APP下载

miR—375在肿瘤发生及诊断中的研究进展

2018-09-03隋成亮黄照权

中国医药导报 2018年13期
关键词:头颈部靶点靶向

隋成亮 黄照权

[摘要] miRNA是一类保守的、非编码的、单链的小RNA分子,通过调节基因表达从而在各种生物进程中发挥着重要的生物学作用。miR-375作为特异的miRNA,最初在胰岛β细胞内被发现,同时它也是一种多功能miRNA,它能调控胰岛素的分泌和胰岛的形成,更重要的是参与肿瘤的发生发展。研究证实miR-375是通过靶向多个重要的致癌基因如AEG-1、YAPI、IGFIR及PDKI等发挥作用的。研究发现miRNA-375在肝癌、胃癌等肿瘤中明显下调,但在乳腺癌和前列腺癌中却显著上调,并且miR-375在前列腺癌和乳腺癌中起到促肿瘤生长作用。因此miR-375可能成为调控肿瘤细胞生长的一个新靶点,并且miR-375表达水平的监测能促进肿瘤的早期诊断和预后判断。

[关键词] 微小RNA-375;胰岛β细胞;肿瘤;诊断

[中图分类号] R730 [文献标识码] A [文章编号] 1673-7210(2018)05(a)-0035-04

Advanced in the research of miR-375 on tumor development and diagnosis

SUI Chengliang1 HUANG Zhaoquan2

1.School of Basic Medicine, Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin 541001, China; 2.Department of Pathology, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin 541001, China.

[Abstract] MicroRNAs (miRNAs) are conserved small non-coding RNAs that play important roles in various biological processes via controlling gene expression. Among them, miR-375 is firstly identified in pancreatic β-cells and proved to regulate insulin secretion and islet formation. Furthermore, it turns that miR-375 is involved in cancer development and progression by targeting several important oncogenes including AEG-1, YAP1, IGF1R and PDK1. Unlike some other cancers, the levels of miR-375 in prostate and breast cancer specifically increase, indicating its action in tumor development. Therefore, miR-375 may be a potential target for suppressing tumor growth, and has the clinical value as a biomarker for early diagnosis and prognosis prediction.

[Key words] miR-375; Pancreatic β-cells; Tumor; Diagnosis

miRNA是長度约22个碱基的单链非编码的小RNA,成熟的miRNA分子是通过RNA聚合酶Ⅱ和核糖核酸酶Ⅲ在细胞核内外加工处理后形成的[1-2],它能够被导入到RNA诱导的沉默复合物中,并互补结合到信使miRNA的3′-UTR非编码区导致翻译抑制[3-5]。miRNA-375是miRNAs家族中高度保守的一员,位于人2号染色体q35,2个编码基因cryba2和Ccdc108之间[6],miR-375在生物体内具有广泛的基因表达调控作用,它的发现开辟了一个关于转录后基因表达调控的全新生物领域。miR-375最早发现于胰岛β细胞内,参与胰岛的形成及胰岛素的分泌[7]。随着对于miRNA表达谱的深入研究,发现miR-375广泛的存在于各组织器官中并且参与多种恶性肿瘤的增殖、转移、凋亡及细胞周期的调控,如头颈部肿瘤、肝癌、食管癌和乳腺癌等[8-11]。

1 miR-375与头颈部肿瘤

头颈部肿瘤(hepatocellular carcinoma,HNC)涵盖广泛,包括来自口,鼻,咽等上皮恶性肿瘤,绝大部分HNC都是鳞状细胞癌。大量的研究表明miR-375是头颈部肿瘤(HNC)中下降最多的miRNA之一[12]。miR-375的过表达抑制头颈部肿瘤细胞(head and neck squamous cell carcinoma,HNCC)的增殖、转移和侵袭[13-15],同时在HNC中发现miR-375的直接作用靶点是AEG-1和LDHB[14,16]。这些研究表明了miR-375在HNC中的肿瘤抑制作用。

2 miR-375与食管癌

Mathe等[17]通过170例食管癌患者,用基因芯片技术检测其癌组织和癌旁组织中miRNA的表达,结果发现miR-375在癌组织中的表达明显低于癌旁组织。Kong等[18]阐明了miR-375的肿瘤抑制作用是通过抑制肿瘤细胞的增殖,体内外的克隆和转移实现的,并且发现了它的一个新靶点——胰岛素样生长因子1受体(insulin-like growth factor 1 receptor,IGFIR1)。IGF结合到IGFI并诱导受体磷酸化激活下游的信号途径,如PI3k/Akt信号通路。Li等[19]研究确定3-磷酸肌醇依赖性蛋白激酶1(3-phosphoinositide-dependent protein kinase-1,PDK1)是miR-375的直接靶点。因此,可以推测miR-375可能成为PI3k/Akt信号通路的一个重要的调节因子。进一步研究发现miR-375可直接抑制PDKI、IGFIR和AEG-1激活的PI3k/Akt信号通路,从而抑制促进食管癌细胞生长的糖酵解[20-22]。

3 miR-375与肝恶性肿瘤

Yan等[23]比较肝癌组织与正常肝组织中miR-375的表达,发现miR-375是肝恶性肿瘤中下调最显著的miRNA之一,星形胶质细胞升高基因1(astrocyte elevated gene-1,AEG-1)的表达与miR-375呈负相关。研究证实AEG-1是miR-375信号途径的下游直接靶点[24],进一步研究表明AEG-1是重要的癌基因,miR-375通过靶向AEG-1对肝癌细胞的生长、转移、侵袭起到一定抑制作用[24]。此外,研究发现miR-375可以通过抑制缺氧诱导的自噬而影响肝癌在缺氧条件下的生存,而且miR-375也能够抑制LC3Ⅰ向LC3Ⅱ的转化来阻断自噬体的形成。另外,自噬相关蛋白7(autophagy-related protein 7,ATG7)介导其他ATGs分子的连接从而促进自噬的激活,也被作为miR-375的直接靶点[25]。Liu等[26]发现miR-375可以通过靶向致癌基因Yes相关蛋白1(yes-associated protein,YAP1),从而抑制肝恶性肿瘤的发生发展。

4 miR-375与胃癌

Ding等[27]研究发现大量的miR-375在胃恶性肿瘤中显著低表达,miR-375通过靶向Janus激酶2(janus kinase 2,JAK2)抑制胃癌细胞的增殖,JAK2和miR-375在胃癌组织中的表达水平呈负相关,JAK2表达下调后,胃癌细胞的生长受到抑制。有研究发现miR-375在胃癌中的肿瘤抑制作用并确定miR-375的两个靶点[28-29],一个是PDK1,能够激活蛋白激酶Akt及下游的信号通路途径,另一个是YWHAZ,属于高度保守的14-3-3结合蛋白的致癌基因,能够结合大量参与有丝分裂、细胞生存、细胞周期和细胞凋亡调控的蛋白[30],此外,miR-375靶向的YWHAZ和PDKI都可以诱导胃癌细胞Caspases的激活[29]。

5 miR-375与骨肿瘤

Shi等[31]通过转染技术,发现miR-375过表达抑制骨肿瘤细胞的增殖,而下调miR-375的表达则促进骨肿瘤细胞的生长,并且通过生物信息学软件发现PIK3CA上存在miR-375的结合位点即3′-UTR,荧光素酶基因报告证实miR-375显著降低了PIK3CA的活性,且证明PIK3CA是miR-375的直接靶向基因,因此可以得出miR-375直接作用于靶向基因PIK3CA,干预PI3k/Akt信号通路来抑制肿瘤细胞的增殖。

6 miR-375与乳腺癌及前列腺癌

miRNA的特征可以作为肿瘤抑制剂,但在某些肿瘤中却有相反的结果,例如miR-375在乳腺癌和前列腺癌中是上调的。Szcczyrba等[32]通过miRNA深层测序技术发现miR-375在原发性前列腺癌中比正常的前列腺组织上调9.1倍,此外,有研究发现miR-375在雌激素受体阳性的乳腺癌细胞系中也呈上调趋势[33],而miR-375的低表达可以抑制乳腺癌细胞MCF-7的增殖[34]。Giricz等[35]证实miR-375在乳腺小叶肿瘤细胞中通过乳腺癌细胞极性的损失和增生表型的获得而被上调,因此,从目前的研究表明miR-375在多种乳腺癌细胞中具有肿瘤促进作用。

7 miR-375作为肿瘤诊断和预后的标志物之一

早期发现、早期诊断是改善预后,提高生存质量的关键,miR-375在肿瘤中的差异表达能够促进早期诊断。Yan等[23]发现miR-375在肿瘤中普遍降低,表明miR-375可能作为一个理想的标志物,并通过原发性肿瘤和活检样本的筛选,证实miR-375可以用来区分肿瘤的良恶性。Avissar等[36]报道miR-221/miR-375的比率可以準确的区分头颈部鳞状细胞癌及非癌组织。Wang等[37]证实miR-375、miR-424和miR-92a的综合利用可以区分大肠癌标本中的腺瘤和高级上皮内瘤变。血清中的miR-375也可以作为一种潜在的肿瘤标志物,Juzenas等[9]研究发现胃癌患者血清中miR-375的表达量明显低于健康人,因此miR-375的表达为恶性肿瘤的判断及早期诊断提供了新的视野,Zhang等[25]研究证明miR-375与胃癌的预后和复发呈正相关。以上研究充分的说明了miR-375可以作为肿瘤疾病诊断和预后的标志物。

8 展望

到目前为止,低表达的miR-375在各种肿瘤中主要作为抑制剂,miR-375的许多关键靶向基因已经被证实,但参与miR-375的信号通路机制尚未完全阐明。miR-375靶向基因和生物信息学网络调控的综合分析对进一步阐明miR-375的功能具有重要的意义。此外,最近的研究强调miR-375在肿瘤的诊断和预后中具有巨大的潜力,然而miR-375是否可以作为一种治疗剂尚未清楚,我们应进一步研究miR-375的临床应用潜力,将基础医学结合于临床医学,对肿瘤的早期诊断、发展程度、临床预后等方面产生深远的影响。

[参考文献]

[1] Lee Y,Ahn C,Han J,et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature,2003,425(6956):415-419.

[2] Chendrimada TP,Gregory RI,Kumaraswamy E,et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J]. Nature,2005,436(7051):740-744.

[3] Bartel DP. MicroRNAs: genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.

[4] Lewis BP,Burge CB,Bartel DP. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15.

[5] Gregory RI,Chendrimada TP,Cooch N,et al. Human RISC Couples MicroRNA Biogenesis andPosttranscriptional Gene Silencing [J]. Cell,2005,123(4):631-640.

[6] Baroukh NN,Van OE. Function of microRNA-375 and mic?鄄roRNA-124a in pancreas and brain [J]. Febs J,2009,276(22):6509.

[7] Poy M N,Eliasson L,Krutzfeldt J,et al. A pancreatic islet-specific microRNA regulates insulin secretion [J]. Nature,2004,432(7014):226-230.

[8] Chendrimada TP,Gregory RI,Kumaraswamy E,et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J]. Nature,2005,436(7051):740-744.2011,17(24):7539-7550.

[9] Juzenas S,Saltenien V,Kupcinskas J,et al. Analysis of deregulated microRNAs and their target genes in gastric cancer [J]. PloS One,2015,10(8):e0 135 762.

[10] Chang Y,Yan W,He X,et al. miR-375 inhibits autop?鄄hagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions [J]. Gastroenterology,2012, 143(1):177-187.

[11] Rotkrua P,Akiyama Y,Hashimoto Y,et al. MiR-9 downr?鄄egulates CDX2 expression in gastric cancer cells [J]. International Journal of Cancer,2011,129(11):2611-2620.

[12] Argiris A,Karamouzis MV,Raben D,et al. Head and neck cancer [J]. N Engl J Med,1993,328(24):1783.

[13] Avissar M,Christensen BC,Kelsey KT,et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma [J]. Clin Cancer Res,2009,15(8):2850.

[14] Hui AB,Bruce JP,Alajez NM,et al. Significance of dysregulatedmetadherin and microRNA-375 in head and neck cancer [J]. Clin Cancer Res,2011,17(24):7539-50.

[15] Harris T,Jimenez L,Kawachi N,et al. Low-level expression of miR-375 Correlates with Poor Outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas [J]. Am J Pathol,2012,180(3):917-928.

[16] Kinoshita T,Nohata N,Yoshino H,et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in,maxillary sinus squamous cell carcinoma [J]. Int J of Oncol,2012,40(1):185.

[17] Mathe EA,Nguyen GH,Bowman ED,et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:associations with survival [J]. Clin Cancer Res,2009,15(19):6192-6200.

[18] Kong K L,Kwong D L,Chan T H,et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor [J]. Gut,2012,61(1):33-42.

[19] Li X,Lin R,Li J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer [J]. Dig Dis Sci,2011,56(10):2849-2856.

[20] Alessi DR,James SR,Downes CP,et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha [J]. Curr Biol,1997,7(4):261.

[21] Alessi DR,Andjelkovic M,Caudwell B,et al. Mechanism of activation of protein kinase B by insulin and IGF-1 [J]. Embo J,1996,15(23):6541-6551.

[22] Lee SG,Su ZZ,Emdad L,et al. Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling [J]. Oncogene,2008,27(8):1114-1121.

[23] Yan JW,Lin JS,He XX. The emerging role of miR-375 in cancer [J]. Inter J Cancer,2014,135(5):1011-1018.

[24] He XX,Chang Y,Meng FY,et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo [J]. Oncogene,2012, 31(28):3357.

[25] Zhang X,Yan Z,Zhang J,et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection [J]. Ann Oncol,2011,22(10):2257.

[26] Liu AM,Poon RTP,Luk JM. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties [J]. Biochem Biophys Res Commun,2010, 394(3):623-627.

[27] Ding L,Xu Y,Zhang W,et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2 [J]. Cell Res,2010,20(7):784-793

[28] El Ouaamari A,Baroukh N,Martens GA,et al. miR-375 targets PDK1 and regulates glucose-induced biological responses in pancreatic beta-cells [J]. Diabetes,2008,57(10):2708-2717.

[29] Tsukamoto Y,Nakada C,Noguchi T,et al. MicroRNA-375 Is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3 [J]. Cancer Res,2010,70(6):2339-2349.

[30] Tzivion G,Gupta VS,Kaplun L,et al. 14-3-3 proteins as potential oncogenes [J]. Semin Cancer Biol,2006,16(3):203.

[31] Shi ZC,Chu XR,Wu YG,et al. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA [J]. Tumor Biol,2015,36(11):8579-8584.

[32] Szczyrba J,Nolte E,Wach S,et al. Downregulation of Sec 23A protein by miRNA-375 in prostate carcinoma [J]. Mol Cancer Res Mcr,2011,9(6):791.

[33] Simonini PDSR,Breiling A,Gupta N,et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor in breast cancer cells [J]. Cancer Res,2010,70(22):9175.

[34] Jonsdottir K,Janssen SR,Rosa FCD,et al. Validation of expression patterns for Nine miRNAs in 204 lymph-node negative breast cancers [J]. PloS One,2012,7(11):e48 692.

[35] Giricz O,Reynolds P A,Ramnauth A,et al. Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity [J]. JPathol,2012,226(1):108-19.

[36] Avissar M,Christensen BC,Kelsey KT,et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma [J]. Clin Cancer Res,2009,15(8):2850.

[37] Wang S,Wang L,Bayaxi N,et al. A microRNA panel to discriminate carcinomas from high-grade intraepithelial neoplasms in colonoscopy biopsy tissue [J]. Gut,2013,62(2):280-289.

(收稿日期:2018-01-05 本文編辑:苏 畅)

猜你喜欢

头颈部靶点靶向
如何判断靶向治疗耐药
维生素D受体或是糖尿病治疗的新靶点
MUC1靶向性载紫杉醇超声造影剂的制备及体外靶向实验
毛必静:靶向治疗,你了解多少?
肿瘤免疫治疗发现新潜在靶点
金匮肾气丸加减改善头颈部肿瘤患者生存获益
头颈部鳞癌靶向治疗的研究进展
心力衰竭的分子重构机制及其潜在的治疗靶点
靶向超声造影剂在冠心病中的应用
头颈部肿瘤放疗引起放射性脑病的诊断和治疗