APP下载

蜈蚣草二萜类化学成分及其抗炎活性△

2019-03-08周艳丽王大利张艳张宁李硕熙吴娇李杨

中国现代中药 2019年2期
关键词:分子离子凤尾柱层析

周艳丽,王大利,张艳*,张宁,李硕熙,吴娇,李杨

1.黑龙江中医药大学 佳木斯学院,黑龙江 佳木斯 154007;2.大连市儿童医院 中心实验室,辽宁 大连 116012;3.大连民族大学 生命科学学院,辽宁 大连 116600

蜈蚣草为凤尾蕨科Pteridaceae凤尾蕨属Pteris植物,别名蜈蚣蕨、舒筋草、长叶甘草蕨等。蜈蚣草喜暖、半阴和潮润的环境,广泛分布于我国南方地区,具有较高的观赏价值和药用价值[1]。《全国中草药汇编》记载:其性味淡、平,具有解毒杀虫、祛风活血之功;民间多用于治疗流行性感冒、痢疾、疳疮、风湿疼痛、跌打损伤等。现代研究表明,蜈蚣草含有黄酮、多糖、多酚类化合物等,其提取物具有抗氧化、抑菌活性[2-4]。课题组前期对多种凤尾蕨属药用植物进行化学成分研究,发现多种二萜类化学成分[5-6]。蜈蚣草属于凤尾蕨属药用植物,然而其化学成分及生物活性的研究报道较少[7]。因此,为明确蜈蚣草的活性成分,本实验对蜈蚣草的化学成分进行深入的研究,分离并鉴定了6个化合物,分别鉴定为ent-3β-hydroxy-kaur-16-ene(1),ent-3β-acetoxy-kaur-16-ene(2),7β,17-dihydroxy-16β-ent-kauran-19-oic acid 19-O-β-D-glucopyranosideester(3),7β,17-dihydroxy-ent-kaur-15-en-19-oic acid 19-O-β-D-glucopyranoside ester(4),crotonkinin C(5),crotonkinin D(6);并进一步通过脂多糖诱导RAW264.7细胞炎症模型对各化合物的抗炎活性进行了评价,为后续研究蜈蚣草药物资源的化学成分、药理活性及开发利用提供科学参考。

1 仪器与试药

BRUKER AV500-III核磁共振仪(布鲁克公司,德国),溶剂峰为内标;岛津Shimadazu LC-6AD,SPD紫外检测器(Shimadazu公司,日本);色谱柱:YMC C18(500 mm×50 mm,50m,YMC公司,日本);Sephadex LH-20(GE Healthcare公司);反相柱色谱硅胶RP-18(50m,75m,日本YMC公司);CHP 20P型MCI吸附树脂(日本三菱公司);Multiskan FC酶标仪(美国Thermo-Fisher公司)。

实验用蜈蚣草于2017年8月采集于云南西双版纳地区,经黑龙江中医药大学陈效忠副教授鉴定为凤尾蕨属Pteris植物蜈蚣草Pterisvittata的全草。药材标本保存于黑龙江中医药大学佳木斯学院标本馆。

2 方法与结果

2.1 提取和分离

蜈蚣草的干燥全草共10 kg,用95%的乙醇溶液(8 L)回流提取3次,每次2 h,提取液合并后经真空干燥去除溶剂,得到干浸膏共950 g。将浸膏加水混悬分散,然后分别用石油醚、乙酸乙酯和正丁醇进行萃取分段。乙酸乙酯萃取液经真空浓缩干燥,得到乙酸乙酯层浸膏60.0 g,该部分经硅胶柱层析初步分离,用二氯甲烷-甲醇系统(1∶0~0∶1)进行梯度洗脱,最后再用甲醇洗脱,共收集得到6个组分,分别为Fr.A~F。Fr.D经MCI柱层析分离,洗脱剂为甲醇-水系统(20∶80,30∶70,40∶60,50∶50,60∶40,70∶30,100∶0),进一步分成5个亚组分Subfr.D1~D5。Subfr.D3先后经C18反相柱层析(MeOH-H2O,25∶75~50∶50)和LH-20凝胶柱层析(MeOH-H2O,50∶50)分离纯化得到化合物1(5 mg)和化合物2(8 mg)。Subfr.D5通过与Subfr.D3相同的分离手段和程序,分离纯化得到了化合物5(12 mg)和化合物6(15 mg)。Subfr.D4先经C18反相柱层析(MeOH-H2O,35∶65~80∶20)初步分离,再用制备型高效液相色谱法进行纯化,最后得到化合物3(12 mg)和化合物4(15 mg)。

2.2 结构鉴定

化合物1:白色粉末。根据ESI-MS在m/z389处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR数据,确定其分子式为C20H32O。1H-NMR(CDCl3,500 MHz)δ:1.85(1H,ddd,J=13.2 Hz,J=3.7 Hz,J=3.4 Hz,H-1a),0.90(1H,ddd,J=13.2 Hz,J=12.4 Hz,J=5.2 Hz,H-1b),1.63(1H,m,H-2a),1.60(1H,m,H-2b),3.19(1H,dd,J=10.9 Hz,J=5.6 Hz,H-3),0.76(1H,dd,J=11.8 Hz,J=1.9 Hz,H-5),1.55(1H,m,H-6a),1.40(1H,m,H-6b),1.52(1H,m,H-7a),1.48(1H,m,H-7b),1.03(1H,m,H-9),1.62(1H,m,H-11a),1.53(1H,m,H-11b),1.98(1H,dm,J=11.4 Hz,H-12a),1.11(1H,dddd,J=11.4 Hz,J=5.1 Hz,J=1.8 Hz,J=1.6 Hz,H-12b),2.64(1H,m,H-13),1.62(1H,m,H-14a),1.48(1H,m,H-14b),2.06(1H,m,H-15a),2.05(1H,m,H-15b),4.80(1H,m,H-17a),4.74(1H,m,H-17b),0.98(H,s,H-18),0.78(H,s,H-19),1.02(H,s,H-20);13C-NMR(CDCl3,125 MHz)δ:38.7(C-1),27.4(C-2),79.1(C-3),38.9(C-4),55.2(C-5),20.0(C-6),41.2(C-7),44.0(C-8),55.9(C-9),39.1(C-10),18.3(C-11),39.8(C-12),43.97(C-13),33.2(C-14),49.0(C-15),155.8(C-16),103.0(C-17),28.4(C-18),15.5(C-19),17.6(C-20)。以上数据与文献基本一致[8],故鉴定化合物为对映-3β-羟基-贝壳杉-16-烯(ent-3β-hydroxy-kaur-16-ene),化学结构见图1。

化合物2:白色粉末。根据ESI-MS在m/z330处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR数据,确定其分子式为C22H34O2。1H-NMR(CDCl3,500 MHz)δ:1.85(1H,ddd,J=13.4 Hz,J=3.8 Hz,J=3.5 Hz,H-1a),0.98(1H,ddd,J=13.4 Hz,J=12.8 Hz,J=4.7 Hz,H-1b),1.67(1H,m,H-2a),1.65(1H,m,H-2b),4.47(1H,dd,J=11.1 Hz,J=5.5 Hz,H-3),0.85(1H,m,H-5),1.53(1H,m,H-6a),1.36(1H,m,H-6b),1.53(1H,m,H-7a),1.51(1H,m,H-7b),1.06(1H,m,H-9),1.64(1H,m,H-11a),1.54(1H,m,H-11b),1.97(1H,dm,J=11.4 Hz,H-12a),1.11(1H,dddd,J=11.4 Hz,J=5.0 Hz,J=1.8 Hz,J=1.6 Hz,H-12b),2.64(1H,m,H-13),1.64(1H,m,H-14a),1.48(1H,m,H-14b),2.07(1H,m,H-15a),2.06(1H,m,H-15b),4.79(1H,m,H-17a),4.74(1H,m,H-17b),0.86(H,s,H-18),0.85(H,s,H-19),1.05(H,s,H-20),2.04(3H,s,CH3COO-);13C-NMR(CDCl3,125 MHz)δ:38.4(C-1),23.7(C-2),81.1(C-3),37.9(C-4),55.4(C-5),19.9(C-6),41.1(C-7),44.1(C-8),55.9(C-9),39.0(C-10),18.3(C-11),39.8(C-12),44.0(C-13),33.0(C-14),49.0(C-15),155.7(C-16),103.1(C-17),28.4(C-18),16.6(C-19),17.7(C-20),171.0(CH3COO-),21.3(CH3COO-)。以上数据与文献基本一致[8],故鉴定化合物为对映-3β-乙酰氧基-贝壳杉-16-烯(ent-3β-acetoxy-kaur-16-ene),化学结构见图1。

化合物3:白色粉末。根据ESI-MS 在m/z937处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR数据,确定其分子式为C43H68O22。1H-NMR(CDCl3,500 MHz)δ:1.77(1H,m,H-1a),0.75(1H,m,H-1b),2.22(1H,m,H-2a),1.42(1H,m,H-2b),2.38(1H,m,H-3a),1.89(1H,m,H-3b),1.05(1H,m,H-5),2.40(1H,m,H-6a),1.98(1H,m,H-6b),1.43(1H,m,H-7a),1.36(1H,m,H-7b),0.91(1H,m,H-9),1.68(1H,m,H-11),2.19(1H,m,H-12a),1.89(1H,m,H-12b),2.55(1H,m,H-14a),1.74(1H,m,H-14b),2.14(1H,m,H-15a),2.06(1H,m,H-15b),5.6(1H,brs,H-17a),5.2(1H,brs,H-17b),1.27(3H,s,H-18),1.25(3H,s,H-20),6.10(1H,d,J=7.0 Hz,Glc-1),4.96(1H,d,J=7.3 Hz,Xyl-1),5.54(1H,d,J=7.7 Hz,glc2-1(Xyl),5.33[1H,d,J=7.8 Hz,glc3-1(Xyl)];13C-NMR(CDCl3,125 MHz)δ:40.1(C-1),19.9(C-2),38.9(C-3),44.4(C-4),57.8(C-5),22.6(C-6),42.2(C-7),44.7(C-8),54.7(C-9),40.2(C-10),20.9(C-11),38.4(C-12),87.2(C-13),44.7(C-14),48.5(C-15),154.7(C-16),105.4(C-17),29.0(C-18),177.3(C-19),16.1(C-20),96.3(Glc-1),98.7(Xyl-1),105.0[glc2-1(Xyl)),105.1 glc3-1(Xyl)]。以上数据与文献基本一致[9],故鉴定化合物为13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-xylopyranosyl)-oxy]ent-kaur-16-en-19-oic acidβ-D-glucopy-ranosyl ester,化学结构见图1。

化合物4:白色粉末。根据ESI-MS在m/z935处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR数据,确定其分子式为C44H70O21。1H-NMR(CDCl3,500 MHz)δ:1.66(1H,m,H-1a),0.76(1H,m,H-1b),2.11(1H,m,H-2a),1.70(1H,m,H-2b),2.15(1H,m,H-3a),1.91(1H,m,H-3b),1.00(1H,m,H-5),2.11(1H,m,H-6a),1.86(1H,m,H-6b),1.62(1H,m,H-7a),1.32(1H,m,H-7b),0.91(1H,m,H-9),1.70(1H,m,H-11),2.68(1H,m,H-12a),1.15(1H,m,H-12b),2.50(1H,m,H-14a),1.70(1H,m,H-14b),2.10(1H,m,H-15),5.72(1H,s,H-17a),5.10(1H,m,H-17b),1.50(1H,s,H-18),1.14(1H,s,H-20),6.24(1H,d,J=6.8 Hz,Glc-1),6.40(1H,d,J=5.6 Hz,Rha2-1),5.10(1H,d,J=6.8 Hz,Glc-1),5.22(1H,d,J=6.6 Hz,glc2-1);13C-NMR(CDCl3,125 MHz)δ:41.1(C-1),20.3(C-2),38.1(C-3),44.8(C-4),58.8(C-5),22.5(C-6),42.1(C-7),43.1(C-8),54.4(C-9),40.2(C-10),21.1(C-11),38.1(C-12),86.6(C-13),45.1(C-14),48.3(C-15),155.1(C-16),105.6(C-17),29.6(C-18),176.0(C-19),17.3(C-20),94.1(Glc-1),102.0(Rha2-1),98.5(Glc-1),107.0(Glc2-1)。以上数据与文献基本一致[9],故鉴定化合物为13-[(2-O-α-D-glucopyranosyl-β-D-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl ester,化学结构见图1。

化合物5:白色粉末。根据ESI-MS在m/z391处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR 数据,确定其分子式为C22H30O6。1H-NMR(CDCl3,500 MHz)δ:1.99(1H,m,H-1a),0.99(1H,m,H-1b),2.01(1H,m,H-2a),1.49(1H,m,H-2b),1.76(1H,m,H-3),1.76(1H,m,H-5),1.59(1H,m,H-6a),0.99(1H,m,H-6b),2.18(1H,brd,J=11.0 Hz,H-7a),1.59(1H,m,H-7b),1.37(1H,brs,H-9),5.17(1H,d,J=5.4 Hz,H-11),1.88(1H,m,H-12a),1.66(1H,m,H-12b),2.99(1H,m,H-13),1.88(1H,m,H-14),6.60(1H,s,H-15),9.75(1H,s,H-17),1.18(3H,s,H-19),1.08(3H,s,H-20),1.90(3H,s,H-22);13C-NMR(CDCl3,125 MHz)δ:38.6(C-1),21.7(C-2),36.8(C-3),47.3(C-4),49.4(C-5),17.5(C-6),42.2(C-7),49.5(C-8),55.4(C-9),38.3(C-10),68.1(C-11),37.1(C-12),36.1(C-13),34.4(C-14),162.1(C-15),150.7(C-16),189.2(C-17),182.7(C-18),16.2(C-19),18.0(C-20),169.4(C-21),21.4(C-22)。以上数据与文献基本一致[10],故鉴定化合物为越南巴豆素C(crotonkinin C),化学结构见图1。

化合物6:白色粉末。根据ESI-MS在m/z435处显示出准分子离子峰[M+H]+,结合1H-NMR和13C-NMR 数据,确定其分子式为C24H34O7。1H-NMR(CDCl3,500 MHz)δ:1.98(1H,m,H-1a),0.86(1H,m,H-1b),1.48(1H,m,H-2a),1.36(1H,m,H-2b),1.36(1H,m,H-3),1.15(1H,d,J=10.7 Hz,H-5),1.65(1H,m,H-6a),1.48(1H,m,H-6b),1.71(1H,m,H-7),1.25(1H,brs,H-9),5.17(1H,d,J=3.7 Hz,H-11),1.94(1H,m,H-12),2.89(1H,m,H-13),2.17(1H,d,J=10.9 Hz,H-14a),1.65(1H,m,H-14b),6.64(1H,s,H-15),3.87(1H,d,J=11.0 Hz,H-18a),3.63(1H,d,J=11.0 Hz,H-18b),0.82(3H,s,H-19),1.08(3H,s,H-20),1.93(3H,s,H-22),2.07(3H,s,H-24);13C-NMR(CDCl3,125 MHz)δ:39.0(C-1),18.5(C-2),35.6(C-3),36.5(C-4),49.3(C-5),17.5(C-6),37.3(C-7),49.1(C-8),55.0(C-9),38.8(C-10),68.6(C-11),34.4(C-12),38.5(C-13),42.3(C-14),156.9(C-15),139.6(C-16),169.0(C-17),72.6(C-18),17.4(C-19),18.1(C-20),169.6(C-21),21.4(C-22),171.3(C-23),21.0(C-24)。以上数据与文献基本一致[10],故鉴定化合物为越南巴豆素D(crotonkinin D),化学结构见图1。

图1 化合物1~6化学结构

2.3 抗炎实验

将C57BL6/J小鼠的巨噬细胞以RPMI1640培养基培养在48孔细胞培养板中,37℃ 条件下培养24 h。然后将细胞分为4组(全部生长于RPMI1640培养基中):空白对照组(只加入RPMI1640培养基)、脂多糖对照组(加入1 mg·mL-1的脂多糖)、实验对照组(加入了1 mg·mL-1的脂多糖和候选化合物)和阳性对照组(加入10-6mol·L-1地塞米松)。将这些细胞在37 ℃条件下继续培养24 h。在100 mL的上清液中分别加入等量的格里斯试剂,并用酶标仪在波长570 nm下进行检测,以亚硝酸钠作为计算NO2-浓度的标准[11]。

结果表明化合物1和2具有较强的抑制NO产生作用,IC50值分别为9.5、8.3 μmol·L-1,且在测试浓度范围内具有较好的剂量依赖关系;而其他化合物均无明显的抗炎活性。

猜你喜欢

分子离子凤尾柱层析
超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法分析金水六君煎化学成分*
傣药莫哈蒿中化学成分的研究
基于UPLC-QTOF-MS技术分析野生与栽培杨树桑黄的化学成分
基于UPLC-Q-TOF-MS 技术分析乌蕨中的化学成分*
泥炭组成成分的GC-MS分析
栀子提取物分离纯化工艺研究
小蜡叶民间药用物质基础提取模式探索
凤尾绿咬鹃
“鸡头”与“凤尾”
松仁菇香凤尾虾