自适应无传感器无刷直流电动机换相控制策略
2019-02-25杨秋萍欧阳崇伟
杨秋萍,李 疆,欧阳崇伟
(贵阳学院数控技术工程应用实验室,贵阳 550005)
0 引 言
由于无刷直流电机(以下简称BLDCM)中没有换向器和电刷,故具有独特的优势,如高功率密度和高效率,且易于维护,在伺服控制和电力传动领域得到了广泛的应用[1-4]。
BLDCM的驱动控制需要准确的转子位置,故通常安装各种位置传感器、如编码器,旋转变压器或霍尔传感器等[5]。但传感器的布置将降低系统可靠性,特别是霍尔传感器布置偏差容易导致较大的转矩脉动[6-7]。为了提高BLDCM在恶劣环境下如电动汽车应用时的可靠性[8],较多学者开展了无传感器BLDCM驱动控制研究[9-10]。无传感器BLDCM驱动控制技术中具有代表性的是基于检测反电动势(以下简称EMF)过零点的方案[11]。文献[12]提出了一种基于EMF重构的无传感器驱动控制策略,但仅适用于表面式永磁BLDCM,且所需硬件相对复杂。在基于观测器[13-14]或扩展卡尔曼滤波器[15-16]的无传感器BLDCM驱动中,对电机模型是强依赖的,若考虑电机参数的扰动,则系统鲁棒性较低。文献[17]中提出了一种基于脉冲注入和B-H磁滞曲线的无传感器BLDCM驱动技术,其转子位置可在静止时被检测到,但额外的脉冲注入加大了控制复杂度。星形连接BLDCM的换相时刻也可以由EMF的三次谐波估算,即对三次谐波电压分量进行积分以找到过零点对应的换相时刻[18],该方法简单且成本低,但谐波分量幅值太低,故不适于低速工况。
基于前述文献研究,本文研究了一种基于改进零序电压信号处理技术的自适应无位置传感器BLDCM换相控制方案。采用低通贝塞尔滤波器来抑制开关噪声,同时基于零序电压中出现的EMF最大斜率与任何非理想EMF的基频功率平方成正比的规律,设计了限速器,以消除由续流二极管导通引起的错误过零点。最后,通过各种工况下的BLDCM驱动试验验证了新型控制策略的效果。
1 BLDCM无传感器换相问题描述
BLDCM的无传感器换相技术的主要难点是在没有传感器的情况下需确定转子位置。通常,电机的EMF中包含了转子位置信息,EMF的提取具体可分为以下几类:利用电机线电压;利用相对于一半直流电压的电机端电压;相对于负直流母线电压的电机端电压;相对于虚拟中性电位的电机终端电压。在这些方法中,使用低通滤波器来消除开关频率噪声。同时,滤波器引入了一个根据转子转速变化的延时,从而影响到驱动系统的性能。此外,经过低通滤波后的信号需要另行处理,以确定基波频率,并按照时间间隔进行移相处理。最后,采用相位补偿算法[19]来调整该时间间隔,使得开关调制与EMF波形同步。但滤波单元会引入非线性延时,这需要设置一个适当的电压阈值来补偿。
尽管如此,转子位置检测误差仍然会在实际应用中发生,导致转矩波动并降低转矩电流比[20]。文献[21]采用了模拟滤波器来补偿移相角以获得准确的换相时刻。然而,这种复杂的补偿算法会导致计算负担较重,而且在瞬态中换相精度受限。因此,本文将设计一种新型的换相策略,以克服上述问题。
2 新型无传感器BLDCM换相技术
图1为无传感器BLDCM换相控制策略框图。
新型无传感器换相技术基于零序电压中包含的转子位置信息实现换相。方案中采用了贝塞尔滤波器来降噪,而不是使用传统的低通滤波器,这保持了不同转速范围内原始信号的固定延时。但由于续流二极管导通造成的干扰难以抑制,将导致额外的错误过零点。故新方案中还需对零序电压信号进行处理,以消除错误过零点。为此,贝塞尔滤波器的输出端设置了限速器进行调整。得到过零点后,再进行相位补偿后输出最后的换相点。具体的新型无传感器换相控制策略框图如图2所示。
图1 新型无传感器BLDCM驱动系统框图
图2 新型无传感器换相控制框图
2.1 零序电压提取
无传感器换相技术的依据主要对EMF进行提取。新型无传感器换相方案中的EMF是从相对于一半直流电压的电机端电压中提取的,如图1所示。这样可以在不涉及电机中性点的情况下获得EMF,从而降低了电机结构的复杂度和制造成本。相对于一半直流电压的电机端电压VXH的表达式如下:
(1)
式中:下标X代表A,B或C相;VMON是开关管导通压降;VDON是二极管导通压降;ωr是电角速度;t代表时间;eXS为EMF;Vdc为直流电压;φ在0,120°和240°电角度中取值。续流二极管导通时间间隔对应电角度γ,该间隔的持续时间取决于电机相电阻、相电感和机械负载。EMF的广义数学表达式如下:
(2)
式中:F为概括A相EMF波形的角度变量;f是基频;λm是磁链峰值。式(2)是一个描述EMF波形的通用数学表达式,与电机绕组类型(分布式、集中式或分数式等)或转子类型(表面式或内嵌式)无关。式(1)中的测量电压中还包含了由开关动作引起的脉动电压。此外,运行通电的两相具有相反的电压值,而剩余相则对应为EMF。利用该特性,可由3个电压分量得到零序电压,并消除脉动电压,从而零序电压VH的表达式如下:
VH=VAH+VBH+VCH=
(3)
式中:VAH和VBH为运行两相电压;VCH为剩余相的EMF;E的表达式如下:
n=3(2k+1),k=0,1,2,3,…
(4)
式(4)表明,零序电压中仅包含对应端电压的三次谐波及其奇数倍次谐波。如图3所示,E具有近似三角波的波形,在固定转速下,其幅值略低于EMF幅值,而EMF波形具有圆形边沿。图4为固定转速下的三相端电压和零序电压波形,从图4中可以看出,E的过零点时刻对应着三相端电压的过零点时刻。新的换相方案实施简单,因为它只利用了一个零序电压信号,该信号集中了换相所需的全部信息。同时新方案使得无传感器换相的工作范围扩展,特别是在电机低速工况下。
图3 固定转速下的A相EMF和零序EMF波形
(a)A相端电压
(b)B相端电压
(c)C相端电压
(d) 零序电压
图4固定转速下的三相端电压和零序电压波形
2.2 贝塞尔滤波器设计
从图4(d)中可以看出,零序电压中包含了由于续流二极管导通和开关噪声叠加引起的脉冲。由于各相之间的不对称性,这种失真是不可避免的,这与BLDCM和开关动作有关。因此,有必要对零序电压进行进一步的滤波处理,但传统的低通滤波器方案会引入相位延迟,增大换相误差,进而影响BLDCM驱动系统的动态性能。故新方案重新设计了一种滤波器,该滤波器输出信号上只包含一个固定时间偏移。换句话说,滤波器的设计考虑了群时延响应。数学上的群时延被定义:
(5)
式中:φ(ω)是滤波器相位传递函数。滤波器通带中的固定群时延保证了滤波信号中所有频率点分量将经历相等的延时。由于贝塞尔滤波器具有截止频率前最大的平坦群时延响应,同时保有最小的输入失真,故新方案选用低通贝塞尔滤波器进行噪声滤波处理。进一步,采用贝塞尔滤波器将使得滤波信号延迟与转速无关,从而使新型无传感器换相控制方案中的相位补偿算法更加易于设计。
2.3 自适应限速器设计
图5为固定转速下的零序电压和经由贝塞尔滤波器滤波后的零序电压波形。从图5中可以看出,尽管贝塞尔滤波器消除了开关噪声,但由续流二极管导通造成的干扰仍然存在。故错误的过零点仍可能存在,特别是在负载转矩或转速增加的情况下。
图5 固定转速下的零序电压和经由贝塞尔滤波器滤波后的零序电压波形
因此,需对滤波后的零序电压进行进一步处理。图5的波形表明,滤波后的零序电压的斜率在续流二极管导通区域内快速变化。利用该特征可设计限速器以消除错误过零点。限速器的数学表达式如下:
(6)
式中:Ts是采样周期;vHf是贝塞尔滤波器滤波后零序电压信号经由模数转换后的输出;vHlim是限速器输出;Δvmax是限速器当前输出值与前次值的最大可接受偏差。考虑到对确定换相时刻的有用信息都包含在出现EMF的区域中,限速器必须保留这些区域中零序电压的斜率,同时不产生额外的时间偏移。因此,对于任意给定的转速,ratemax对于调整E的最大一阶导数至关重要。图6给出了不同ratemax(ratemax2 图6 贝塞尔滤波器输出波形和限幅器输出波形 零序电压波形。由E的表达式,即式(4),可以容易推断出,非理想EMF电机中E的最大斜率出现在θr=kπ时,其中k=0,1,2,…。因此,E的最大一阶导数的绝对值由下式给出: (7) 式(7)可以进一步简化: (8) 上式表明,E的最大斜率与电机基频的平方成正比。图7为不同F取值下,E的最大斜率相对于电机基频的变化情况。故ratemax需根据给定的BLDCM基频进行自适应调整。对限速器进行自适应调整能消除不同工作点由续流二极管导通引起的干扰。因此,新型无传感器换相技术可在广泛的转速运行范围内实施。 图7 不同角度变量下的BLDCM基频对应E的最大斜率 自适应限速器需测量电机频率,故在所提出的无传感器换相控制技术中引入了中值滤波器。中值滤波器为电机基频的确定提供了一种简单而又有效的解决方案,它只对输入信号进行局部处理,保持了信号的基频。首先,在每个采样周期Ts内对输入信号进行采样,并将数据按时间顺序排列成一个长度为n的窗口,并对n个采样点进行分类,并选择中值。然后采样点被相邻中值替换并存储在窗口中。中值滤波器的数学描述如下: (9) 式中:y(k)是中值滤波器的输出。为了能消除毛刺,中值滤波器需大量采样,其覆盖的时间需达到每次干扰持续时间的两倍以上。特别是在电机高速和重载时,中值滤波器实施要求的时间几乎需要超过零序电压的半个周期。最后的无噪声信号y(k)可用来确定基频。即在所提出的无传感器换相技术中,通过测算y(k)的两个连续过零点之间的时间间隔来计算频率。 现将所设计的新型自适应无传感器技术在具有非理想EMF和星形连接绕组的BLDCM上实施。BLDCM的参数如表1所示。直流母线电压为48 V,采用恒压源供电。三相逆变器基于MOSFET构建,开关频率设置为60 kHz,并采用脉宽调制方法控制。由于电机的额定转速为3 000 r/min,故在电机转速变化范围内,零序电压的基频可以在0~600 Hz变化。 表1 BLDCM主要参数 对于贝塞尔滤波器的应用,需选择合适的阶数和截止频率以抑制开关噪声,同时保留住有用的信息。具体而言,反电动势频率分量应该在滤波器通带中,而开关频率次谐波分量及其边带谐波分量则设计在阻带中。故截止频率选择为6 kHz,较开关频率小10倍,同时比零序电压的最大基频大10倍。另外,设计贝塞尔滤波器的阶数为4阶,滤波器在开关频率处能提供80 dB的衰减。图8为所设计滤波器的群延时响应,从图8中可以看出,滤波器时延在零序电压基频(0~600 Hz)范围内是恒定的。 图8 所设计滤波器的群时延响应 贝塞尔滤波器的输出通过一个A/D转换单元进行离散化处理,采样频率为60 kHz。如前所述,限速器仅用于在续流二极管导通区修正贝塞尔滤波器的输出。由于零序电压的斜率取决于运行转速,因此自适应调整是必须的,即ratemax必须由零序电压的基频进行设置,如式(8)所示。ratemax的计算需要知道电机的角度变量和最大漏磁链。本文研究对象BLDCM中EMF波形为角度变量等于π/6的类梯形形状,如图9所示。此外,BLDCM的最大漏磁链为0.003 5 V·s,代入式(8)中,可导出ratemax的数学表达式: (10) 图9 无负载,转速为1 000 r/min时A相EMF波形 将所设计的限速器在不同运行条件下进行测试,以评估其性能。图10为相关测试结果。测试结果表明:限速器的输出不存在时间偏移;由于续流二极管导通引起的错误过零点被消除。因此,限速器的输出信号可用于确定正确的换相点。 (a) 转速为1 000 r/min,轻载 (b) 转速为3 000 r/min,重载 图10贝塞尔滤波器和限速器的输出波形 频率检测算法的实施要求确定采样时间Ts和窗口宽度n。窗口宽度可从续流二极管导通的最大持续时间获取,该持续时间实际上不超过60°电角度。故在任何运行条件下,采样点应至少覆盖零序电压的半个周期,但不超过其整个周期。考虑到采样频率为60 kHz,零序电压的最大频率为600 Hz,中值滤波窗口大小设计为64,以便实时实施。由于窗口宽度是偶数,因此利用第32和33采样点的平均值形成输出y(k)。 将所设计的频率检测算法在不同运行条件下进行测试,以评估其性能。试验结果如图11所示,从图11中可以看出,通过频率检测算法,频率信息可以容易地得到。 (a) 转速为1 000 r/min,轻载 (b) 转速为3 000 r/min,重载 为了验证所设计的用于BLDCM的自适应无传感器换相控制策略的有效性,搭建了如图12所示的BLDCM驱动试验平台。BLDCM与一台直流发电机联轴,发电机连接电阻箱输出电能,形成转矩负载。逆变器的主电路由6个MOSFET(IRFB4410PbF)构成三相桥臂。此外,主要的硬件还包括测量单元、加法器电路、滤波电路和控制单元等。三相电机端电压可采用电阻网络获得,然后基于运算放大器(LM7171)构建了同相加法器得到零序电压。低通贝塞尔滤波器采用双运算放大器(LM6172)实现。控制单元基于单片机(Microchip dsPIC30F4011)实现。另外,电流是由霍尔电流传感器(LEM LAH 25-NP)采集。转子转速可以直接由零序电压计算得到。 图12 试验平台构建 首先基于试验平台进行了低速轻载试验,电机转速为100 r/min,图13为试验结果,包含了A相电压、零序电压、换相脉冲和A相电流波形。图14为贝塞尔滤波器输入零序电压波形和输出波形,从图14中可以看出,所设计滤波器对开关噪声抑制效果明显,显著提高了BLDCM低速性能。图15和图16分别为轻载和重载工况下,电机转速为400 r/min时的稳态试验结果,图17和图18分别为轻载和重载工况下,电机转速为3 000 r/min时的稳态试验结果。从试验结果中可以看出,电机重载时的定子电流增加,同时续流二极管的导通时间延长,但电机的换相过程一直较好地进行。 (a)A相电压 (b) 零序电压 (c) 换相脉冲 (d)A相电流 图13轻载和转速100 r/min时的试验结果 图14 轻载和转速100 r/min时的贝塞尔滤波器输入和输出波形 (a)A相电压 (b) 零序电压 (c) 换相脉冲 (d)A相电流 图15轻载和转速400 r/min时的试验结果 (a)A相电压 (b) 零序电压 (c) 换相脉冲 (d)A相电流 图16重载和转速400 r/min时的试验结果 (a)A相电压 (b) 零序电压 (c) 换相脉冲 (d)A相电流 图17轻载和转速3 000 r/min时的试验结果 (a) A相电压 (b) 零序电压 (c) 换相脉冲 (d)A相电流 图18重载和转速3 000 r/min时的试验结果 考虑到EMF的幅值与转速成正比,当电机静止或以接近零转速运行时,将得不到EMF的过零点。故电机的起动设计为开环方式,即通过查找表来输出开关信号实现起动。当电机开环控制转速升至100 r/min后,则切换到无传感器换相控制。图19为开环起动试验结果。从图19中可以看出,开环起动性能一般,转子转速不是很稳定,但转速持续上升后可以顺利地切换到无传感器换相控制。图20为转速上升的动态试验波形,在t=0.06 s时,转速指令迅速从300 r/min增加至1 100 r/min,电机实际转速迅速上升,响应时间小于0.4 s,电机加速动态性能较好。图21为转速下降的动态试验波形,在t=0.06s时,转速指令迅速从1550r/min下降至1 100 r/min,电机实际转速迅速下降,响应时间小于0.4 s,电机减速动态性能较好。 (a) 电机转速 (b) A相电流 (a) 电机转速 (b)A相电流 (c) 换相脉冲 (a) 电机转速 (b) A相电流 (c) 换相脉冲 图21电机减速时的试验结果 本文主要对BLDCM的无传感器换相控制进行了研究,在经过若干理论设计后对新方案进行了具体的实施,可总结主要结论和进一步的研究方向: (1)新方案利用零序电压提取EMF的过零点,并结合使用贝塞尔低通滤波器、中值滤波器和限速器,以确定精确的换相时刻,并通过稳态、动态试验进行了验证。 (2)新方案中的延时与转速无关,这有利于相位补偿算法,进而简化了控制结构,降低了系统成本。 (3)此外,与传统基于观测器的换相技术相比,新技术对电机相电阻和相电感变化不敏感,具有较高的鲁棒性。 (4)进一步的研究方向是BLDCM起动性能的改善。2.4 中值滤波器设计
3 新型无传感器换相控制的实施
3.1 贝塞尔滤波器实施
3.2 限速器实施
3.3 频率检测算法
4 试验验证
4.1 稳态试验
4.2 动态试验
5 结 语