC)按GB/T17891—1999测定。每份样品每个性状值均测定3次重复,取平均值为性状表型值。
1.4 稻米RVA谱粘滞性测定
米粉粘滞性变化采用RVA黏度测定仪(Perten,瑞典)测定,参照美国谷物化学家协会AACC61-01和61-02操作规程进行参数设置。仪器自动读出的一级参数有:峰值黏度(peak viscosity,PV)、热浆黏度(though viscosity,TV)、最终黏度(final viscosity,FV)、成糊温度(pasting temperature,PaT)、峰值时间(peak time,PeT);二级参数有:崩解值(breakdown viscosity,BDV)和消减值(setback viscosity,SBV),回复值(consistency viscosity,CSV)由FV与TV相减得到。每个样品测定2次重复,取平均值为性状表型值。
1.5 热力学参数测定
采用差示扫描量热仪DSC(200-F3,Netzsch German)进行淀粉粒的热力学特性分析。具体步骤为,称取约5 mg的米粉于铝盘中,按1﹕3比例加入约15 μl超纯水,密封,4℃冰箱过夜,上样前室温平衡1 h,以空铝盘为对照,升温速率设置为10℃·min-1,升温从25℃至110℃。测定结束后根据测定曲线的吸热峰边界和面积,分析得到糊化起始温度(To)、峰值温度(Tp)、终止温度(Tc)和糊化焓值(∆Hgel)。将测定后的铝盘于4℃冰箱放置7 d,然后重新进行DSC测定,得到回生焓值∆Hret,回生度R(%)=100×∆Hret/∆Hgel。每个样品测定2次重复,取平均值为性状表型值。
1.6 支链淀粉链长测定
利用基于DNA测序仪(ABI PRISM377)的荧光糖电泳法测定支链淀粉链长。支链淀粉的分离与纯化参照蔡一霞等[16]的方法。支链淀粉的脱分支、荧光标记及荧光糖电泳的操作步骤参照贺晓鹏等[17]的方法。每个样品测定3次重复,取平均值为性状表型值。
1.7 米饭食味值测定
称取30.0 g精米,按1﹕1.3的米水比例添加蒸馏水,室温浸泡30 min,以日本品种作为标准品种,利用米饭食味仪(STA-1A,日本佐竹)测定综合食味值、米饭硬度值和黏度值。
1.8 数据分析
2年试验的重复性较好,各指标的变化趋势一致,两年间数据差异不显著,因此,取2017年数据进行分析。数据用Excel和SPSS统计软件进行分析。
2 结果
2.1 南粳系列水稻品种及其亲本的米饭食味品质特性
根据2016和2017年的数据分析,3个南粳品种和关东194的米饭综合食味值较高,均在70分以上,显著高于常规粳稻亲本武粳13和武香粳14;两个常规粳稻亲本的食味值均在60分以下;日本粳稻亲本关东194与3个南粳品种的食味值无显著差异(图1-A)。综合食味值是米饭质地的体现,食味品质越高的稻米,米饭的黏度值越大,硬度值越小[5]。在6个供试品种中,3个南粳品种和关东194的米饭硬度值显著小于武粳13和武香粳14,而黏度值则相反,且两年间的结果基本一致(图1-B、1-C)。说明南粳系列品种的稻米食味品质较高,食味值和米饭质地均与日本粳稻亲本相近,而显著优于两个常规粳稻亲本。
不同小写字母表示差异显著(P<0.05) Different lowercase letters indicate significantly different (P<0.05)
2.2 南粳系列水稻品种及其亲本的稻米理化特性分析
2.2.1 稻米主要化学成分 由于2016和2017年各性状的测定结果具有相同趋势,仅选取2017年数据进行分析比较。通过分析6个供试品种精米米粉的主要化学成分和胶稠度,发现所有品种的水分含量在(12.7±0.3)%,总淀粉含量在(80.5±0.3)%,均无显著差异(表1)。南粳46和关东194的蛋白质含量(PC)显著低于其他4个粳稻品种。南粳9108的脂肪含量(LC)最高,显著高于南粳46、南粳5055、关东194和武粳13等4个品种,武香粳14的LC最低,仅0.25。武香粳14的直链淀粉含量(AC)最高,其次为武粳13,再次为3个南粳系列品种,关东194最低,仅7.57%。武粳13和武香粳14的胶稠度(GC)显著小于其余4个品种,3个南粳品种和关东194间无差异。表明AC和GC在各品种间的差异较大,而PC和LC较小,较低的AC和较高的GC是3个南粳品种和关东194的共同特点。
为了验证测定性状在两年间的稳定性,将2016年的AC和PC数据与2017年的结果进行单因素方差分析,两年间均未达到显著水平(AC:=0.947;PC:=0.196),表明两年间稻米品质性状遗传稳定,试验区环境没有造成显著影响。
2.2.2 RVA谱特征值 对6个粳稻品种的RVA谱(包括8个特征值)进行了测定,由表2可以看出,关东194和武粳13的最高黏度(PV)显著大于其他4个品种,而其余4个品种间无显著差异。武粳13和武香粳14的热浆黏度(TV)和最终黏度(FV)显著大于3个南粳品种,关东194最小。关东194的崩解值(BDV)最大,显著大于3个南粳品种,而武粳13和武香粳14最小。武粳13和武香粳14的消减值(SBV)最大,为正值,而3个南粳品种和关东194为负值,关东194最小。武粳13和武香粳14的回复值CSV最大,显著大于3个南粳品种,关东194最小。关东194的成糊温度PaT最高,达76.0℃,其次为武粳13、武香粳14和南粳5055,南粳46和南粳9108最低。在3个南粳品种中,南粳5055的成糊温度比其余二者更高。峰值时间PeT是指样品达到峰值黏度所用的时间,一般PeT越小,淀粉粒的膨胀性和破损性越好,关东194的PeT最小,仅5.2 min,其次为3个南粳品种,武粳13和武香粳14最大,说明南粳系列品种和关东194的糊化更快速。图2显示了RVA各特征值的总体变化,武粳13和武香粳14的RVA曲线与其他4个品种不同,由于FV大于PV,表现末端上翘。
表1 南粳系列品种及其亲本间的稻米主要化学成分差异
同一列中的不同字母表示在0.05水平上差异显著。下同
Values followed by different letters in the same column show significantly different (<0.05). The same as below
表2 南粳系列品种及其亲本的RVA谱特征值
2.2.3 热力学特性 稻米糊化和回生特性与蒸煮食味品质有密切关系,糊化温度高的稻米糊化需要更高的蒸煮温度,而回生度高的稻米直接影响米饭质地和适口性,由DSC仪测定的热力学参数可以精确反映稻米的糊化和回生特性。由表3可知,各糊化阶段的温度To、Tp和Tc在关东194中均为最大值,在南粳46和武香粳14中为最小值,在其余3个品种中差异不大。糊化焓∆Hgel在关东194中最大,在武粳13中最小,在其余4个品种间相差不大。武粳13的回生焓∆Hret最大,其次为武香粳14,其余4个品种间相差不大。武粳13的回生度最大,其次为武香粳14,3个南粳品种和关东194最小,相互间差异不显著。表明3个南粳品种和关东194具有更小的回生性,而糊化特性在品种间存在随机性,关东194的糊化温度最大,与RVA仪测定的PaT表现一致。
图2 南粳系列品种及其亲本的RVA谱特征
表3 南粳系列品种及其亲本的热力学特性
2.2.4 支链淀粉分支链的链长分布特征 荧光糖电泳法测定的支链淀粉分支链中DP 6是最短的支链,DP≤50的支链可获得良好的数据精度,因此本研究支链淀粉的链长分布仅包括DP 6—50的数据。在总链长DP 6—50分布上,发现主要差异存在于DP 9—24的链长范围(图3-a)。3个南粳品种与关东194的各分支度链长相减后的差异极小,主要集中在DP 6—30(图3-b),表明3个南粳品种与关东194的支链淀粉分支结构相近。当与各自的母本相减时,南粳5055比武粳13、南粳46和南粳9108比武香粳14均具有更多的DP 9—13短分支链,更少的DP 6—9短分支链和DP 14—24中等长度分支链,DP≥25的较长分支链差异均不明显,且南粳5055-武粳13(图3-c)比后者(图3-d)的差异更大。
2.3 稻米理化性状间及其与食味品质间的关系
2.3.1 稻米理化性状与食味品质间的相关性 为了明确米饭食味特性与稻米理化特性及淀粉结构间相互关系,将米饭食味特征值与稻米理化特征参数及支链淀粉分支结构进行相关性分析。其中仅将在品种间存在差异的支链淀粉精细结构中的A链(∑DP 6—12)和B1链(∑DP 13—24)进行分析,无差异的其他分支链长,以及理化性状中含水量和总淀粉含量则没有考虑。分析结果表明,米饭食味特征值与AC、LC、A链、B1链、TV、FV、BDV、SBV、CSV、∆Hgel、∆Hret和R之间具有较大的相关系数,多数呈显著或极显著的相关性,而与PC、PV、PeT及糊化温度相关参数(PaT、To、Tp和Tc)之间相关系数较小,相关性不显著(表4)。
2.3.2 稻米主要化学成分及支链淀粉结构与理化性状间的相关性 客观的化学组分和淀粉精细结构对稻米弹性、黏性、糊化和回生特性等理化特性有重要影响,相关性分析可以判断出哪一个因素可对理化特性起决定性作用。由表5可知,除PV和糊化温度相关参数(PaT、To、Tp、Tc)外,AC与各理化特性参数的相关系数均较大,其中与GC、BDV和∆Hgel呈极显著负相关,与TV、FV、SBV和CSV呈显著正相关。PC仅与TV和BDV达到显著相关性。未检测到LC与各理化性状间的相关关系。支链淀粉A链与GC和∆Hgel呈显著正相关,与TV、FV、CSV、∆Hret和R呈显著负相关;而支链淀粉B1链与A链表现的相关性则相反,与GC呈显著负相关,与TV、FV、∆Hret和R呈显著正相关。表明AC是影响稻米蒸煮食味品质理化特性的主要因素,主要影响了胶稠度、RVA谱特征值及糊化焓,PC对稻米淀粉粒的崩解性有一定影响,支链淀粉分支结构则主要影响胶稠度和回生特性。
a:支链淀粉链长分布特点;b:3个南粳品种相对父本关东194的DP差异;c:南粳5055相对母本武粳13的DP差异;d:南粳46和南粳9108相对母本武香粳14的DP差异a: The distribution of amylopectin chain length; b: The DP differences of three Nanjing rice varieties to Kanto 194; c: The DP differences of Nanjing 5055 to WJ13; d: The DP differences of Nanjing 46 and Nanjing9108 to WXJ14
表4 稻米理化性状与米饭食味品质间的相关性
*、**分别表示在0.05和0.01水平上差异显著。下同
*, ** indicate significantly different at=0.05 and 0.01, respectively. The same as follow
表5 稻米主要化学成分及支链淀粉分支链比例与理化特性间的相关性
3 讨论
稻米的蒸煮食味品质与其自身的理化特性密切相关,目前常用的稻米理化特性主要包括蛋白质含量(PC)、直链淀粉含量(AC)等化学组分、胶稠度(GC)、粘滞性、糊化特性和回生特性等。本研究全面比较了稻米食味品质、理化特性以及支链淀粉分支结构在南粳系列品种与其双亲间的差异,发现3个南粳品种在大多数性状上具有一致性,且与日本粳稻亲本关东194相似或更接近,而与常规粳稻亲本武粳13和武香粳14相差较大。众多的测定性状中每个性状有自身的特点,同时也相互影响。
3.1 主要理化性状与米饭食味特征值之间的关系
AC是决定稻米蒸煮食味品质的重要性状,对米饭的柔软性、黏性、凝聚性等均有重要作用[5]。本研究中6个粳稻品种按AC从低到高排序依次为:关东194(7.57%),3个南粳品种(9.51%—10.49%),武粳13(16.45%)和武香粳14(17.98%)。米饭的黏性和综合食味值表现为低AC的4个品种显著大于高AC的武粳13和武香粳14,AC与米饭食味特性具有显著的负相关性,且除糊化温度相关性状(PaT、To、Tp、Tc)及PV外,AC与稻米各理化特性参数的相关系数均较大,表现出显著或极显著的相关性,这与前人的研究结果一致[18-19]。表明AC对稻米蒸煮食味品质起主要作用,较低的AC是南粳系列品种优良蒸煮食味品质形成的主要原因。从物理特性上分析,Lii等[20]认为直链淀粉可以增加淀粉粒的刚性(rigidity)即致密性,会对淀粉粒的崩解性、淀粉糊的黏性和流淌性产生抑制作用。PC是稻米营养品质的一个重要指标,同时对蒸煮食味品质具有负向影响,因为蛋白质可增加米饭的硬度和粗糙感,从而降低米饭食味品质[21]。本研究未检测到PC与米饭食味特征值的相关性,仅发现PC与FV、BDV具显著相关性。Gu等[22]研究发现蛋白质的增加显著降低了RVA谱中PV和BDV,表明蛋白质可以影响淀粉粒的膨胀和崩解性,与本研究结果一致。已有研究表明,在淀粉糊化过程中蛋白质可以通过二硫键与淀粉粒结合形成淀粉-蛋白复合体,从而阻止淀粉粒的膨胀和糊化,导致糊化温度升高,增强淀粉糊的强度和刚度[23-24]。事实上,本研究6个粳稻品种的PC值均较低,变异幅度较小(7.25%—8.0%),可能对米饭食味品质不能构成负向影响,因而检测不到显著相关性。
米粉的RVA谱特征值与稻米的蒸煮食味品质间存在着密切关系,食味品质好的稻米往往具有较大的崩解值(BDV)和较小的消减值(SBV)[25]。本研究中RVA谱的黏度值TV、BDV、FV、SBV和CSV与米饭食味特征值间具有显著相关性,米饭黏度值和综合食味值与FV、SBV和CSV显著负相关,与BDV显著正相关,米饭硬度值则相反(表3),这与前人研究结果一致[25-26]。RVA各特征值主要与AC表现出显著相关性(表4),表明AC对RVA的影响较大,吴殿星等[27]也认为AC是影响RVA黏度值的主要因素。隋炯明等[25]通过两年分析114份和101份水稻品种(系)的RVA谱特征值与蒸煮理化指标的关系,证实RVA谱特征值与AC呈显著或极显著的相关性。李刚等[19]仅在低AC和糯稻品种中检测到AC与RVA特征值的显著相关性,而在中高AC(AC>20%)的品种中AC变化不影响RVA特征值的变化,表明AC与RVA谱的关系存在品种间差异,在低AC水稻品种(<20%)中关系更密切。在遗传上,直链淀粉合成基因被认为是RVA谱特征值的主效控制基因[8],但是在糯稻中不同品种的RVA谱特征值仍存在变异,表明其他淀粉合成基因亦参与了RVA谱的形成[28]。Tong等[18]也认为RVA谱特征值的遗传基础复杂,除外,还有很多基因的参与。值得注意的是,本研究中PV最大值出现在关东194(具有最高食味值和最低AC)和武粳13(具有最低食味值和最高AC)中,PV与米饭食味特征值及AC均表现为无相关性。在RVA仪加热升温过程中淀粉颗粒逐渐膨胀直至崩解,淀粉黏度逐渐增大,当淀粉颗粒的膨胀速度和崩解速度相同时的黏度称为最高黏度PV,PV反映了淀粉粒的膨胀性能和结合水的能力。因此,推断PV可能与直链淀粉关系不密切,而受支链淀粉分支结构影响更大。
糊化温度(GT)与稻米蒸煮品质息息相关,高GT的稻米在蒸煮时需要更长的蒸煮时间和更多的水分,与低GT稻米在同等条件下蒸煮时,因不能完全糊化而造成米饭生硬的感官特性,降低食味品质。但是本研究中糊化特性(温度)与米饭食味特性及与AC的相关性不显著,主要由关东194的个性化材料而造成,因为含最低AC的关东194具有最大的糊化温度(PaT、To、Tp、Tc)。以往关于GT与AC间显著正相关性的研究中多是基于数目较大的多样化的籼、粳、糯稻等材料,而GT个性化材料往往被忽略。以往研究表明GT主要受支链淀粉长链的影响,长链比例越高,GT越高,因为长链往往需要更高的温度才能打开,而短链则不需要[6]。但是在高GT的关东194中并没有检测到支链淀粉长链比例的显著升高,其高GT形成的原因尚需要进一步证实。
稻米回生特性与米饭食味品质关系密切,回生度越大,米饭越硬,适口性越差。稻米回生是指糊化淀粉分子由无序态向有序态转化的过程,可由DSC仪测定的回生焓∆Hret直接体现,亦可由FV、SBV、CSV等RVA黏度值间接反映。FV指米胶冷却后的黏度,SBV和CSV表示米胶冷却后黏度能恢复多少,因此三者的值越大,表明米胶回生度越大。本研究中由DSC仪测定的∆Hret和R及FV、SBV、CSV与米饭综合食味值和黏度值均呈显著负相关性,说明了回生特性对米饭食味特性的显著性影响,进一步表明稻米回生特性可以用RVA谱特征值进行衡量。相关性分析表明回生特性的相关性状主要与AC呈显著负相关,进一步说明AC是影响米饭回生特性和米饭质地的重要因子,与前人研究结果一致[5,20]。
3.2 支链淀粉分支结构对米饭食味品质及稻米理化特性的影响
研究表明,支链淀粉分支结构主要通过影响淀粉的糊化和回生特性而影响稻米的蒸煮食味品质[14,17,29]。本研究中支链淀粉A链与米饭综合食味值和黏度值呈显著正相关性,B1链则相反,且支链淀粉各分支度变异趋势与AC密切相关,AC低的品种往往含有更多的A链。Chung等[10]在高AC的水稻中检测到含有最低比例的支链淀粉DP 6—12分支链(A链),认为极有可能是为了保持淀粉粒晶体构建的正确性,需要支链淀粉A链与AC在比例上进行平衡。与各理化特性性状的相关性分析表明,A链与GC、∆Hgel、FV、∆Hret和R呈显著相关性,B1链则相反,说明支链淀粉分支结构主要影响了稻米的糊化和回生特性。Vandeputte等[29]也认为A链和B1链在淀粉回生过程发挥重要作用,发现越多的DP6—9分支链比例降低了回生淀粉的糊化温度和∆Hret,而越多的DP12—22比例则会增加∆Hret和R。贺晓鹏等[17]检测了50份籼、粳稻品种的支链淀粉链长分布与淀粉理化特性的关系,发现支链淀粉结构主要与GT和结晶度有关,A链与之呈负相关,B1链呈正相关,而与GC和RVA谱特征值关系不密切。在淀粉回生过程中,具有庞大分支度的直链淀粉可以很快地进行结构有序性排列,发生回生,而支链淀粉的回生进行的非常缓慢,需要几天甚至几十天(如糯稻),其中支链淀粉短链比例起着关键作用[30]。因此,南粳品种和关东194中较多的A链、较少的AC和B1链可能共同抑制了淀粉的回生性,增加了米胶的流淌性,从而表现出较小的回生性。另外,比较发现3个南粳品种相对武粳13和武香粳14的支链淀粉链长的变化特点,与和突变体的变异特点是一致的[31-32],那么南粳系列品种是否含有或的等位基因突变型,尚需要后续的验证。
4 结论
与常规粳稻亲本相比,南粳系列品种的食味品质特性是具有更低的糊化和回生特性,更高的胶稠度和米饭黏性,更短的糊化时间和更大的崩解能力。在大多数性状和支链淀粉结构上,南粳系列品种均与日本粳稻亲本关东194相似,说明其食味品质特性遗传自关东194。直链淀粉含量(AC)几乎与所有的稻米理化性状均有相关性,低AC是南粳系列品种食味品质形成的主要原因,而糊化温度(PC)主要与稻米淀粉粒的崩解性相关。支链淀粉分支结构主要影响回生特性,较多A链和较少B1链的分支链比例可以减低回生度。RVA谱特征值能体现稻米的粘滞性、崩解性、糊化特性、回生特性等多项理化特性,可以直接反映稻米蒸煮食味品质的优劣,可以将其广泛应用于优质稻米筛选过程。在优质育种或品种改良中降低AC和改善支链淀粉结构,在生产栽培中控制PC,是生产优良食味好稻米的关键举措。
[1] 王才林, 张亚东, 朱镇, 赵凌, 陈涛, 林静. 优质水稻新品种南粳46的选育与应用. 中国稻米, 2008(3): 38-40.
Wang c l, zhang y d, zhu z, zhao l, chen t, lin j. Breeding and application of a new high quality rice variety Nanjing 46., 2008(3): 38-40. (in Chinese)
[2] 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌. 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013, 41(9): 86-88.
Wang c l, zhang y d, zhu z, yao s, zhao q y, chen t, zhou l h, zhao l. Development of a newrice variety Nan-jing 9108 with good eating quality., 2013, 41(9): 86-88. (in Chinese)
[3] 王才林, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝. 优良食味粳稻新品种南粳5055的选育及利用. 农业科技通讯, 2012(2): 84-87.
Wang C l, zhang y d, zhu z, chen t, zhao q y, zhao l, zhou l h, yao s. Breeding and application of new good eating quality rice variety Nanjing 5055., 2012(2): 84-87. (in Chinese)
[4] Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q. Characterization of grain quality and starch fine structure of tworice () varieties with good sensory properties at different temperatures during the filling stage., 2016, 64: 4048-4057.
[5] Li H Y, Gilbert R G. Starch molecular structure: The basis for an improved understanding of cooked rice texture., 2018, 195: 9-17.
[6] Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity., 2017, 65: 2222-2232.
[7] Wickramasinghe H A M, Noda T. Physicochemical properties of starches from Sri Lankan rice varieties., 2008, 14(1): 49-54.
[8] BAO J S. Towards understanding of the genetic and molecular basis of eating and cooking quality of rice., 2012, 57: 148-156.
[9] Bao J S, Xiao P, Hiratsuka M, SUN M, UMEMOTO T. Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch., 2009, 61(8): 431-437.
[10] Chung H J, Liu Q, Lee L, Wei D Z. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents., 2011, 25: 968-975.
[11] Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes., 2002, 54: 117-131.
[12] Hanashiro I, Abe J I, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography., 1996, 283: 151-159.
[13] Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study., 1998, 36(4): 277-284.
[14] 李丁鲁, 张建明, 王慧, 李茂柏, 朴钟泽. 长江下游地区部分优质粳稻品种与越光稻米支链淀粉结构特征及品质性状比较. 中国水稻科学, 2010, 24(4): 379-384.
Li d l, zhang j m, wang h, li m b, piao z z. Differences in amylopectin structure and grain quality of rice between some high-qualityvarieties from the lower Yangtze River region, China and Koshihikari from Niigata, Japan., 2010, 24(4): 379-384. (in Chinese)
[15] Nakamura Y, Sato A, Juliano B O. Short-chain-length distribution in debranched rice starches differing in gelatinization temperature or cooked rice hardness., 2006, 58: 155-60.
[16] 蔡一霞, 王维, 朱智伟, 张祖建, 杨建昌, 朱庆森. 不同类型水稻支链淀粉理化特性及其与米粉糊化特征的关系. 中国农业科学, 2006, 39(6): 1122 -1129.
Cai y x, Wang W, zhu z w, zhang z j, yang j c, zhu q s. The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties., 2006, 39(6): 1122-1129. (in Chinese)
[17] 贺晓鹏, 朱昌兰, 刘玲珑, 王方, 傅军如, 江玲, 张文伟, 刘宜柏, 万建民. 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010, 36(2): 276-284.
He x p, zhu c l, liu l l, wang f, fu j r, jiang l, zhang w w, liu y b, wan j m. Difference of amylopectin structure among various rice genotypes differing in grain qualities and its relation to starch physicochemical properties., 2010, 36(2): 276-284. (in Chinese)
[18] Tong C, Chen Y, Tang F, Xu F, Huang Y, Chen H, Bao J. Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China., 2014, 161(11): 239-245.
[19] 李刚, 邓其明, 李双成, 王世全, 李平. 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009, 23(1): 99-102.
Li g, deng q m, li s c, wang s q, li p. Correlation analysis between RVA profile characteristics and quality in rice., 2009, 23(1): 99-102. (in Chinese)
[20] Lii C Y, Tsai M L, Tseng K H. Effect of amylose content on the rheological property of rice starch., 1996, 73: 415-420.
[21] Singh N, Pal N, Mahajan G, Singh S, Shevkani K. Rice grain and starch properties: Effects of nitrogen fertilizer application., 2011, 86: 219-225.
[22] Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C. Grain quality changes and responses to nitrogen fertilizer ofrice varieties released in the Yangtze River Basin from the 1950s to 2000s.,2015, 3(4): 285-297.
[23] 谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 绍高能, 魏详进, 胡培松. 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013, 27(1): 91-96.
Xie l h, luo j, tang s q, chen n, jiao g a, shao g n, wei x j, hu p s. Proteins affect rice eating quality properties and its mechanism., 2013, 27(1): 91-96. (in Chinese)
[24] Hamaker B R, GrifFIn V K. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting., 1993, 70: 377-380.
[25] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38(4): 657-663.
Sui j m, li x, yan s, yan c j, zhang r, tang s z, lu j f, chen z x, gu m h. Studies on the rice RVA profile characteristics and its correlation with the quality., 2005, 38(4): 657-663. (in Chinese)
[26] 朱满山, 汤述翥, 顾铭洪. RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005, 21(8): 59-64.
zhu m s, tanG s z, gu m h. Progresses in the study on the assessing, genetic and breeding of the rice starch RVA profile in rice eating quality., 2005, 21(8): 59-64. (in Chinese)
[27] 吴殿星, 舒庆尧, 夏英武. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性. 中国水稻科学, 2001, 15(1): 57-59.
Wu d x, shu q y, xia y w. rapid identification of starch viscosity property of early Indica rice varieties with different apparent amylose content by RVA profile., 2001, 15(1): 57-59. (in Chinese)
[28] Yan C J, Tian Z X, Fang Y W, Yang Y C, Li J. Genetic analysis of starch paste viscosity parameters in glutinous rice (L.)., 2011, 122(1): 63-76.
[29] Vandeputte G E, Vermeylen R, Geeroms J, Delcour J A. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinization behavior of granular starch., 2003, 38: 43-52.
[30] Lai V M F, Lu S, Lii C Y. Molecular characteristics influencing retrogradation kinetics of rice amylopectins., 2000, 77(3): 272-278.
[31] Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between-type and-type rice varieties., 2002, 104: 1-8.
[32] Satoh h, nishi a, yamashita k, Takemoto y, tanaka y, hosaka y, sakurai a, fujita n, nakamura y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm., 2003, 133(3): 1111.
Eating Quality and Physicochemical Properties in Nanjing Rice Varieties
ZHAO ChunFang, YUE HongLiang, HUANG ShuangJie, ZHOU LiHui, ZHAO Ling, ZHANG YaDong, CHEN Tao, ZHU Zhen, ZHAO QingYong, YAO Shu, LIANG WenHua, LU Kai, WANG CaiLin
(Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice Research and Development Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014)
【Objective】 The aim of this study was to confirm the main characteristics of cooking and eating quality in three Nanjing rice varieties and to clarify the differences between them and their parents, so as to provide theoretical basis for improvement of high grain quality rice varieties. 【Method】 Three Japonica rice varieties (Nanjing 46, Nanjing 9108, Nanjing 5055) and their parents (Kanto 194, Wujing 13 and Wuxiangjing 14) were used as experimental materials. Twenty-five eating quality related traits, including physicochemical characteristics, amylopectin branching structure, RVA spectrum properties, thermal properties and taste characteristics of cooked rice, were measured and the differences were compared among the six rice varieties. The relationships between physicochemical properties and taste characteristics of cooked rice, and between chemical composition, amylopectin structure and functional characteristics were analyzed. 【Result】 Three Nanjing japonica rice varieties were consistent in the most of the investigated traits. Compared to Wujing 13 and Wuxiangjing 14, three Nanjing varieties contained lower amylose content, peak time, though, final, setback and consistent viscosity, retrogradation enthalpy and rate, and hardness of cooked rice, and higher gel consistency, breakdown viscosity, stickiness and comprehensive value of cooked rice. In amylopectin structure, the proportion of A-chain (DP6-12) was higher, while that of B1-chain (DP13-24) was smaller. The three Nanjing varieties were more similar to Kanto 194 in most of the investigated traits, indicating that the eating quality traits of three Nanjing varieties were inherited from Kanto 194. There were differences among three Nanjing varieties, Nanjing 46 had lower protein content and thermal parameters, Nanjing 9108 contained higher lipid content, and Nanjing 5055 had higher pasting temperature than other two Nanjing varieties. Correlation analysis showed that except for protein content, gelatinization temperature and peak time, significant or extremely significant correlations between the comprehensive value of cooked rice and most of physicochemical properties were identified. Further analysis showed that physicochemical characteristics of rice were mainly contributed by amylose content. 【Conclusion】 The excellent eating quality characteristics of three Nanjing rice varieties have been mostly attributed to lower gelatinization and retrogradation, higher gel consistency and stickiness, shorter gelatinization time and greater breakdown. Lower amylose content was the main cause for high taste quality formation of cooked rice, whereas protein content and amylopectin branching ratio played roles in gelatinization and retrogradation.
rice; cooking and eating quality; amylose content; amylopectin chain length; RVA spectrum
10.3864/j.issn.0578-1752.2019.05.012
2018-09-11;
2018-10-19
江苏省自然科学基金(BK20180302)、江苏省自主创新基金(CX[18]1001)、国家现代农业产业技术体系项目(CARS-01-62)、江苏省种业创新基金(PZCZ201703)
赵春芳,E-mail:czhao@jaas.ac.cn。通信作者王才林,E-mail:clwang@jaas.ac.cn
(责任编辑 赵伶俐)