百里醌对小鼠辐射防护作用
2018-03-07侯沁莲董银萍董辉
侯沁莲+董银萍+董辉
[摘要] 目的 探讨百里醌对辐射小鼠损伤的防护作用。 方法 C57BL/6J小鼠按体重随机分为3组(n=5):空白对照组、单纯照射组和照射给药组。其中单纯照射组和照射给药组给予7.5 Gy全身照射,空白對照组给予假照射。照射给药组在照射前1 d灌胃给药(10 mg/kg),持续给药3 d,空白对照组和单纯照射组给予相同体积的生理盐水。照射3 d后取材,观察各组小鼠脾、肺、肾、睾丸、肝脏等脏器指数变化,检测各组小鼠血清和肝组织中还原型谷胱甘肽(GSH)、超氧化物歧化酶(SOD)和丙二酮(MDA)含量。 结果 与单纯照射组比较,照射给药组肝组织中GSH含量和血清中SOD值升高,血清中MDA水平降低,差异均有统计学意义(P < 0.05)。 结论 百里醌可降低辐射小鼠中氧化损伤,对小鼠辐射损伤有一定的防护作用。
[关键词] 百里醌;辐射防护;氧化损伤
[中图分类号] R979.6 [文献标识码] A [文章编号] 1673-7210(2018)01(c)-0004-04
[Abstract] Objective To observe the protective effects of thymoquinone (TQ) against radiation injuries in mice. Methods C57BL/6J mice were randomly divided into three group (n=5): control group, irradiation group and irradiation + TQ group. The mice in the irradiation group and the irradiation + TQ group were accepted 7.5 Gy total body irradiation, and the mice in the control group was received sham irradiation. The irradiation + TQ group was administered orally the day before exposure (10 mg/kg), sustained administration for 3 days. The same volume normal saline was given to the mice in the control and irradiation group. Three days after irradiation, the samples were taken, and the indexes of spleen, lung, kidney, testes and liver of the mice were observed, and the contents of GSH, SOD and MDA in serum and liver tissues of each group were detected. Results Compared with the irradiation group, the GSH content in the liver tissues and SOD value in the serum in the irradiation + TQ group were increased, and the MDA level in the serum was decreased, with statistically significant difference (P < 0.05). Conclusion TQ can reduce radiation oxidation damage in the radiation mice, and it has certain protective effect on the radiation injury in mice.
[Key words] Thymoquinone;Radiation protective;Oxidative damage
随着核技术的应用及推广,人们接触各种射线的机会越来越多,遭受辐射损伤的可能性也越来越大。辐射暴露是公共卫生关注的问题[1],辐射可引起多种类型的急、慢性放射病。若未及时就医,后果不堪设想。故加强对放射引起的疾病防治是一大热点。目前有多种辐射防护药物,但大多存在毒副作用大,防护效价低等缺点[2-5]。
黑种草(Nigella sative)是毛茛科一年生草本植物,主要分布在我国新疆、西藏、云南等地区,其种子常用于传统治疗,如胃肠道疾病等多地[6]。百里醌是从黑种草植物油中分离出来的主要有效单体[7],有抗氧化、抗炎和抗肿瘤作用[8-11]。化学名为2-异丙基-5-甲基-1, 4-苯并醌,分子式C10H12O2(图1)。有研究提示百里醌可在葡萄糖酸钠(DSS)小鼠结肠炎模型中,下调结肠组织中丙二酮(MDA)水平,上调还原型谷胱甘肽(GSH)和超氧化物歧化酶(SOD)水平[12]。目前人们普遍认为,肝脏是放射较敏感的器官之一,其放射敏感性仅次于骨髓、淋巴组织、小肠、性腺、胚胎和肾[13]。电离辐射对肝细胞造成损伤,从而影响肝功能的变化[14]。本研究为探究百里醌对辐射损伤小鼠的防护作用,检测了其肝脏匀浆组织及血清中的GSH、SOD和MDA水平。
1 材料与方法
1.1 实验动物
以C57BL/6J雄性小鼠(SPF级)为实验对象,其初始体重为23~24 g,由北京华阜康生物科技股份有限公司提供。饲养于中国医学科学院放射医学研究所动物实验中心SPF级动物房[饲养设施合格证号:SYXK(京)2015-0035]。endprint
1.2 分组、照射及给药
实验中小鼠按体重随机分为空白对照组、单纯照射组及照射给药组,每组5只,共15只。其中空白对照组给予假照射(0 Gy),单纯照射组和照射给药组给予7.5 Gy全身照射。Cammacell-40137Cs放射源為加拿大原子能公司产品,剂量率约为1.0 Gy/min。所有小鼠在照射前1 d灌胃给药,照射后每天给药1次,连续3 d腹腔注射给药,共给药4次。百里醌给药剂量为10 mg/kg。空白对照组和单纯照射组的小鼠给予同等体积的生理盐水。照射3 d后取材进行相关体内指标检测。指标检测方式为取材后称量脏器重量,求得脏器与体重比值得脏器指数。肝脏组织匀浆获取蛋白。
1.3 试剂和仪器
百里醌购自美国Cayman Chemical company;GSH测定试剂盒(分光光度法)、总超氧化物歧化酶(T-SOD)测试盒(羟胺法)、MDA测定试剂盒(TBA法)、总蛋白定量测定试剂盒(带标准:BCA法)(比色法)均购自南京建成生物工程研究所;北京鼎昊源科技有限公司的高通量组织研磨仪,美国Thermo CO2培养箱,美国Thermo Fisher离心机。
1.4 统计学方法
采用统计学软件SPSS 15.0进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。
2 结果
2.1 百里醌对辐射损伤小鼠脏器指数的影响
单纯照射组脏器指数均明显低于空白对照组,差异有统计学意义(P < 0.05)。与单纯照射组比较,照射给药组脏器指数有所提高,但只有肾指数差异有统计意义(P < 0.05)。见表1。
2.2 百里醌对辐射小鼠肝脏及血清中GSH表达的防护作用
单纯照射组肝组织中GSH含量低于空白对照组,照射给药组肝组织中GSH含量高于单纯照射组,差异有高度统计学意义(P < 0.01)。而照射给药组血清中GSH含量高于单纯照射组,但差异无统计学意义(P > 0.05)。见图2。
2.3 百里醌对辐射小鼠肝脏及血清中SOD表达的防护作用
照射给药组肝组织中SOD值对比单纯照射组有变化趋势,但三组肝组织中SOD值比较,差异均无统计学意义(P > 0.05)。单纯照射组血清中SOD值低于空白对照组,照射给药组血清中SOD值高于单纯照射组,差异有统计学意义(P < 0.05)。见图3。
2.4 百里醌对辐射小鼠肝脏及血清中MDA表达的防护作用
单纯照射组血清中MDA含量高于空白对照组,照射给药组血清中MDA含量低于单纯照射组,差异有高度统计学意义(P < 0.01),见图4。肝脏组织中MDA含量没有显著变化,故没有列出。
3 讨论
随着医学研究的迅速发展,活性氧族(ROS)在疾病发病机制中的作用日益得到重视。当今环境中,各种物理、化学等外界因素可直接或间接诱导大量自由基的产生,超过了机体本身清除能力,或导致机体内源性自由基产生和清除失衡,导致机体处于氧化应激状态。相应自由基可与某些生物大分子结合或过氧化产生毒性效应,从而导致各种疾病的发生。为避免机体中过多过氧化物损伤,细胞形成一套复杂的抗氧化酶防御系统,其中主要包括GSH、SOD、CAT等,其中GSH可被催化,变成氧化型谷胱甘肽,促使氧化物还原,接触氧化毒性;SOD使超氧阴离子(O2-)转变为过氧化氢(H2O2)[15]。MDA的量可反映机体内脂质过氧化的程度,间接反映细胞损伤的程度。MDA测定常与SOD测定相互配合,SOD活力间接反映了机体清除氧自由基的能力,而MDA又间接反映了机体细胞受自由基攻击的严重程度[16-19]。
本研究中,照射给药组肝组织中GSH含量和血清中SOD值高于单纯照射组,而血清中MDA含量低于单纯照射组,差异有统计学意义(P < 0.05)。
综上所述,本实验研究证实百里醌有辐射一定的防护功效,但本品作为辐射防护辅助药物用于临床尚需考虑其毒性等诸多相关问题[20-21],对于该情况还有待配合相应辅助药物解决相应问题。
[参考文献]
[1] Taniguchi C,Miao Y,Diep A,et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2 [J]. Sci Transl Med,2014,6(236):236-264.
[2] Hu Y,Cao J,Liu P,et al. Protective role of tea polyphenols in combination against radiation-induced haematopoietic and biochemical alterations in mice [J]. Phytother Res,2011,25(12):1761-1769.
[3] Vitolo J,Cotrim A,Sowers A,et al. The stable nitroxide tempol facilitates salivary gland protection during head and neck irradiation in a mouse model [J]. Clin Cancer Res,2004,10(5):1807-1812.
[4] Koc M,Taysi S,Emin Buyukokuroglu M,et al. The effect of melatonin against oxidative damage during total-body irradiation in rats [J]. Radiat Res,2003,160(2):251-255.endprint
[5] Taysi S,Okumus S,Ezirmik S,et al. The protective effects of L-carnitine and vitamin E in rat lenses in irradiation-induced oxidative injury[J]. Adv Clin Exp Med,2011,20(1):15-21.
[6] 李雅丽,王增尚,刘博,等.黑种草子化学成分和药理研究进展[J].中国药学杂志,2016,51(14):1157-1161.
[7] Elamaci I,Altinoz MA. Thymoquinone:an edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors [J]. Biomed Pharmacother,2016,83:635-640.
[8] Bahaa A,Mazhar A,Janti Q,et al. Inhibitory effect of thymoquinone on testosterone-induced benign prostatic hyperplasia in wistar rats [J]. Phytother Res,2017,31(3):1910-1915.
[9] Aymen M. Protective effect of thymoquinone against lead-induced antioxidant defense system alteration in rat liver [J]. Acta Biologica Hungarica,2017,68(3):248-254.
[10] Ismail M,Al-Naqeep G,Chan KW. Nigella sativa thymoquinonerich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats [J]. Free Radic Biol Med,2010,48:664-672.
[11] Asaduzzaman K,Mousumi T,Shangyi F,et al. Thymoqui?none,as an anticancer molecule:from basic research to clinical investigation [J]. Oncotarget,2017,8(31):51 907-51 919.
[12] 雷曉斐.百里醌保护结肠炎小鼠和诱导胃癌细胞凋亡作用的机制研究[D].武汉:武汉大学,2012.
[13] 傅尚志.电离辐射对肝脏的损伤[J].国际放射医学核医学杂志,1997,21(4):188-191.
[14] 邱毅,张丽娥,陈小红.广西874名放射工作人员肝功能指标分析[J].环境与职业医学2013,30(10):790-793.
[15] Xianming S,Yajun H,Wei Y,et al. Effect of Dan Hong Injection on PON1,SOD activity and MDA levels in elderly patients with coronary heart disease [J]. Int J Clin Exp Med,2014,7(12):5886-5889.
[16] Akyuz M,Taysi S,Baysal E,et al. Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation [J]. Head Neck,2017,39(10):2027-2035.
[17] Taysi S,Abdulrahman ZK,Okumus S,et al. The radioprotective effect of Nigella sativa on nitrosative stress in lens tissue in radiation-induced cataract in rat [J]. Cutan Ocul Toxicol,2015,34(2):101-106.
[18] Pijnenborg R,Vercruysse L,Hanssens M. The uterine spiral arteries in human pregnancy:facts and controversies [J]. Placenta,2006,27(9-10):939-958.
[19] Gali-Muhtasib H,Roessner A,Schneider-Stock R. Thymoquinone:a promising anti-cancer drug from natural sources [J]. Int J Biochem Cell Biol,2006,38(8):1249-1253.
[20] Omar MA,Abdulwahab N,Fatheya Z. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro [J]. Sci Rep,2017. doi:10.1038/s41598-017-13357-5.
[21] Sameer N,Chaitali P,Prashant R. Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin [J]. Front Pharmacol,2017. doi:10.3389/fphar.2017.00656.
(收稿日期:2017-10-25 本文编辑:李岳泽)endprint