诱发的积极情绪会促进多媒体学习吗?*
2018-10-15陈佳雪谢和平王福兴李文静
陈佳雪 谢和平 王福兴 周 丽 李文静
诱发的积极情绪会促进多媒体学习吗?*
陈佳雪 谢和平 王福兴 周 丽 李文静
(华中师范大学心理学院, 武汉 430079)
近来, 教育心理学领域开始关注情绪因素对多媒体学习的影响, 其中诱发情绪逐渐成为研究者关注的指导设计形式。已有研究主要通过外部情绪诱发和内部情绪设计来考察诱发的积极情绪在学习过程中的作用, 并发现外部情绪诱发和内部情绪设计能够成功诱发积极情绪, 但由于情绪诱发方式的多样性和多媒体学习过程的复杂性, 诱发的积极情绪对学习效果的促进作用比较微弱。综述发现, 7项涉及外部情绪诱发的实验在学习结果上产生的效应量中值分别为保持= −0.25,理解= 0.04,迁移= 0.30; 14项涉及内部情绪设计的实验在学习结果上产生的效应量中值分别为保持= 0.27,理解= 0.36,迁移= 0.29。诱发的情绪对学习过程的主观体验影响很小。多媒体学习认知情感理论认为诱发的积极情绪会通过动机的中介作用进而促进学习; 相反, 认知负荷理论认为诱发的积极情绪会增加学习者的外在认知负荷从而阻碍学习。未来研究仍需关注情绪的操纵方法、效果评定以及潜在调节变量的作用等。
积极情绪; 多媒体学习; 多媒体学习认知情感理论; 认知负荷理论
在多媒体学习中, 教学设计者往往通过改变学习材料的设计特点,努力优化教学设计来提高学习者的认知加工和学习结果(王福兴, 段朝辉, 周宗奎, 2013; 王福兴, 段朝辉, 周宗奎, 陈珺, 2015; 王福兴, 李文静, 谢和平, 刘华山, 2017; Atkinson, 2002; Ibrahim, Callaway, & Bell, 2014; Mayer, 2005, 2009; Wouters, Paas, & van Merriënboer, 2008)。学习者在学习过程中会体验到各种不同的情绪(Pekrun, Goetz, Titz, & Perry, 2002), 而大量心理学研究发现情绪会影响认知加工过程(Izard, 2009; Russell, 2003)和学习效果(Pekrun, 2006)。以往多媒体学习领域的研究中, 研究者们往往只关注认知因素对学习效果的影响, 然而近几年来, 研究者们除了关注认知因素外, 也开始更多关注教学设计诱发的情绪因素对学习者的认知加工和学习结果的影响(Mayer & Estrella, 2014; Park, Knörzer, Plass, & Brünken, 2015)。例如:Um, Plass, Hayward和Homer (2012)在多媒体学习之前要求一组被试阅读具有积极情绪色彩的语句, 另一组阅读中性情绪色彩的语句, 结果发现阅读积极情绪语句比阅读中性情绪语句的迁移成绩要好; 同时该研究还发现观看画面中包含了暖色调、拟人化婴儿圆脸设计元素的积极情绪视频材料组的理解和迁移成绩要好于观看不包含暖色调和拟人化婴儿圆脸的中性情绪组。该研究较早将情绪因素纳入到了多媒体课程设计中来探讨情绪诱发对学习效果的影响, 从而引起了研究者们对情绪影响多媒体学习的研究兴趣。但是, 后续研究对多媒体学习中诱发情绪能否促进多媒体学习效果却得出了不同的结论(Park et al., 2015; Plass, Heidig, Hayward, Homer, & Um, 2014)。为此,该综述在回顾已有实证研究基础上, 整理了有关多媒体学习中情绪的诱发方法, 以及情绪促进或阻碍学习的理论基础, 探讨诱发的情绪状态对多媒体学习效果的影响, 以期为教师或教学设计者优化教学设计、促进学习者的学习效果提供借鉴。
1 如何在多媒体学习中诱发情绪?
情绪设计的概念在人类工程学的产品设计研究中已被广泛使用(Norman, 2004), 如今在教育心理学的多媒体学习领域研究中也逐渐得以应用。情绪设计(emotional design)是在教学过程中使用不同的设计元素来影响学习者的情绪, 旨在提高学习成绩的教学设计方式(Plass & Kaplan, 2016)。综述以往的研究发现, 在多媒体学习中进行情绪诱发主要通过以下两种途径:第一, 外部情绪诱发, 即在学习之前通过与学习材料内容无关的信息来诱发学习者的情绪。例如:Knörzer, Brünken和Park (2016)在课程学习之前要求被试听音乐并回忆以往经历的事件来诱发情绪。第二, 内部情绪设计, 主要是通过学习素材的审美设计形式来诱发学习者的积极或消极情绪, 从而影响学习的结果。例如:Plass等(2014)运用暖色和拟人化婴儿圆脸来诱发学习者的积极情绪, Mayer和Estrella (2014)通过提高多媒体课程中图片材料的拟人化水平, 使课程中的重要元素更具视觉吸引力来诱发学习者的情绪。外部情绪诱发和内部情绪设计的共同特点是都在教学设计中通过诱发情绪来力图影响学习者的学习效果, 且在实证研究中二者都被预期能够有效诱发情绪并能促进多媒体学习效果(Park et al., 2015; Plass et al., 2014)。
在实证研究中, 外部情绪诱发和内部情绪设计各有几种不同的情绪诱发方式。由于目前研究中主要关注诱发的积极情绪和中性情绪对多媒体学习效果的不同影响, 因此, 下面分别介绍在多媒体学习中两种情绪诱发途径是如何诱发积极情绪的。
1.1 外部情绪诱发方式
对于如何诱发外部情绪, 研究者尝试了以下几种形式:(1)播放情绪性电影片段。例如:龚少英、上官晨雨、翟奎虎和郭雅薇(2017)通过让一组被试观看《憨豆先生》的电影片段来诱发积极情绪, 另一组被试观看《帝企鹅日记》的电影片段来诱发中性情绪。Plass等(2014)让一组被试观看电影《冰河世纪3:恐龙的起源》的预告片来诱发积极情绪, 另一组被试观看描述飞鸟和海洋生物的电影片段来诱发中性情绪。这种通过电影片段来诱发情绪的方法比较直观生动, 能够很好地吸引被试的注意力。(2)播放音乐并让被试进行自传体回忆(即回忆以往经历中的情绪性事件, 重新体验事件发生时的情绪)。Knörzer等(2016)让一组被试一边听莫扎特的《嬉游曲》, 一边尽可能细致地回忆亲身经历的一个开心事件并做笔记, 以此来诱发积极情绪; 另一组被试不听音乐, 仅回忆和描述一个寻常的星期三早晨发生的事情来诱发中性情绪。(3)让被试阅读具有强烈情绪色彩的语句并体验语句所表达的情绪涵义。Park等(2015)让被试阅读25个预先设定好顺序的陈述句, 积极情绪诱发组的被试阅读诸如“这再好不过了”、“活着真好”等语句, 并告知被试语句中表达了一种情绪状态让其去深入体会; 中性情绪诱发组的被试阅读诸如“一小时有60分钟”、“苹果在秋天收获”等语句。在以上这三种方式中, 播放电影片段和阅读带有情绪色彩语句是目前研究中使用较多的外部情绪诱发方式。
1.2 内部情绪设计方式
内部情绪设计实验研究中所采用的材料多为课程教学中使用的学习材料, 例如:特异性免疫的工作原理(Um et al., 2012)、闪电形成原理(龚少英等, 2017), 画面是构成这些材料的重要元素之一。因此, 研究者主要对画面的视觉设计元素进行实验操纵。诱发积极情绪的设计中通常采用以下几种视觉设计元素:(1)采用高饱和度、高亮度的暖色调或彩色来诱发情绪。由于暖色调和彩色能诱发出更多的积极情绪(Kaya & Epps, 2004; Wolfson & Case, 2000), 因此情绪设计的研究者将其用于多媒体学习材料中来诱发积极情绪。例如:薛野、王福兴、钱莹莹、周宗奎和蔡华(2015)在诱发积极情绪的材料中运用了橙色、黄色、红色等暖色调, 在诱发中性情绪的材料中采用了白色、黑色和灰色。龚少英等(2017)在诱发积极情绪的学习材料中运用自然事物原有的彩色作为设计, 在诱发中性情绪的学习材料中运用白色、黑色和灰色的非彩色设计。(2)采用拟人化的婴儿圆脸来诱发情绪。拟人化婴儿圆脸的设计最初来自于婴儿图式(baby schema)的概念, 婴儿脸往往具有高额头、大眼睛、圆脸蛋等特征, 它能够引导人们产生注意偏向和积极情绪反应(Leibenluft, Gobbini, Harrison, & Haxby, 2004)。目前在产品设计、电影制作等领域, 人们运用婴儿图式的特征来力图吸引受众对产品的关注和喜爱。因此情绪设计的研究者们也把这些特征应用在学习材料的设计中来诱发学习者的积极情绪。例如:Um等(2012)将拟人化婴儿圆脸设计用于诱发积极情绪的学习材料中。
值得注意的是, 在内部情绪设计的研究中仅部分研究只观察某一种设计元素诱发情绪和影响学习的效果, 如Park等(2015)在积极和中性情绪的学习材料中都运用了暖色调, 不同的是积极情绪材料中还包含了中性情绪材料中没有的拟人化婴儿圆脸设计元素, 仅观察拟人化婴儿脸设计元素的有无对学习效果的影响。但多数研究通常在学习材料中综合运用这两种视觉设计元素来诱发积极情绪(Mayer & Estrella, 2014; Um et al., 2012)。比如:Plass等(2014)综合运用了暖色调和拟人化婴儿面孔的设计元素来诱发积极情绪, 而在中性情绪材料中都不包含暖色调和拟人化婴儿面孔的设计。此外, 不同研究中在中性情绪材料的设计元素使用上略有不同。如Um等(2012)在中性情绪材料中采用了冷色调和不包含拟人化婴儿圆脸的方形形状的设计。而Mayer和Estrella (2014)在中性情绪材料中运用了冷色调和不包含拟人化婴儿脸的圆形形状的设计。
对比外部和内部情绪设计的诱发方法发现:一方面, 内部情绪设计诱发情绪的时间即为学习过程所设定的时间, 其诱发情绪的过程贯穿整个学习的过程; 而在学习之前进行的外部情绪诱发, 其诱发的情绪不能贯穿整个学习的过程。且外部情绪诱发的时间通常较短, 小于学习过程所设定的时间(Knörzer et al., 2016; Park et al., 2015; Plass et al., 2014; Um et al., 2012)。在学习之前诱发的情绪在学习过程中会逐渐消退, 这可能会使学习者对前面的材料进行信息加工时更容易受到情绪的影响, 而对后面信息进行加工时情绪的作用减弱、甚至消失。这是外部诱发方法所固有的内在局限性。另一方面, 在同时使用两种诱发情绪方法的实证研究中, 研究者对于外部情绪诱发的操纵时间通常小于内部情绪设计的时间(Plass et al., 2014; Um et al., 2012), 而时间长短却是影响情绪诱发效果的重要因素。
2 如何评估情绪的诱发效果?
能否有效诱发学习者的情绪不仅是研究有效性问题, 也是被其他研究者质疑最多的问题。以往研究通常采用主观报告的方式在情绪诱发之后即时测量学习者的情绪。主要通过以下几种量表对诱发情绪进行测量:(1)积极情绪分量表(positive affect scale, PAS)。这一量表节选自积极−消极情感量表(positive and negative affect schedule, PANAS) (Watson, Clark, & Tellegen, 1988), 用于测量被试的积极情绪, 它要求被试对几种不同积极情绪的感受强度进行5点Likert主观评分。该量表在情绪测量中使用最为广泛(高苗苗, 2016; 薛野等, 2015; Heidig, Müller, & Reichelt, 2015; Mayer & Estrella, 2014; Park et al., 2015; Plass et al., 2014; Um et al., 2012)。(2)PANAVA量表(Knörzer et al., 2016)。该量表包括三个子量表:积极激活(positive activation, PA)、消极激活(negative activation, NA)和效价(valence, VA), 每个子量表上都包含若干两极性的条目, 要求被试对每个条目进行7点评分。(3)具体情绪问卷(龚少英等, 2017)。该问卷包含了与积极情绪相关的6个条目, 要求被试对每个条目上情绪感受的强度进行9点评分。
外部情绪诱发测量一般是在情绪诱发后、多媒体课程学习之前检验其效果。研究一致发现外部情绪诱发能够成功地诱发被试的积极情绪(龚少英等, 2017; Knörzer et al., 2016; Liew & Tan, 2016; Park et al., 2015; Plass et al., 2014; Schneider, Nebel, & Rey, 2016; Um et al., 2012; Um, Song, & Plass, 2007)。此外, 部分研究在多媒体课程学习之后对被试再次进行情绪测量, 往往发现外部诱发的积极情绪已显著降低(龚少英等, 2017; Plass et al., 2014; Um et al., 2012)。这说明外部情绪诱发能够诱发积极情绪, 但其诱发的情绪可能是短暂的, 不能在学习过程中持续地保持。
内部情绪设计通常在多媒体课程学习之后立即对被试的情绪诱发效果进行检验。多数研究发现内部情绪设计成功地诱发了被试的积极情绪(高苗苗, 2016; 龚少英等, 2017; Plass et al., 2014; Um et al., 2012, 2007)。然而, 也有研究发现, 内部情绪设计未能成功诱发积极情绪(薛野等, 2015; Park et al., 2015)。薛野等(2015)认为在系统步调下学习者缺乏控制感, 加之学习时间短暂, 从而使积极情绪未能诱发成功。Park等(2015)研究中仅操纵单一设计元素的有无也未能成功诱发积极情绪。另外, 也有部分研究没有对情绪的诱发效果进行检验(Mayer & Estrella, 2014)。综上, 内部情绪设计可以成功诱发积极情绪, 但其情绪诱发效果可能并不稳健, 未来研究还需直接检验内部情绪设计的情绪诱发效果是否会受到设计元素的种类、呈现步调、学习时长等因素的影响。
在内部情绪设计中, 部分研究者还对两种视觉设计元素进行了分离, 单独观察每种设计元素的情绪诱发效果。Plass等(2014)的研究表明单独使用拟人化婴儿面孔可以诱发积极情绪, 单独使用暖色调不能诱发积极情绪。龚少英等(2017)发现单独的彩色能够诱发积极情绪, 而拟人化婴儿圆脸不能单独诱发积极情绪, 拟人化和彩色相结合才能诱发积极情绪。目前关于具体视觉元素单独诱发情绪效果的研究还比较少, 有待后续研究的推进。
从目前研究看, 外部情绪诱发和内部情绪设计都可能成功诱发被试的情绪。虽然内部情绪设计具有贯穿学习过程、无需改变学习材料内容、无需占用额外时间等优点, 但在学习过程中的诸多其他变量仍可能影响情绪诱发效果。外部情绪诱发尽管存在诱发时间短暂的问题, 却并不影响即时的情绪诱发效果, 但情绪诱发过程与学习过程的不同步的确可能会影响情绪诱发效果的持久性。
3 诱发的情绪能否促进学习?
如果外部情绪诱发和内部情绪设计能够成功诱发学习者的情绪, 这些积极情绪究竟能否影响学习者的学习效果呢?这是研究者最为关注的问题。以往研究一般采用保持测验、理解测验或迁移测验来检验学习者的学习效果。对于两种情绪诱发方法, 预期的假设是诱发的积极情绪能够提高多媒体学习成绩。但是从汇总的16项实验研究来看(见表1), 其中7项涉及外部情绪诱发的实验发现, 有1项结果支持诱发情绪可以促进多媒体学习效果, 4项部分支持, 1项没有发现显著差异, 1项发现诱发情绪阻碍多媒体学习效果; 14项涉及内部情绪设计的实验发现, 有3项结果支持诱发情绪可以促进多媒体学习效果, 7项部分支持, 剩余4项没有发现显著差异。
3.1 保持测验和理解测验成绩
在多媒体学习中保持测验通常用于考察学习者对学习材料内容的识记效果(Mayer, 2005, 2009; Schneider et al., 2016), 理解测验通常用于检验学习者对学习材料中重要概念的理解效果(Plass et al., 2014; Um et al., 2012)。以往研究中, 部分研究仅对学习者的保持测验成绩进行了考察(高苗苗, 2016; 薛野等, 2015; Schneider et al., 2016; Um et al., 2007), 另一部分研究仅对学习者的理解测验进行了考察(Mayer & Estrella, 2014; Park et al., 2015; Plass et al., 2014; Um et al., 2012), 此外, 也有研究同时考察了学习者的保持和理解测验成绩(Knörzer et al., 2016)。
关于多媒体学习中外部情绪诱发对学习者保持测验成绩的影响, 7项涉及外部情绪诱发的实验中, 有3项包含保持测验结果的实验均发现积极情绪并未影响学习者的保持成绩(龚少英等, 2017; Knörzer et al., 2016; Um et al., 2007), 效应量中值(median effect size)为= −0.25。关于内部情绪设计对保持测验的影响, 14项涉及内部情绪设计的实验中有7项包含保持测验结果的实验发现, 有3项结果表明积极情绪能提高保持测验成绩(高苗苗, 2016; Mayer & Estrella, 2014), 4项发现积极情绪未能提高保持成绩(龚少英等, 2017; 薛野等, 2015; Um et al., 2007), 效应量中值为= 0.27。
关于外部情绪诱发对理解测验的影响, 7项实验中有4项包含理解测验结果的实验发现, 有1项表明积极情绪提高了理解成绩(Park et al., 2015), 2项显示积极情绪没有提高理解成绩(Plass et al., 2014; Um et al., 2012), 1项发现积极情绪阻碍了理解成绩(Knörzer et al., 2016), 效应量中值为= 0.04。关于内部情绪设计对理解成绩的影响, 14项实验中有5项包含理解测验结果的实验发现, 有3项实验显示积极情绪提高了理解测验成绩(Plass et al., 2014; Um et al., 2012), 2项发现积极情绪未能提高理解成绩(Münchow, Mengelkamp, & Bannert, 2017; Park et al., 2015), 效应量中值为= 0.36。
3.2 迁移测验成绩
迁移测验考察的是多媒体学习中学习者对所学知识进行深度加工并运用其解决问题的能力。这是学习者学习效果测量的另一个重要指标, 也是运用最为普遍的指标(Atkinson, 2002; Mayer, 2009; Moreno & Mayer, 2000; Um et al., 2012)。
关于外部情绪诱发对学习者迁移成绩的影响, 7项涉及外部情绪诱发和迁移测验结果的实验发现, 有5项显示积极情绪能够提高迁移成绩(Park et al., 2015; Plass et al., 2014; Um et al., 2012, 2007), 1项发现积极情绪并未影响迁移成绩(Liew & Tan, 2016), 1项发现积极情绪阻碍了迁移成绩(Knörzer et al., 2016), 效应量中值为= 0.30(见表1)。关于内部情绪设计对迁移成绩的影响, 14项涉及内部情绪设计和迁移测验结果的实验发现, 有6项实验指出积极情绪可以提高迁移成绩(高苗苗, 2016; 龚少英等, 2017; Münchow et al., 2017; Nurminen, 2016; Um et al., 2012), 1项部分发现积极情绪能提高迁移成绩(Plass et al., 2014), 7项发现积极情绪未能提高迁移成绩(薛野等, 2015; Kumar et al., 2016; Mayer & Estrella, 2014; Park et al., 2015; Um et al., 2007), 产生的效应量中值为= 0.29。
以上这些结果显示, 内外部情绪诱发对学习者保持测验、理解测验和迁移测验成绩的影响并不稳健。出现这样不稳定结果的可能原因是:第一, 目前多媒体学习诱发情绪的研究在数量上还比较有限, 以上实证研究结果的可重复性还有待大量研究的检验。有些研究即使采用同样的操纵方式和学习材料, 却得出了不一致的结果。比如, Park等(2015)和Um等(2012)都采用阅读情绪语句的外部情绪诱发方式, 且都以“特异性免疫的工作原理”作为学习材料, 但仅Park等(2015)发现了积极情绪对理解成绩的促进作用。第二, 有些研究没能有效诱发积极情绪, 这可能限制了积极情绪对学习结果的促进作用。比如, 薛野等(2015)没能有效诱发积极情绪, 也未能促进学习者的学习成绩。Park等(2015)内部情绪设计没有成功诱发积极情绪, 也没有影响学习者的理解和迁移成绩。第三, 诱发情绪对多媒体学习效果的影响也可能存在调节变量的作用。首先, 情绪的操纵方式、操纵程度等可能影响其诱发情绪的效果。如在外部情绪诱发上, 不同研究间采用的操纵方式不同, 操纵时间上也存在差异, 即使在各研究都成功诱发积极情绪的情况下, 不同研究间所诱发的积极情绪的效果也可能不同, 进而可能使不同研究在学习指标上产生不一致的结果。其次, 多媒体环境下的学习涉及一个相对复杂的学习过程, 诱发情绪并不是影响学习结果的唯一因素, 对其他因素的操纵也可能会影响学习效果。学习材料内容、材料动态性(Wang, Li, Mayer, & Liu, 2018)、信息呈现通道(王福兴, 谢和平, 李卉, 2016; Mayer, 2009)、呈现步调(钱莹莹, 王福兴, 段朝辉, 周宗奎, 2016; Mayer & Moreno, 2003)、学习时长等特征都可能对多媒体学习效果起到调节作用。再次, 学习者特征诸如先前知识经验、认知方式、自我调节能力等因素也可能调节了诱发情绪与多媒体学习效果的关系(Kalyuga, Ayres, Chandler, & Sweller, 2003)。关注这些潜在调节变量的作用, 可能会为探究诱发情绪与多媒体学习效果之间结果不稳健性提供帮助。
4 诱发情绪对学习的主观体验是否有影响?
除了学习结果, 研究者也会关心情绪诱发是否会影响学习者学习过程的主观体验。研究一般通过心理努力、感知难度、内在动机等主观感知指标来观察诱发情绪对学习者主观感知结果的影响。
关于外部情绪诱发与学习者感知到的心理努力的关系, 7项实验中, 有2项显示积极情绪能提高心理努力(Liew & Tan, 2016; Um et al., 2012), 5项发现积极情绪并未影响(龚少英等, 2017; Knörzer et al., 2016; Park et al., 2015; Plass et al., 2014; Um et al., 2007), 产生的效应量中值为= 0.02 (见表1)。关于内部情绪设计与心理努力的关系, 14项实验中仅10项研究报告了心理努力结果, 有1项表明积极情绪能提高心理努力(Mayer & Estrella, 2014, Exp.1), 9项发现积极情绪未能提高心理努力(龚少英等, 2017; 薛野等, 2015; Mayer & Estrella, 2014, Exp.2; Park et al., 2015; Plass et al., 2014; Um et al., 2012, 2007), 效应量中值为= −0.06。
关于外部情绪诱发与感知难度的关系, 7项实验中仅6项报告感知难度结果的实验表明, 1项发现积极情绪降低了感知难度(Liew & Tan, 2016), 4项发现积极情绪不会影响(龚少英等, 2017; Park et al., 2015; Plass et al., 2014; Um et al., 2012), 1项发现积极情绪增加了感知难度(Knörzer et al., 2016), 效应量中值为= −0.04。关于内部情绪设计与感知难度的关系, 14项实验中仅8项报告了感知难度, 4项结果指出积极情绪能降低感知难度(龚少英等, 2017, Exp.1; Mayer & Estrella, 2014, Exp.2; Plass et al., 2014, Exp.1; Um et al., 2012), 1项发现积极情绪部分降低了感知难度(龚少英等, 2017, Exp.2), 3项发现积极情绪没有影响(Mayer & Estrella, 2014, Exp.1; Park et al., 2015; Plass et al., 2014, Exp.2), 效应量中值为= −0.27。
关于外部情绪诱发与内在动机的关系, 7项实验中仅4项报告了内在动机的结果, 2项表明积极情绪能提高内在动机(Liew & Tan, 2016; Um et al., 2012), 2项发现积极情绪没能提高内在动机(龚少英等, 2017; Plass et al., 2014), 效应量中值为= 0.22。关于内部情绪设计与内在动机的关系, 14项实验中仅7项包含内在动机的结果, 3项实验表明积极情绪能提高内在动机(薛野等, 2015; Plass et al., 2014, Exp.1; Um et al., 2012), 1项表明积极情绪部分提高内在动机(龚少英等, 2017, Exp.2), 3项表明积极情绪没有提高内在动机(龚少英等, 2017, Exp.1; Kumar et al., 2016; Plass et al., 2014,Exp.2), 效应量中值为= 0.23。
尽管研究者借助主观评定的方式测量学习者的心理努力、感知难度、内在动机等指标来间接了解学习者的学习感受, 这种方法简单、方便, 具有较好的表面效度, 但其可能依然存在一定的局限:第一, 该方法是基于学习者的主观感受, 这种感受可能与学习者真实的努力程度、难度体验和动机水平存在出入; 第二, 主观评定的方式可能会产生与自陈量表相似的问题, 如社会赞许效应, 从而可能使测量结果的信效度受到质疑(龚德英, 张大均, 2013)。因此, 这种主观评定指标可以作为学习者学习效果的参考指标, 但可能并不能将其作为学习者学习效果的直接依据。根据以上结果可知, 诱发情绪对主观感知结果的影响特别微弱。
5 诱发情绪的理论解释
情绪诱发如果对多媒体学习的结果产生了影响, 那么我们又该如何解释其背后的机制呢, 结合以往的研究和理论, 我们梳理了多媒体学习认知情感理论和认知负荷理论的观点解释(见图1)。
5.1 多媒体学习认知情感理论
多媒体学习认知情感理论(cognitive affective theory of learning with media; CATLM )为诱发情绪促进学习提供了一定的理论支持, 该理论(Moreno, 2005, 2006)是在多媒体学习认知理论(cognitive theory of multimedia learning; CTML)基础上发展起来的, CTML (Mayer, 2005)仅关注认知过程对学习的影响, CATLM在CTML的基础上加入了动机和情绪因素, 提出了关于情绪和动机因素的情感中介假设(affective mediation):情感和动机因素会通过增加或减少认知投入来影响学习。该理论认为, 学习者是被足够的动机所驱使才会投入更多的认知资源来主动加工多媒体学习中的新信息, 如果学习者因为动机缺乏而没有投入到学习任务中, 这将会阻碍学习, 因此动机因素是教学设计与学习者多媒体学习效果之间的中介变量(Moreno, 2005)。根据CATLM, 多媒体学习中的外部情绪诱发和内部情绪设计作为教学设计方法, 其所诱发的积极情绪会影响学习者的动机, 增加其认知投入, 进而促进学习(见图1)。部分实证研究支持了CATLM理论, 比如:Um等(2012)发现, 外部和内部诱发的积极情绪提高了学习者的内在动机, 促进了迁移成绩。Plass等(2014)发现, 内部情绪设计诱发的积极情绪提高了内在动机, 促进了理解成绩。
目前, CATLM被部分研究者用于解释积极情绪对多媒体学习结果的促进作用, 值得注意的是, 该理论只得到了部分实证研究的支持。仍然有一些研究发现积极情绪诱发组和中性情绪诱发组的内在动机或学习结果无差异, 甚至积极情绪诱发组的内在动机或学习结果低于中性情绪诱发组的研究结果, 这不符合CATLM理论的假设。此外, 部分研究没有直接检验内在动机和学习结果的关系(Mayer & Estrella, 2014; Plass et al., 2014), 研究者往往仅根据诱发情绪提高内在动机以及诱发情绪促进学习成绩的结果间接推测诱发情绪是通过内在动机促进了多媒体学习效果。因此, 未来的研究应直接检验内在动机和学习结果的关系, 来确定诱发情绪对学习结果的促进究竟是否因学习者内在动机的提高而起作用。
5.2 认知负荷理论
根据认知负荷理论(cognitive load theory; CLT),诱发的积极情绪会阻碍学习。该理论(Sweller, Ayres, & Kalyuga, 2011; Sweller, van Merrienboer, & Paas, 1998)区分了三种不同的认知负荷:内在认知负荷(intrinsic cognitive load, ICL)、外在认知负荷(extraneous cognitive load, ECL)和相关认知负荷(germane cognitive load, GCL)。为了避免认知超负荷, 教学设计应该尽力增加能促进学习的GCL, 降低阻碍学习的ICL和ECL, 使认知负荷的总量不会超过工作记忆所允许的范围, 合理地运用有限的认知资源, 达到最好的学习效果(Paas, Renkl, & Sweller, 2003)。在多媒体学习的研究中, 研究者认为诱发的积极情绪会增加ECL (Um et al., 2012)。因为学习者的积极情绪相较于中性情绪会消耗更多的认知资源, 给容量有限的工作记忆提出额外的加工要求, 学习者在加工学习材料的同时, 还要处理积极情绪所带来的学习任务以外的认知负荷, 影响加工资源的分配, 减少了用于加工学习材料的认知资源, 增加了与学习任务无关的ECL。由于学习者学习某一特定内容的学习材料, ICL不变, ECL的增加会使总认知负荷增加, 不利于学习者的学习(见图1)。目前基于CLT的解释也得到了部分实证研究的支持, 如Knörzer等(2016)发现外部诱发的积极情绪增加了学习者的感知难度, 阻碍了学习。但也有许多研究并未支持该理论的解释, 如Um等(2012)发现外部情绪诱发增加了学习者的心理努力, 内部情绪设计降低了感知难度, 两种情绪诱发方法都促进了学习。
图1 基于多媒体学习认知情感理论和认知负荷理论的学习加工过程
基于CLT的解释较少得到实证研究的支持, 其在解释力上可能依然面临一些困境:第一, 忽略了诱发情绪可能对GCL的促进作用。根据CLT, 除ECL外, GCL也与教学设计有关, 学习过程中的兴趣、动机等情绪因素因为有利于图式的建构因而会提高GCL (Shadiev, Hwang, Huang, & Liu, 2015), 而GCL是有利于学习的, 因此诱发的积极情绪也可能通过影响GCL, 进而促进多媒体学习效果。尽管认为积极情绪会增加ECL的支持者也认为:积极情绪会引起GCL的增加, 而GCL的增加对学习的有利作用并不足以弥补情绪引起的ECL的增加对学习的阻碍作用, 因而从总体上积极情绪不会促进学习。但目前该观点并没有来自实证研究的证据。积极情绪究竟是否会引起ECL、GCL的增加或者ECL和GCL的共同增加?哪种认知负荷在积极情绪影响多媒体学习的过程中起到了更为关键的作用?这些问题都有待探索。第二, CLT理论本身存在较大的争议, 尤其是对于认知负荷的测量问题, 研究者常用心理努力和感知难度来测量学习者的认知负荷, 但对于它们究竟是哪种认知负荷的测量指标并没有统一的结论(Xie et al., 2017)。Paas等人编制了心理努力量表, 并将其用于对学习者学习过程中的总认知负荷进行测量(Leppink, Paas, van der Vleuten, van Gog, & van Merriënboer, 2013; Paas, Tuovinen, Tabbers, & van Gerven, 2003), 然而目前有研究认为心理努力标示GCL的大小(van Merriënboer, Schuurman, De Croock, & Paas, 2002), 也有研究认为它对ICL更为敏感(DeLeeuw & Mayer, 2008)。在多媒体学习诱发情绪的研究中, 部分研究者一致把心理努力作为衡量GCL的指标(Um et al., 2012; Plass et al., 2014), 但在感知难度的指标上存在较大争议, 如Um等(2012)和Plass等(2014)将感知难度用于评估ECL的大小, 然而龚少英等(2017)将感知难度作为测量ICL的指标, 还有部分研究并未指明心理努力和感知难度是对哪种认知负荷的评估(Mayer & Estrella, 2014; Park et al., 2015)。所以, 目前研究中缺乏能被广泛接受的可用于精确区分各种类型认知负荷的测量方法。认知负荷评估方法上的争议会限制研究者对诱发情绪、认知负荷和学习结果之间关系的探讨。
对比以上两种理论, 二者的不同在于:积极情绪究竟是通过何种机制来影响多媒体学习效果?是通过影响动机促进了学习?还是通过影响ECL阻碍了学习?尽管该领域研究还不多, 但这两种立场的观点都得到了不同程度的支持。需要承认的是, 二者在解释力上可能都存在不足。对于诱发的积极情绪与中性情绪对学习效果无差异的现象, 二者都不能给出很好的解释。目前实证研究通常并未直接检验动机或认知负荷与多媒体学习效果的关系(Liew & Tan, 2016; Plass et al., 2014), 都存在方法上的缺陷。且对于争议较大的CLT而言, 研究者往往将它作为研究的理论依据, 但通常并没有将该理论与实证研究结果建立联系,从而规避了对于认知负荷与学习结果之间关系的探讨和解释。此外诱发情绪可能并不像以上两种理论立场所提倡的那样促进或阻碍学习。比如, Liew和Tan (2016)发现诱发的积极情绪提高了学 习者的内在动机, 但并未影响学习成绩。Plass等(2014)发现积极情绪提高了迁移成绩, 但积极情绪并未影响学习者的内在动机。高苗苗(2016)发现积极情绪提高了保持和迁移成绩, 也提高了学习者的GCL, 但并未影响其ECL。出现该情况的原因可能像有些研究者所认为的那样存在调节变量的影响(Mayer & Estrella, 2014)。
6 总结与展望
6.1 总结
通过以上论述, 结论认为多媒体学习中外部情绪诱发和内部情绪设计作为重要的教学设计形式, 可以诱发学习者产生积极情绪, 对于诱发的积极情绪对多媒体学习效果的影响, 综述发现, 7项涉及外部情绪诱发的实验中, 5项支持了积极情绪可以促进多媒体学习效果, 在学习结果上产生的效应量中值分别为保持= −0.25,理解= 0.04,迁移= 0.30; 14项涉及内部情绪设计的实验中, 10项支持了积极情绪可以促进多媒体学习效果, 在学习结果上产生的效应量中值分别为保持= 0.27,理解= 0.36,迁移= 0.29。根据效应量中值数据可以看出, 外部诱发的积极情绪可以促进学习者的迁移成绩, 内部诱发的积极情绪可以促进保持、理解和迁移成绩, 这一结果部分地支持了CATLM理论, 即诱发的积极情绪能够提高学习者的动机, 增加其认知投入, 最终提高多媒体学习效果。但CATLM理论并不能完全解释诱发的积极情绪对多媒体学习效果的影响, 原因在于:第一, 诱发情绪对学习者的主观感知的影响很小, 诱发的积极情绪能否提高学习者的动机, 增加认知投入尚且无法确定; 第二, 诱发情绪对学习的促进作用效应量在0.3左右, 属于比较小的效应量, 表明诱发的积极情绪对学习的促进作用比较微弱; 第三, 外部诱发的积极情绪没能促进学习者的保持和理解成绩, 甚至阻碍了保持成绩, 这一结果并未支持CATLM理论, 反而为CLT理论提供了证据, 即诱发的积极情绪增加了学习者的ECL, 不利于学习效果的提升。对于外部诱发的情绪促进了迁移成绩而没能促进保持和理解成绩, 这一不一致结果除了有如前所述的原因外, 还可能是由于外部诱发的积极情绪对学习效果的影响受到了测验类型的调节。
6.2 展望
目前多媒体学习诱发情绪的研究中尚存在一些问题, 未来的研究者可能需要从以下多个方面进一步探索。
第一, 注重情绪的操纵方法和效果评定。首先, 对于外部情绪诱发, 其操纵时间通常在10分钟之内(龚少英等, 2017; Park et al., 2015; Plass et al., 2014; Um et al., 2012), 这种即时的诱发方法虽然能在短暂时间内达到显著效果, 但在学习过程中很快会消退, 影响了其在学习过程中的持续性(Plass et al., 2014; Um et al., 2012)。受情绪持续性的影响, 外部诱发的方法仍然存在较大质疑, 未来研究需要探索能维持诱发情绪持续性的方法, 如考虑增加外部情绪诱发的时间等, 在保证积极情绪能在学习过程中持续的前提之下, 探讨积极情绪对多媒体学习效果的影响。外部情绪诱发的操纵方式多样, 但每种操纵方式下的研究都还非常有限, 其研究结果的稳定性还有待检验, 未来研究可以进一步检验每种操纵方式下的情绪诱发效果。在此基础上外部情绪诱发也可以进一步尝试使用嗅觉刺激诱发法、正负性反应成绩反馈诱发法(Farmer et al., 2006)、面部表情模拟法(Ekman, 2007)和社会交际活动诱发法(Berna et al., 2010)等多种诱发情绪方法, 寻找能有效诱发情绪、且能稳定促进多媒体学习效果的方法。其次, 对于内部情绪设计, 目前研究通常关注由材料的视觉元素诱发的情绪设计, 仅个别研究关注了听觉元素诱发的情绪设计(高苗苗, 2016; Königschulte, 2015), 以后的研究可以进一步推进由材料的听觉元素或视听元素产生的情绪设计。此外, 目前研究中通常采用主观评定的方法考察情绪操纵效果,一方面, 这种主观报告评定方法的敏感性还有待商榷; 另一方面, 主观报告的方式只关注了情绪的主观体验, 情绪的其他成分如生理唤醒和外部行为表现却很少被涉及。由于情绪本身的复杂性, 缺少对这些指标的测量可能会影响研究者对学习者情绪的准确理解, 因此未来研究在采用主观评定方法的基础上还需结合客观方法来检验情绪的诱发效果, 例如通过观察学习者的面部表情、手势动作等来了解情绪的外部行为表现, 通过皮肤电、肌电、心跳等生理反应指标来测量情绪的生理唤醒。
第二, 拓展研究范围及测验方法。在诱发的情绪种类上, 多数研究仅比较诱发的积极情绪与中性情绪差异, 而仅少数研究检验了消极情绪对学习的作用(Liew & Tan, 2016), 未来研究可以对诱发的消极情绪更多地展开研究。另外, 对积极情绪和消极情绪的诱发, 以往研究通常诱发高激活水平的“高兴”情绪作为积极情绪, 低激活水平的“悲伤”情绪作为消极情绪(Knörzer et al., 2016; Um et al., 2012),而未考虑低激活水平的积极情绪(如:满意)和高激活水平的消极情绪(如:愤怒), 未来研究可以考察多种不同激活水平和效价维度的情绪对多媒体学习效果的影响。
在测验方法上, 研究中对于动机、心理努力、感知难度等的测量也都采用的是主观评定的方式, 以后研究中可以探索使用更加客观化的测量方法。此外, 目前研究中往往在学习者学习完材料内容后就进行即时测试(龚少英等, 2017; 薛野等, 2015; Knörzer et al., 2016; Mayer & Estrella, 2014; Park et al., 2015; Plass et al., 2014; Um et al., 2012), 只关注了诱发情绪对学习影响的短期效应, 其是否有可能存在长期效应还有待通过延时测验或追踪研究进行检验。
第三, 关注潜在调节变量的作用。如前所述, 诱发情绪对学习结果的影响不稳定的原因可能是存在潜在的调节变量, 部分研究指出了性别(Liew & Tan, 2016)、先前知识经验(薛野等, 2015)等对学习效果具有调节作用。除此之外其他未被提及的因素诸如学习者的认知风格、自我调节能力以及材料的动态性(Wang et al., 2018)、呈现通道(王福兴等, 2016; Mayer, 2009)、呈现步调(钱莹莹等, 2016; Mayer & Moreno, 2003)学科属性以及测验材料的类型等也可能是潜在的调节变量。值得一提的是, 许多研究表明积极情绪会促进启发式的加工, 促进对整体性的、自上而下的信息加工, 同时会促进发散的、创造性的思维(Bless & Fiedler, 2006; Bless & Igou, 2006)。消极情绪会促进聚合式的、分析性的、自下而上的加工, 促进分析性的思维(Forgas & Koch, 2013; Pekrun, Elliot, & Maier, 2009), 同时伴随对细节信息的加工(Fiedler, Nickel, Asbeck, & Pagel, 2003)。这表明学习任务的类型可能对学习效果起到了调节作用, 积极情绪可能更有利于促进创造性的学习任务, 而消极情绪可能更有利于促进分析性的学习任务。未来研究需要重视对这些潜在调节变量的探索。
第四, 理论本身尚待完善。根据诱发情绪对主观感知和学习效果影响的实证研究结果以及效应量数据可以看出, CATLM和CLT理论都仅部分得到了支持, 尚缺乏有效的理论解释情绪对多媒体学习的影响, 这一方面可能是受目前研究数量的限制; 另一方面, 除了动机、认知负荷外, 诱发情绪也可能通过影响其他因素(如:注意)进而促进或阻碍学习, 比如, Knörzer等人(2016)发现外部诱发的积极情绪干扰了学习者的注意力, 阻碍了理解和迁移成绩。但目前有关诱发情绪的其他理论支持以及诱发情绪影响其他变量的实证探索都非常有限, 未来研究有待进一步推进和完善。另外, 研究中通常并未考察学习者的动机、心理努力等因素与学习结果的直接关系(龚少英等, 2017; Mayer & Estrella, 2014; Plass et al., 2014), 无法保证学习结果的变化是由动机、心理努力等因素的变化所直接引起。且有研究即使发现了积极情绪对多媒体学习效果的促进作用, 但并未对诱发情绪促进学习的原因进行深入探讨(Park et al., 2015)。充分考察各变量间的关系, 特别是可能起到中介作用的变量与学习结果间的关系, 积极探索诱发情绪促进或阻碍学习的原因, 可能会为理论本身的完善提供契机, 同时, 对理论本身的检验还有赖于大量实证研究的推进。
第五, 采用眼动或近红外等技术来深入挖掘诱发情绪影响多媒体学习的行为规律及神经基础。一方面, 眼动技术可以实时记录学习者学习的认知加工过程(Wang et al., 2018; 王福兴等, 2015; van Gog & Scheiter, 2010)。借助眼动技术观察学习者对学习材料的注视时间、注视次数等指标来了解学习者的注意加工过程, 可以解释诱发情绪对学习者学习效果的影响机制。目前已有部分研究将眼动技术应用在了多媒体学习诱发情绪的研究中(Knörzer et al., 2016; Park et al., 2015)。未来研究可以继续推进对于眼动技术的使用。另一方面, 随着教育神经科学的兴起和发展, 研究者们也可以运用功能性近红外光谱脑成像(Functional near-infrared spectroscopy, fNIRS)等技术探究诱发情绪影响多媒体学习的神经机制。
高苗苗. (2016).(硕士学位论文). 华中师范大学, 武汉.
龚德英, 张大均. (2013).. 北京: 科学出版社.
龚少英, 上官晨雨, 翟奎虎, 郭雅薇. (2017). 情绪设计对多媒体学习的影响.(6), 771–782.
钱莹莹, 王福兴, 段朝辉, 周宗奎. (2016). 动画速度和学习者经验对多媒体学习的影响.(2), 191–197.
王福兴, 段朝辉, 周宗奎. (2013). 线索在多媒体学习中的作用.(8), 1430–1440.
王福兴, 段朝辉, 周宗奎, 陈珺. (2015). 邻近效应对多媒体学习中图文整合的影响: 线索的作用.(2), 224–233.
王福兴, 李文静, 谢和平, 刘华山. (2017). 多媒体学习中教学代理有利于学习吗?——一项元分析研究.(1), 12–28.
王福兴, 谢和平, 李卉. (2016). 视觉单通道还是视听双通道?——通道效应的元分析.(3), 335–350.
薛野, 王福兴, 钱莹莹, 周宗奎, 蔡华. (2015). 多媒体学习中的情绪性设计: 学习者经验作用.(1), 78–84.
Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents.(2), 416–427.
Berna, C, Leknes, S, Holmes, E. A., Edwards, R. R., Goodwin, G. M., & Tracey, I. (2010). Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness.(11), 1083–1090.
Bless, H., & Fiedler, K. (2006). Mood and the regulation of information processing and behavior. In J. P. Forgas (Ed.),(pp. 65–84). New York: Psychology Press.
Bless, H., & Igou, E. R. (2006). Stimmung und Informationsverarbeitung. In H. W. Bierhoff & D. Frey (Eds.),(pp. 423–429). Göttingen: Hogrefe.
DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load.(1), 223–234.
Ekman, P. (2007). The directed facial action task: Emotional responses without appraisal. In J. A. Coan & J. J. B. Allen (Eds.),(pp. 47–53). New York: Oxford University Press.
Farmer, A., Lam, D., Sahakian, B., Roiser, J., Burke, A., O'Neill, N., ... McGuffin, P. (2006). A pilot study of positive mood induction in euthymic bipolar subjects compared with healthy controls.(9), 1213–1218.
Fiedler, K., Nickel, S., Asbeck, J., & Pagel, U. (2003). Mood and the generation effect.(4), 585–608.
Forgas, J. P., & Koch, A. S. (2013). Mood effects on cognition. In M. D. Robinson, E. R. Watkins, & E. Harmon-Jones (Eds.),(pp. 231–252). New York: The Guilford Press.
Heidig, S., Müller, J., & Reichelt, M. (2015). Emotional design in multimedia learning: Differentiation on relevant design features and their effects on emotions and learning., 81–95.
Ibrahim, M., Callaway, R., & Bell, D. (2014). Optimizing instructional video for preservice teachers in an online technology integration course.(3), 160–169.
Izard, C. E. (2009). Emotion theory and research: Highlights, unanswered questions, and emerging issues., 1–25.
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect.(1), 23–31.
Kaya, N., & Epps, H. H. (2004). Relationship between color and emotion: A study of college students.(3), 396–405.
Knörzer, L., Brünken, R., & Park, B. (2016). Facilitators or suppressors: Effects of experimentally induced emotions on multimedia learning., 97–107.
Königschulte, A. (2015, October).. Paper presented at the 12th International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2015), Maynooth, Ireland.
Kumar, J. A., Muniandy, B., & Yahaya, W. A. J. W. (2016). Emotional design in multimedia learning: How emotional intelligence moderates learning outcomes.(5), 54–63.
Leibenluft, E., Gobbini, M. I., Harrison, T., & Haxby, J. V. (2004). Mothers' neural activation in response to pictures of their children and other children.(4), 225–232.
Leppink, J., Paas, F., van der Vleuten, C. P. M., van Gog, T., & van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load.(4), 1058–1072.
Liew, T. W., & Tan, S. M. (2016). The effects of positive and negative mood on cognition and motivation in multimedia learning environment.(2), 104–115.
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.),(pp. 31–48). New York: Cambridge University Press.
Mayer, R. E. (2009).(2nd ed.). New York: Cambridge University Press.
Mayer, R. E., & Estrella, G. (2014). Benefits of emotional design in multimedia instruction., 12–18.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning.(1), 43–52.
Moreno, R. (2005). Instructional technology: Promise and pitfalls. In L. M. PytlikZillig, M. Bodvarsson, & R. Bruning (Eds.),(pp. 1–19). USA: Information Age Publishing.
Moreno, R. (2006). Does the modality principle hold for different media? A test of the method-affects-learning hypothesis.(3), 149–158.
Moreno, R., & Mayer, R. E. (2000). A coherence effect in multimedia learning: The case for minimizing irrelevant sounds in the design of multimedia instructional messages.(1), 117–125.
Münchow, H., Mengelkamp, C., & Bannert, M. (2017). The better you feel the better you learn: Do warm colours and rounded shapes enhance learning outcome in multimedia learning?Article ID 2148139.
Norman, D. A. (2004).. New York: Basic Books.
Nurminen, M. I. (2016).(Unpublished master’s thesis). Tampere University of Technology.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments.(1), 1–4.
Paas, F., Tuovinen, J. E., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory.(1), 63–71.
Park, B., Knörzer, L., Plass, J. L., & Brünken, R. (2015). Emotional design and positive emotions in multimedia learning: An eyetracking study on the use of anthropomorphisms., 30–42.
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice.(4), 315–341.
Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance.(1), 115–135.
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students' self-regulated learning and achievement: A program of qualitative and quantitative research.(2), 91–105.
Plass, J. L., Heidig, S., Hayward, E. O., Homer, B. D., & Um, E. (2014). Emotional design in multimedia learning: Effects of shape and color on affect and learning., 128–140.
Plass, J. L., & Kaplan, U. (2016). Emotional design in digital media for learning. In S. Tettegah & M. Gartmeier (Eds.),(pp. 131–162). New York: Elsevier.
Russell, J. A. (2003). Core affect and the psychological construction of emotion.(1), 145–172.
Schneider, S., Nebel, S., & Rey, G. D. (2016). Decorative pictures and emotional design in multimedia learning., 65–73.
Shadiev, R., Hwang, W. Y., Huang, Y. M., & Liu, T. Y. (2015). The impact of supported and annotated mobile learning on achievement and cognitive load.(4), 53–69.
Sweller, J., Ayres, P., & Kalyuga, S. (2011).. New York: Springer-Verlag.
Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design.(3), 251–296.
Um, E. R., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning.(2), 485–498.
Um, E. R., Song, H. S., & Plass, J. L. (2007, June).. Paper presented at the World Conference on Educational Multimedia, Hypermedia & Telecommunications (ED- MEDIA 2007), Vancouver, Canada.
van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning.(2), 95–99.
van Merriënboer, J. J., Schuurman, J. G., De Croock, M. B. M., & Paas, F. G. W. C.(2002). Redirecting learners’ attention during training: Effects on cognitive load, transfer test performance and training efficiency.(1), 11–37.
Wang, F. X., Li, W. J., Mayer, R. E., & Liu, H. S. (2018). Animated pedagogical agents as aids in multimedia learning: Effects on eye-fixations during learning and learning outcomes.(2), 250–268.
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales.(6), 1063–1070.
Wolfson, S., & Case, G. (2000). The effects of sound and colour on responses to a computer game.(2), 183–192.
Wouters, P., Paas, F., & van Merriënboer, J. J. G. (2008). How to optimize learning from animated models: A review of guidelines based on cognitive load.(3), 645–675.
Xie, H. P., Wang, F. X., Hao, Y. B., Chen, J. X., An, J., Wang, Y. X., & Liu, H. S. (2017). The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta- regression analyses.(8), e0183884.
Do induced positive emotions facilitate multimedia learning?
CHEN Jiaxue; XIE Heping; WANG Fuxing; ZHOU Li; LI Wenjing
(School of Psychology, Central China Normal University, Wuhan 430079, China)
Recently, educational psychologists have paid much attention to the effect of emotional factors on multimedia learning,especially the induction of emotions which belongs to one of instructional designs. The effect of positive emotions in the learning process was mainly investigated through external mood induction and internal emotional design in previous studies which indicated that these twoemotional induction methods both can induce positive emotions successfully. Nevertheless, the facilitation of positive emotions on multimedia learning performance had very small effect due to the diversity of the emotional induction method and the complexity of the multimedia learning process. In this article, results showed that the median effect sizes related to the effect of external mood induction on learning outcomes wereretention= −0.25,comprehension= 0.04,transfer= 0.30, respectively; the median effect sizes related to the effect of internal emotional design on learning outcomes wereretention= 0.27,comprehension= 0.36,transfer= 0.29, respectively.Induced emotions had little effect on subjective learning experience. According to cognitive affective theory of learning with media, the induction of positive emotions can improve learning through motivation. Cognitive load theory, however, predicts an opposite result of learning for the reason that the induction of positive emotions might bring about an increase of the learner’s extraneous cognitive load. Future studies should focus on the experimental manipulation and the effect evaluation of emotion itself, as well as the effect of the undiscovered moderator variables, etc.
positive emotions;multimedia learning; cognitive affective theory of learning with media; cognitive load theory
2017-11-16
*国家自然科学基金面上项目(31771236)、贵州省教育改革发展研究重大课题(2017ZD005)和2017年优博培育项目(2017YBZZ084)资助。
王福兴, E-mail: fxwang@mail.ccnu.edu.cn
B849:G44
10.3724/SP.J.1042.2018.01818