远离“诱惑”:预先承诺对跨期决策的调控机制及其神经基础*
2018-10-15利振华聂衍刚
利振华 窦 凯,2 聂衍刚,2
远离“诱惑”:预先承诺对跨期决策的调控机制及其神经基础*
利振华1窦 凯1,2聂衍刚1,2
(1广州大学教育学院;2广州大学广州人心理与行为研究中心, 广州 510006)
预先承诺作为一种有效的自我控制策略, 主要通过提前排除那些在未来决策中可能会诱使个体做出冲动决策的选项, 以达到降低决策冲动性的目的。预先承诺调控跨期决策主要是通过侧额极皮层(LFPC)、背外侧前额叶(DLPFC)、腹内侧前额叶(vmPFC)、后顶叶皮层(PPC)等脑区的共同激活, 在自我控制、价值估算、特质冲动性、惩罚敏感度等心理变量的影响下发挥作用。本研究分别从认知机制和神经基础两个方面提出预先承诺降低冲动决策的整合模型, 为干预和降低个体决策冲动性提供理论借鉴。未来研究可进一步探究预先承诺调控跨期决策的心理与神经机制, 并加强预先承诺在决策领域的应用研究。
预先承诺; 跨期决策; 自我控制; 价值估算; 神经基础
1 引言
日常生活中, 人们常需要对现在与未来不同时间点的利益进行选择, 即跨期决策或跨期选择(intertemporal choice)。大至组织乃至国家公共政策的制定, 小到个体的日常生活和经济行为, 人类的决策大多基于时间维度上对成本与收益进行计算和权衡而做出的(梁竹苑, 刘欢, 2011)。例如, 是选择今天获得10元钱还是一周后获得12元钱, 是选择当前消费还是未来消费, 是选择当前的吸烟乐趣还是未来的身体健康(戒烟)等等, 都是我们常面临的跨期决策问题(何贵兵, 陈海贤, 林静, 2009; 刘洪志, 江程铭, 饶俪琳, 李纾, 2015)。恰当的决策会给人们带来健康的生活、良好的人际关系; 相反, 非理性的决策不仅会导致财物损失, 严重时还会危及生命(窦凯, 聂衍刚, 王玉洁, 黎建斌, 2014; 窦凯, 聂衍刚, 王玉洁, 黎建斌, 沈汪兵, 2014)。因此, 寻找降低人类决策冲动性的方法, 一直是决策领域学者关注的焦点问题(Peters, & Büchel, 2010; Wang & Dvorak, 2010)。其中, 预先承诺(pre-commitment)作为一种自我控制策略, 是帮助个体在跨期决策中抵制短期诱惑的有效途径(Kurth-Nelson & Redish, 2010, 2012; Crockett et al., 2013)。
预先承诺主要通过提前排除在未来决策中可能会诱发个体做出冲动决策的选项, 以达到限制个体冲动决策, 确保长远利益得以保护的目的(Kurth-Nelson & Redish, 2010)。例如, 若人们想避免非理性的网购, 可以选择定期存款, 如果提前取出则会面临损失银行利息的风险; 酒精成瘾者为了避免喝酒而不去酒吧; 病态赌徒可以在机器上预先设定赌博时间和金额的最大限度, 若达到限制将停止继续赌博(Crockett et al., 2013; Ladouceur, Blaszczynski, & Lalande, 2012)。近期的实证研究均得出较为一致的结论:预先承诺不仅有助于促进个体实现更长远的目标(Layton, 2014), 如学业成绩和工作表现的提升(Ariely & Wertenbroch, 2002; Hao, Branch, & Jensen, 2016)、更加健康的生活方式(Schwartz et al., 2014); 而且它还可以帮助个体抵制外部诱惑, 例如避免在赌博游戏中陷入“赌博谬论”, 降低冒险行为的出现(Ladouceur et al., 2012; Brevers et al., 2016)。有鉴于此, 本研究通过梳理预先承诺影响跨期决策的相关研究, 尝试提出一个整合模型来理解预先承诺降低冲动决策的心理与神经机制。
2 何为跨期决策?
跨期决策一直都是经济学、管理学、行为决策、神经心理学等领域关注的热点话题, 意指人们对发生在不同时间点的成本和价值进行权衡, 进而做出的判断和选择(Frederick, Loewenstein, & O'donoghue, 2002)。当成瘾患者、病理性赌博者、酗酒者等面临较大的延迟奖赏(Larger-Later, LL)与较小的即时奖赏(Smaller-Sooner, SS)的选择时, 往往过于夸大即时奖赏的价值, 从而表现出对即时小奖赏选项的偏好, 做出冲动性的决策。以往的很多研究中, 延迟折扣(delay discounting, 也叫时间折扣) 已经广泛用于表征决策冲动性(O'Donnell, Daniel, & Epstein, 2017; Wang et al., 2016; Smith, Marshall, & Kirkpatrick, 2015; Tedford, Persons, & Napier, 2015; MacKillop et al., 2016), 即人们对未来的主观价值会随着时间的推移而减少, 在决策时更倾向于选择SS, 而忽视了LL (Kable & Glimcher, 2007; Kalenscher & Pennartz, 2008)。延迟折扣率(rate of discounting)越大, 表明个体对未来价值存在“短视”现象, 对立即奖赏给予更大的权重。例如, 成瘾者比非成瘾者贴现更快(Dom, D’Haene, Hulstijn, & Sabbe, 2006), 因此, 一个潜在的瘾君子可能对SS (毒品的快感)的偏好远超过LL (健康、学业事业的成功、家庭幸福等)。
在众多的时间折扣计算模型中, 双曲线折扣模型(hyperbolic discounting model)或准双曲线折扣模型(quasi-hyperbolic discounting model)更具普遍性, 为人们广泛接受(Mazur, 1984; Laibson, 1997)。该类理论模型的核心观点认为, 人们在不同时间点上的折扣率不同, 因而可能会发生偏好反转(梁竹苑, 刘欢, 2011), 也就是说, 人们的选择偏好在不同时间点是不一致的(Ainslie, 1975; Loewenstein, 1996)。这种偏好反转的现象可以用图1来解释, 在早期的t1时刻, LL的折扣价值大于SS, 人们更喜欢奖赏LL上的回报。当即将到达t2时刻, 随着奖赏SS即将到来, SS的折扣价值逐渐大于LL的折扣价值, 对SS奖赏的偏好超过了LL奖赏, 从而出现了偏好的反转(Banfield, 2009)。因此, 这种偏好反转可能是我们在面临SS与LL的跨期抉择时, 个体由于意志力的缺乏而做出冲动决策的重要原因。
图1 偏好反转的原理(引自Rachlin, 1995)
一个跨期选择的例子就是, 对于学生来说, LL代表考得好成绩, SS代表去酒吧娱乐。t1表示每个学年的开始, 此时对大多数学生来说, 获得好成绩的价值超过去酒吧的价值。然而, 当在t2时候被朋友邀请到酒吧时, 即时满足(SS)的价值超过获得好成绩的长远目标(LL)。这时, 如果学生难以抵制诱惑, 缺乏自我控制的能力, 将很容易做出冲动决策, 选择去酒吧(Christodoulou, Banfield, & Cleanthous, 2010)。这种即时奖赏与延迟满足的抉择在生活中普遍存在, 例如在美味的甜品与获得健美的身材, 网络购物与增加银行存款, 偷盗自行车与获得良好的名声之间的权衡和选择。
3 预先承诺
预先承诺可以看作是提前做出一个长远目标的决定来限制个体对即时诱惑的选择, 从而避免个体在未来缺乏意志力时出现自我控制失败, 做出冲动性决策(Crockett et al., 2013; Layton, 2014; Kurth-Nelson & Redish, 2010)。当个体缺乏意志力或动机应对短期诱惑和长远利益的冲突时, 自我控制问题就会出现, 人们可以通过预先承诺来解决它们。例如, 学生为了避免拖延行为, 自愿设定代价高的最后期限(Ariely & Wertenbroch, 2002); 把闹钟放在远离床的位置, 迫使自己起床把它关掉; 故意走另外一条路, 避免经过某家店时想进去买东西。这种通过自愿强加行为限制来避免未来选择的现象普遍存在, Soutschek等人(2017)使用术语“捆绑(Binding)”来定义预先承诺。
人们对不同时间上的选择偏好是不一致的, 当个体在面临短期利益和长远利益的选择冲突时, 容易受到诱惑的影响而出现偏好反转(即偏好即时满足), 个体通过提前承诺选择长远价值的选项, 可以防止在未来因意志力薄弱而做出对短期利益的冲动选择。参考图1, 时间t1是预先承诺的理想时间, 因为SS奖赏的折扣价值低于LL, 而t2是运用自我控制拒绝选择SS的时间, 这时候容易出现偏好反转。Rachlin和Green (1972)关于鸽子的预先承诺实验可帮助我们进一步理解预先承诺的发生机制(如图2)。如果我们不预先承诺, 那么在t2就可以选择一个小的即时奖赏(SS)或大的延迟奖赏(LL), 这种情况在图2用上臂表示。如果我们在t1到t2之间的时间点(SS的折扣价值相对于LL仍然是低的)预先承诺选择LL, 那么就能限制在稍后的t2时间选择SS, 从而避免了在t2时间受到SS的诱惑干扰, 这种情况用下臂表示。因此, 在Y选项下进行预先承诺, 意味着执行下臂, 即排除了在选项X上可能出现的SS (Banfield, 2009)。例如, 一个减肥者如果选择走一条远离甜品店的路(选项Y), 意味着可以排除途经甜品店(选项X)所可能受到的美食诱惑。
图2 预先承诺的发生机制(引自Rachlin, 1995)
综上所述, 我们发现预先承诺与跨期决策有着密切的关联性, 即偏好反转。由于偏好具有时间不一致性, 如果个体在面临诱惑时缺乏意志力, 那么很容易偏好即时的满足, 做出冲动性决策。而预先承诺通过提前做出获得长远价值的决定, 排除在未来可能会诱使个体做出冲动行为的选项, 可以达到有效降低冲动决策的目的。
4 预先承诺调控跨期决策的可能认知机制
来自神经科学的证据表明, 预先承诺具有特定的神经基础(Crockett et al., 2013; Soutschek et al., 2017)。例如, Crockett等(2013)采用功能磁共振成像技术首先揭示了预先承诺的神经机制, 结果发现, 在预先承诺任务下个体更倾向于选择较大的延迟奖赏(LL), 通过比较预先承诺任务和选择退出任务, 个体在做出承诺选择时外侧额极皮层(lateral frontopolar cortex, LFPC)显著激活(Crockett et al., 2013; 汪强, 张恩茂, 2015)。为了进一步验证预先承诺与LFPC的关系, Soutschek等(2017)在Crockett的研究基础上采用经颅直流电刺激(tDCS)作用于左侧额极区。结果发现, 个体的预先承诺倾向得到提高, 在预先承诺条件下延迟奖赏的选择增加, 表明激活LFPC能促进个体做出预先承诺。两个研究均一致发现预先承诺有助于降低冲动决策, 且证实LFPC是预先承诺的神经基础。此外, 预先承诺调控跨期决策涉及一定的认知过程。以往研究表明, 预先承诺一方面通过自我控制和价值估算间接影响个体在行为决策中的冲动表现(Layton, 2014; Ariely & Wertenbroch, 2002; Kurth-Nelson & Redish, 2010), 另一方面也可能受到惩罚敏感度和特质冲动性等个体人格特质的调节(Banfield, 2009; Kurth-Nelson & Redish, 2012)。
4.1 自我控制
以往研究显示, 作为一种有效的自我控制策略, 预先承诺通过自愿约束自己的未来选择来避免自我控制失败(Brevers et al., 2016; Ariely & Wertenbroch, 2002; Crockett et al., 2013; Layton, 2014; Christodoulou, Banfield, & Cleanthous, 2010)。在这个过程中, 预先承诺很可能是借助意志力发挥作用, 因为负责预先承诺的LFPC脑区与负责意志力的背外侧前额叶皮层(dorsolateral prefrontal cortex, DLPFC)、额下回(inferior frontal gyrus, IFG)、后顶叶皮层(posterior parietal cortex, PPC)等脑区有着强烈的功能连接(Crockett et al., 2013)。另外, Figner等(2010)探讨自我控制在跨期决策中的作用时发现, 当经颅磁刺激(rTMS)作用于外侧前额叶(lateral prefrontal cortex, LPFC)时被试更多地选择立即奖赏, 这意味着自我控制在跨期决策中发挥的关键作用很可能是通过LPFC的激活来实现的。据此推测, 预先承诺降低冲动决策很可能是通过自我控制发挥作用。
4.2 价值估算
在Crockett等人(2013)的研究中, 个体在做出预先承诺时LFPC显著激活。以前的研究表明, LFPC在比较具有潜在不同期望价值的行动方案时具有特殊的作用(Daw, O'Doherty, Dayan, Seymour,& Dolan, 2006; Rushworth, Noonan, Boorman, Walton, & Behrens, 2011; De Martino, Fleming, Garrett, & Dolan, 2013)。Anjali, Rafael, Hare和Ruff (2015)在奖赏学习任务中采用经颅直流电刺激作用于LFPC, 结果发现, 刺激LFPC影响参与者对预期价值和奖赏的评估, 从而促使个体结合预期的奖赏和过去的经验来选择最优化的行动方案。另外, 意志力弱的个体在预先承诺较大的延迟奖赏时腹侧纹状体(ventrial striatum, VS)和腹内侧前额叶(ventromedial prefrontal cortex, vmPFC)显著激活, 这些脑区一直涉及未来价值的计算和评估 (Jimura, Chushak, & Braver, 2013; McNamee, Rangel, & O'Doherty, 2013; Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Smith, Clithero, Boltuck, & Huettel, 2014; Collazos et al., 2007)。个体在做出预先承诺时通过对未来奖赏价值进行比较和估算, 激活了相应的LFPC和vmPFC脑区。同时, 以往很多研究已经证实了价值计算与评估对跨期决策的重要影响(Kable & Glimcher, 2007; Sokol-Hessner, Hutcherson, Hare, & Rangel, 2012; Jimura et al., 2013)。可见, 个体在做出预先承诺时通过计算和评估即时和延迟选项的价值后, 更倾向于选择长远的价值, 从而有效降低冲动性决策。
4.3 特质冲动性
预先承诺影响冲动决策的过程不仅与自我控制和价值估算密切联系, 个体的特质冲动性可能也会在其中发挥作用。在Crockett的研究中, 冲动性水平越高的个体在预先承诺期间显示出更强的LFPC–DLPFC和LFPC–PPC功能连接, 并且从中受益更多。此外, 冲动性对LFPC功能连接的影响还受到vmPFC激活水平的介导(Crockett et al., 2013)。Kurth-Nelson和Redish (2010)认为, 具有高冲动特质的个体对预先承诺和选择之间的延迟高度敏感, 如果延迟时间很短, 预先承诺不太可能会出现; 如果延迟时间增加, 那么预先承诺的倾向也会陡增。相反, 如果个体相对有耐心, 则会对预先承诺和选择之间的延迟很不敏感, 那么在延迟中对不同价值的选项没有明显的偏向(Kurth- Nelson & Redish, 2010)。因此, 越冲动的个体可能会出现更强的预先承诺偏向, 这是因为有着较强的冲动选择倾向的个体更可能采取策略削减他们的冲动性决策。
4.4 惩罚敏感度
个体的惩罚敏感度可能也会调节预先承诺对冲动决策的影响。以往研究发现, 惩罚敏感度高的个体对潜在的损失拒绝性更高, 在赌博任务中更容易做出风险规避的行为(Franken & Muris, 2005; Kim & Lee, 2011)。最近关于预先承诺影响冒险决策的研究发现, 在直接选择任务中, 惩罚敏感度与冒险决策呈负相关(Brevers et al., 2016)。对于惩罚敏感度高的个体, 在做出预先承诺后, 对破坏承诺所带来的损失(如利益、名声)更加敏感, 因而在权衡SS与LL时更加坚定对LL的选择。相反, 惩罚敏感度低的个体不会因为得失而有所顾忌, 即使对LL做出承诺, 当在面临诱惑时仍然有可能出现偏好反转, 做出冲动性决策。由此我们认为, 个体的惩罚敏感度在预先承诺影响冲动决策的过程中可能起到调节作用。
5 预先承诺调控跨期决策的认知神经机制整合
通过总结和归纳以往关于预先承诺与跨期决策的关系研究, 我们构建了预先承诺降低冲动决策的认知神经机制整合模型(如图3)。该模型认为, 人们之所以做出冲动决策是由于个体过于夸大即时奖赏的价值, 从而表现出对即时小奖赏(SS)的偏好。如果个体没有做出预先承诺, 那么在跨期决策中更容易受到短期利益的诱惑, 表现出对SS的偏好, 从而促进冲动决策的发生; 相反, 当个体做出预先承诺时, 在自我控制和价值估算等因素的调控下, 个体更倾向于选择长远利益, 从而避免受到即时奖赏的诱惑而做出冲动选择。整个模型具体的推测过程如下:
首先, 个体在做出预先承诺时激活了负责自我控制的DLPFC、PPC脑区以及负责价值估算的LFPC、vmPFC脑区, 通过发挥自我控制功能避免SS的干扰, 同时对SS和LL进行价值估算, 选择适合自身发展的长远利益。值得注意的是, 个体的认知活动涉及的脑区从来都不是独立运行的, 而是相互联通合作, 共同完成各种复杂的认知任务。在预先承诺的过程中, LFPC显示与DLPFC和PPC有强烈的功能连接。以往的很多研究中, 这些脑区一直与自我控制联系密切(Hare, Camerer,& Rangel, 2009; Figner et al., 2010; McClure, Laibson, Loewenstein, & Cohen, 2004), 因此, LFPC可能在评估预先承诺的潜在利益时, 从DLPFC和PPC中整合有关意志力进程的信息。以往关于自我控制的fMRI研究表明, 在决策中DLPFC实现自我控制功能主要通过自上而下地调节结果价值, 计算长期目标的权重(Hare et al., 2009)。因此, LFPC很可能在估算预先承诺的潜在价值时整合了由DLPFC提供的关于长期目标的信息。同时, PPC很可能作为价值计算和动机输出之间的桥梁, 参与预先承诺决定。以往研究发现, 在探索性决策过程中LFPC和PPC同步被激活, PPC的激活预测行为策略的转换(Daw et al., 2006; Boorman, Behrens, Woolrich, & Rushworth, 2009), 因此, LFPC实现预先承诺很可能通过PPC将价值转化为行动而得以实现(Crockett et al., 2013)。
图3 预先承诺调控跨期决策的整合模型
其次, 在预先承诺期间, vmPFC的激活水平调节了LFPC和DLPFC的功能连接强度, vmPFC对影响跨期决策的进程同样有着重要作用。Hare, Hakimi和Rangel (2014)通过观察个体在跨期选择任务中对未来奖赏贴现的神经活动发现, 当控制了奖赏的主观价值后, 个体选择延迟奖赏时DLPFC更加活跃, DLPFC与vmPFC之间的连通性更强, 两个脑区的连接与刺激物的价值计算密切联系(Hare et al, 2014)。Sokol-Hessner等(2012)通过控制决策时间考察被试在选择主食下的大脑活动, 发现负责价值计算的vmPFC和DLPFC同时被激活(Sokol-Hessner et al, 2012)。Steinbeis等在一项fMRI研究中, 让6~13岁的儿童完成独立选择评估任务和跨期选择任务。结果发现, 随着年龄的增长, 这些儿童更善于控制自己的冲动, 克服诱惑; 同时, 在决策时DLPFC和vmPFC有着强烈的功能连接(Steinbeis, Haushofer, Fehr, & Singer, 2016)。这些结果表明, LFPC、DLPFC与vmPFC的共同激活和功能连接很可能在一定程度上反映了预先承诺调控跨期决策的神经基础, 即自我控制与价值估算在其中共同发挥着降低决策冲动性的作用。然而, 具体哪个脑区占主导地位, 功能连接的程度如何, 目前的研究还没有具体的结论, 因此未来的研究还需要进一步深入挖掘。
再次, 个体的特质冲动性以及惩罚敏感度可能在预先承诺影响跨期决策的过程中起调节作用, 具体来说, 高冲动性的个体具有更强的预先承诺意愿, 通过采取必要的策略来削弱自身的冲动性决策。此外, 惩罚敏感度高的个体对潜在的损失拒绝性更强, 因此做出承诺时会对破坏承诺所带来的损失更加敏感, 在权衡SS与LL时更加坚持对LL的选择, 从而降低冲动决策。
6 总结与未来研究展望
本文认为, 预先承诺主要通过激活LFPC、DLPFC、vmPFC、PPC等相关脑区, 在自我控制、价值估算、特质冲动性、惩罚敏感度等心理变量的影响下发挥降低冲动决策性的作用。虽然本研究有助于丰富国内关于预先承诺的理论研究, 为降低人类非理性决策行为提供借鉴, 但整合模型的观点还有待进一步完善和验证, 未来研究可从以下几个方面进行深入探讨。
6.1 进一步丰富预先承诺影响跨期决策的认知机制
LFPC作为预先承诺的重点激活脑区, 以往对LFPC的研究主要与元认知、假设思维、预期评估、比较选择行动方案的关键进程有关(Tsujimoto, Genovesio, & Wise, 2011; Boorman, Behrens, & Rushworth, 2011; De Martino, Fleming, Garrett, & Dolan, 2013; Rushworth et al., 2011), 这些认知过程可能在预先承诺中起到重要作用。近年来, 研究者发现LFPC涉及类别学习、工作记忆、创造性推理、问题解决、利益权衡等人类高级认知功能(Anjali et al, 2015; Boschin & Buckley, 2015; Green et al., 2017; Hyafil & Koechlin, 2016; Paniukov & Davis, 2017)。那么预先承诺降低冲动决策是否与这些心理变量有密切的联系?未来研究可以关注这些变量的作用机制, 从而拓宽和丰富预先承诺影响跨期决策的认知机制。
此外, 在生活中提前做出承诺决定通常涉及更长的延迟(几周甚至几个月), 与目前研究使用较短的延迟形成鲜明的对比。另外, 当SS和LL的奖赏差异更大时, 预先承诺更容易出现。例如, 让成瘾者明确戒除毒品后可觉察到的益处(比如能够获得长期的健康、自我满足和家人的幸福等)具有重要作用(Kurth-Nelson & Redish, 2012)。因此, 预先承诺与选择之间的时间间隔、奖赏的差异可能是影响预先承诺的重要因素, 未来研究需要深入探讨这些变量的作用机制。
6.2 深入探究预先承诺调控跨期决策的神经机制
在以往预先承诺的研究中, 主要采用功能磁共振成像(fMRI)和经颅直流电刺激(tDCS)探讨预先承诺的神经机制(Crockett et al., 2013; Soutschek et al., 2017), 虽然在揭示预先承诺的神经基础方面具有独特优势, 但对预先承诺调控跨期决策的动态加工过程方面还稍显薄弱。如今事件相关电位(ERPs)技术已经广泛应用在探究各类高级认知活动的神经机制中, 在研究方法和数据处理等方面也较为成熟, 而且可以得到良好的的实验效果。未来研究可结合ERPs和fMRI等脑科学工具, 设计更加合理有效的研究方案, 从时间和空间的角度揭示预先承诺调控跨期决策过程和结果评价的神经机制。
6.3 拓展预先承诺在日常决策中的应用
预先承诺策略被证实在控制药物成瘾、赌博、吸烟、酗酒等冲动性行为方面具有良好效果, 可以帮助人们培养健康的行为习惯, 实现长远目标(Thomas et al., 2016; Kurth-Nelson, & Redish, 2010; Schwartz et al., 2014; Ladouceur et al., 2012; Soutschek et al., 2017)。例如, 预先承诺策略可以让赌博的危害降到最低, 有助于保护赌徒由于自我控制失败而陷入“赌博谬论”。问题赌徒由于难以控制自己的赌博行为, 会不自觉地沉迷赌博的世界无法自拔。在开始赌博之前, 让赌徒在电子机器上设定支出的金钱和时间上限, 一旦达到预设的上限, 将不允许在赌场内的任何机器上继续赌博(Ladouceur et al., 2012), 这在一定程度上可以防止病态赌徒无止境地赌博。在未来的研究中, 可以把预先承诺策略运用到更多的不良社会适应性行为中, 如青少年欺骗、攻击以及非理性决策行为等方面, 进而改善青少年的非理性行为, 促进人格健全发展。
窦凯, 聂衍刚, 王玉洁, 黎建斌. (2014). 自我损耗促进冒险行为.,(1), 150–155.
窦凯, 聂衍刚, 王玉洁, 黎建斌, 沈汪兵. (2014). 自我损耗促进冲动决策: 来自行为和ERPs的证据.(10), 1564–1579.
何贵兵, 陈海贤, 林静. (2009). 跨期选择中的反常现象及其心理机制., 298–305.
梁竹苑, 刘欢. (2011). 跨期选择的性质探索.(7), 959–966.
刘洪志, 江程铭, 饶俪琳, 李纾. (2015). “时间折扣”还是“单维占优”?——跨期决策的心理机制.(4), 522–532.
汪强, 张恩茂. (2015). 降低决策冲动性的方法及其神经机制.(1), 101–109.
Ainslie, G. (1975). Specious reward: A behavioral theory of impulsiveness and impulse control.(4), 463–496.
Anjali, R. B., Rafael, P., Hare, T. A., & Ruff, C. C. (2015). Transcranial stimulation over frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration-exploitation trade-offs.(43), 14544–14556.
Ariely, D., & Wertenbroch, K. (2002). Procrastination, deadlines, and performance: Self-control by precommitment.(3), 219–224.
Banfield, G. D. (2009).. (Unpublished Doctorial Dissertation). University of London.
Boorman, E. D., Behrens, T. E. J, & Rushworth, M. F. (2011). Counterfactual choice and learning in a neural network centered on human lateral frontopolar cortex.(6), e1001093.
Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., & Rushworth, M. F. S. (2009). How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action., 62(5), 733–743.
Boschin, E. A., & Buckley, M. J. (2015). Differential contributions of dorsolateral and frontopolar cortices to working memoryprocesses in the primate., 144.
Brevers, D., Noel, X., Clark, L., Zyuzin, J., Justin Park, J., & Bechara, A. (2016). The impact of precommitment on risk-taking while gambling: A preliminary study.(1), 51–58.
Christodoulou, C., Banfield, G., & Cleanthous, A. (2010). Self-control with spiking and non-spiking neural networks playing games.(3–4), 108–117.
Collazos, C. A., Guerrero, L. A., Pino, J. A., Renzi, S., Klobas, J., Ortega, M., ... Bravo, C. (2007). Suporting onlinematerial self-control in decision-making involves modulation of the vmPFC valuation system.,(3), 257–274.
Crockett, M. J., Braams, B. R., Clark, L., Tobler, P. N., Robbins, T. W., & Kalenscher, T. (2013). Restricting temptations: Neural mechanisms of precommitment.(2), 391–401.
Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans.,, 876–879.
Dom, G., D’Haene, P., Hulstijn, W., & Sabbe, B. (2006). Impulsivity in abstinent early-and late-onset alcoholics: Differences in self-report measures and a discounting task.(1), 50–59.
Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice., 538–539.
Franken, I. H. A., & Muris, P. (2005). Individual differences in decision-making.(5), 991–998.
Frederick, S., Loewenstein, G., & O'Donoghue, T. (2002). Time discounting and time preference: A critical review.,(2), 351–401.
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation.(4), 2628–2639.
Hao, Q., Branch, R. M., & Jensen, L. (2016). The effect of precommitment on student achievement within a technology-rich project-based learning environment.(5), 442–448.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system.(5927), 646–648.
Hare, T. A., Hakimi, S., & Rangel, A. (2014). Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting., 50.
Hare, T. A., O'Doherty, J., Camerer, C. F., Schultz, W., & Rangel, A. (2008). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors.(22), 5623–5630.
Hyafil, A., & Koechlin, E. (2016). A neurocomputational model of human frontopolar cortex function.Retrieved Jan 22, 2016, from http://dx.doi.org/10.1101/037150
Jimura, K., Chushak, M. S., & Braver, T. S. (2013). Impulsivity and self-control during intertemporal decision making linked to the neural dynamics of reward value representation.(1), 344–357.
Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice., 1625–1633.
Kalenscher, T., & Pennartz, C. M. A. (2008). Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making.(3), 284–315.
Kim, D. Y., & Lee, J. H. (2011). Effects of the BAS and BIS on decision-making in a gambling task.(7), 1131–1135.
Kurth-Nelson, Z., & Redish, A. D. (2010). A reinforcement learning model of precommitment in decision making., 184.
Kurth-Nelson, Z., & Redish, A. D. (2012). Don’t let me do that! – Models of precommitment., 138.
Ladouceur, R., Blaszczynski, A., & Lalande, D. R. (2012). Pre-commitment in gambling: A review of the empirical evidence.(2), 215–230.
Laibson, D. (1997). Golden eggs and hyperbolic discounting.(2), 443–478.
Layton, R. L. (2014).(Unpublished doctorial dissertation)State University of New York, 3629133.
Loewenstein, G. (1996). Out of control: Visceral influences on behavior.(3), 272–292.
MacKillop, J., Weafer, J., Gray, J. C., Oshri, A., Palmer, A., & Wit, H. D. (2016). The latent structure of impulsivity: Impulsive choice, impulsive action, and impulsive personality traits.,(18), 3361–3370.
De Martino, B., Fleming, S. M., Garrett, N., & Dolan, R. J. (2013). Confidence in value-based choice., 105–110.
Mazur, J. E. (1984). Tests of an equivalence rule for fixed and variable reinforcer delays.(4), 426–436.
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards.,(5695), 503–507.
McNamee, D., Rangel, A., & O'Doherty, J. P. (2013). Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex., 479–485.
O'Donnell, S., Daniel, T. O., & Epstein, L. H. (2017). Does goal relevant episodic future thinking amplify the effect on delay discounting?, 10–16.
Paniukov, D., & Davis, T. (2017).. Retrieved Feb 8, 2017, fromhttps://www.biorxiv.org/ content/early/2017/02/08/107110
Peters, J., & Büchel, C. (2010). Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions.(1), 138–148.
Rachlin, H. (1995). Self-control: Beyond commitment.(1), 109–121.
Rachlin, H., & Green, L. (1972). Commitment, choice and self-control.(1), 15–22.
Rushworth, M. F. S., Noonan, M. A. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. (2011). Frontal cortex and reward-guided learning and decision-making.(6), 1054–1069.
Schwartz, J., Mochon, D., Wyper, L., Maroba, J., Patel, D., & Ariely, D. (2014). Healthier by precommitment.(2), 538–546.
Smith, A. P., Marshall, A. T., & Kirkpatrick, K. (2015). Mechanisms of impulsive choice: II. Time-based interventions to improve self-control., 29–42.
Smith, D. V., Clithero, J. A., Boltuck, S. E., & Huettel, S. A. (2014). Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.(12), 2017–2025.
Sokol-Hessner, P., Hutcherson, C., Hare, T., & Rangel, A. (2012). Decision value computation in DLPFC and VMPFC adjusts to the available decision time.(7), 1065–1074.
Soutschek, A., Ugazio, G., Crockett, M. J., Ruff, C. C., Kalenscher, T., & Tobler, P. N. (2017). Binding oneself to the mast: Stimulating frontopolar cortex enhances precommitment.(4), 635–642.
Steinbeis, N., Haushofer, J., Fehr, E., & Singer, T. (2016). Development of behavioral control and associated vmPFC–DLPFC connectivity explains children's increased resistance to temptation in intertemporal choice.(1), 32–42.
Tedford, S. E., Persons, A. L., & Napier, T. C. (2015). Dopaminergic lesions of the dorsolateral striatum in rats increase delay discounting in an impulsive choice task.(4), e0122063.
Thomas, A., Christensen, D., Deblaquiere, J., Armstrong, A., Moore, S., Carson, R., & Rintoul, A. (2016).Melbourne: Australian Institute of Family Studies.
Tsujimoto, S., Genovesio, A., & Wise, S. P. (2011). Frontal pole cortex: Encoding ends at the end of the endbrain.(4), 169–176.
Wang, Q., Chen, C., Cai, Y., Li, S., Zhao, X., Zheng, L., … Xue, G. (2016). Dissociated neural substrates underlying impulsive choice and impulsive action.(1), 540–549.
Wang, X. T., & Dvorak, R. D. (2010). Sweet future: Fluctuating blood glucose levels affect future discounting.(2), 183–188.
Stay away from "temptation": The regulatory mechanisms and relevant neural basis for the association between pre-commitment and intertemporal choice
LI Zhenhua1; DOU Kai1,2; NIE Yangang1,2
(1School of Education, Guangzhou University;2Psychological and Behavioral Research Center of Cantonese, Guangzhou University, Guangzhou 510006, China)
Pre-commitment, as an effective self-control strategy, can reduce the impulsivity of decision- making primarily through precluding the options in advance that may prompt individuals to make impulsive decisions. Pre-commitment regulates the intertemporal choice primarily via activating the lateral frontopolar cortex (LFPC), dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (vmPFC) and posterior parietal cortex (PPC), which is also affected by self-control, value estimation, trait impulsivity, punishment sensitivity and other relevant psychological processes. This study proposes an integrated model, which contains cognitive mechanism and neural basis for the role of pre-commitment in reducing impulsive decision-making. The model provides theoretical foundation and important implications for reducing impulsive decision-making. Future research should continue to examine the psychological and neural mechanisms for the regulatory role of pre-commitment in intertemporal choice. Additionally, it is significant to investigate how pre-commitment impacts decision making in applied research.
pre-commitment; intertemporal choice;self-control; value estimation; neural basis
2018-02-05
*广东省哲学社会科学“十三五”规划课题青年项目(GD16YXL01), 国家自然科学基金面上项目(31671153), 教育部人文社会科学研究青年基金项目(17YJCZH040), 广州市社科联2017年度“羊城青年学人”项目(17QNXR43),广州大学新进“优秀青年博士”培养计划(YB201707)资助。
窦凯, E-mail: psydk@gzhu.edu.cn
聂衍刚, E-mail: nie-yangang@gzhu.edu.cn
B849:C91
10.3724/SP.J.1042.2018.01869