硫化氢对心肌缺血/再灌注损伤炎症因子的影响
2017-12-15黄艳妮赵祥祥张亚利程功
黄艳妮,赵祥祥,张亚利,程功
硫化氢对心肌缺血/再灌注损伤炎症因子的影响
黄艳妮1,赵祥祥1,张亚利1,程功2
目的观察硫化氢(H2S)对心肌缺血/再灌注损伤的影响。方法24只SD大鼠随机分为A组、B组和C组,各8只,构建Langendorff离体大鼠心脏灌注模型,分别予以KH液、KH液+NaHS(由HCl和Na2S临用前配制,浓度为1 μM)和STH液进行灌注。在T0(手术开始前30 min)、T1(心脏停搏后15 min)、T2(心脏停搏后30 min)、T3(心脏复跳后15 min)、T4(心脏复跳后30 min)时,采用ELISA法测定灌流液中低氧诱导因子-1α(HIF-1α)及白介素-6(IL-6)、白介素-10(IL-10)、肿瘤坏死因子-α(TNF-α)表达情况。H9C2心肌细胞分为组1、组2和组3,分别予KH液、KH液+NaHS、STH液保存6 h后恢复室温,ELISA法检测细胞上清中HIF-1α、IL-6、IL-10和TNF-α表达。结果与术前比较,停搏后各组心肌HIF-1α表达均有所下调,差异有统计学意义(P均<0.05)。与A组和C组比较,B组HIF-1α的表达在T2、T3和T4各时间点均升高,差异有统计学意义(P均<0.05)。与术前比较,各组大鼠心脏停搏后IL-6、IL-10以及TNF-α的表达均增加,差异有统计学意义(P均<0.05)。B组IL-6、IL-10以及TNF-α的表达在T2、T3和T4各时间点均低于A组和C组,差异有统计学意义(P均<0.05)。与组1、组3相比,组2细胞上清的HIF-1α表达明显升高,IL-6、IL-10、TNF-α的表达明显降低,差异有统计学意义(P均<0.05)。结论硫化氢降低心肌缺血/再灌注损伤的炎症反应水平,增加HIF-1α的表达,发挥心肌保护作用。
硫化氢;缺血/再灌注;炎症因子;心肌;大鼠
目前心脏的冷保存时间仅为4~8 h,更长时间的缺血保存会严重影响移植后受体的生存质量。Eric等[1]发现将小鼠置于不同浓度(0~80 ppm)的硫化氢(H2S)气体中,小鼠出现了类假死现象。大鼠离体心脏的保存中,发现应用H2S的心脏保存KH液与临床应用的STH液保存效果相近,作用机制与K+-ATP通道开放有关[2]。低氧诱导因子1α(HIF-1α)具有心肌保护作用,Mark等[3]发现在线虫体内,H2S可以引起HIF-1α的表达升高。本研究通过Langendorff离体灌注大鼠心脏和体外细胞培养,探究HIF-1α在H2S离体大鼠供体心脏保护作用中的作用通路。
1 材料与方法
1.1 主要试剂和仪器 戊巴比妥钠(国药集团化学试剂陕西有限公司);HIF-1α、IL-6、IL-10、TNF-α Elisa试剂盒(R&D公司);DMEM、胎牛血清、胰酶(GIBCO公司)。LE-4250型Langendorff离体心脏灌流系统(Panlab公司);WATER JACKET二氧化碳培养箱(日本ASTEC公司);BSC-1600IIA2生物安全柜(苏净集团苏州安泰空气技术有限公司);XDS-1B倒置显微镜(重庆光电仪器有限公司);Synergy2 多功能酶标仪(美国BioTek仪器有限公司)。H9C2心肌细胞(上海北诺生物科技有限公司)。
1.2 实验动物 SPF级雄性SD大鼠24只,体重(280±20)g,购自第四军医大学实验动物中心,动物合格证号SCXK(陕)2012-0014。
1.3 方法
1.3.1 溶液配制 ①KH液:所含成分以mmol/L计,分别为NaCl 118.5,KCl 4.7,CaCl222.5,NaHCO325,MgSO41.2,KH2PO41.2,葡萄糖11,调节pH至7.3~7.4。②STH液:所含成分以mmol/L计,分别为NaCl 120,KCl 16,CaCl222.5,NaHCO310,MgCl216.6,调节pH至7.8。
1.3.2 Langendorff模型制备及动物分组 大鼠腹腔注射戊巴比妥钠麻醉后,固定于操作台。打开胸腔分离心脏,在主动脉距起始部3~4 mm处剪断,立即置于装有4℃冷KH液的培养皿中洗净残血,找到主动脉断端套入Langendorff灌流系统的主动脉套管并固定,立即灌注持续充以95% O2和5%CO2混合气体的KH液,在右心耳处剪一小口,以便流出冠状动脉回流液,建立Langendorff离体心脏灌注模型。24只大鼠随机分为A组、B组和C组,每组8只,分别采用KH液、KH液+NaHS(由HCl和Na2S临用前配制,浓度为1μM)和STH液进行灌注。在T0(手术开始前30 min)、T1(心脏停搏后15 min)、T2(心脏停搏后30 min)、T3(心脏复跳后15 min)、T4(心脏复跳后30 min)时,采用ELISA法测定灌流液中HIF-1α及炎性因子白介素-6(IL-6)、白介素-10(IL-10)、肿瘤坏死因子-α(TNF-α)表达情况。
1.3.3 细胞培养及分组 H9C2心肌细胞培养于含10%胎牛血清的DMEM中,置37℃、5%CO2孵箱中培养。取对数生长期的H9C2细胞,胰酶消化后调整细胞浓度为1×106个/ml,接种于培养皿中,随机分为3组(组1、组2和组3),弃去培养基,分别予以4℃KH液、KH液+NaHS(1μM)和STH液保存6 h后恢复至室温。
1.4 ELISA法测定相关指标 检测上清中HIF-1α及炎性因子IL-6、IL-10、TNF-α的表达。按试剂盒的说明书操作,简述步骤如下:加样、温育、洗涤,加酶、温育、洗涤,显色,终止反应,测定OD值。根据制备的标准曲线,计算样本含量。
1.5 统计学处理 使用SPSS 20.0软件进行统计分析。计量资料采用均数±标准差(±s)表示,多组间均数的比较采用方差分析。P<0.05为差异有统计学意义。
2 结果
2.1 各组大鼠心肌HIF-1α的表达情况 与术前比较,停搏后各组大鼠心肌HIF-1α表达均有所下调,差异有统计学意义(P均<0.05)。与A组和C组比较,B组HIF-1α的表达在T2、T3和T4各时间点均升高,差异有统计学意义(P均<0.05),表1。
2.2 各组大鼠离体心脏炎性因子的表达变化 与术前比较,各组大鼠心脏停搏后IL-6、IL-10以及TNF-α的表达均增加,差异有统计学意义(P均<0.05)。B组加入NaHS后,IL-6、IL-10以及TNF-α的表达在T2、T3和T4各时间点均低于A组和C组,差异有统计学意义(P均<0.05),表2~表4。
2.3 各组H9C2心肌细胞测定结果与组1、组3相比,组2细胞上清的HIF-1α表达明显升高,IL-6、IL-10、TNF-α的表达明显降低,差异有统计学意义(P均<0.05),表5。
表1 各组大鼠心肌HIF-1α的表达情况(ng/ml)
表2 各组IL-6的表达(pg/ml)
表3 各组IL-10的表达(pg/ml)
表4 各组TNF-α的表达(ng/ml)
3 讨论
近年来研究发现,H2S是血液和组织内生理存在的,并可内源性产生;哺乳动物内源性H2S合成酶被发现;H2S被发现可以抑制中性粒细胞粘附性及活性[4-6]。
H2S的作用机制包括开放K+-ATP通道,激活蛋白激酶C,抑制线粒体呼吸功能,激活Erk和Akt,减少细胞色素C释放,诱导COX-2,Hsp90,Hsp70,Bcl-2,Bcl-xL等表达,调整细胞保护基因Nrf-2活性等。Elrod等[7]发现H2S可以改善缺氧复氧处理后线粒体的功能。心脏缺血动物模型证实了H2S使K+-ATP通道开放的作用机制[8],其后又采用类似的方法证实了H2S激活PKC,Erk和Akt,诱导COX-2等作用机制[9-11]。Yao等[12]采用乳鼠心肌细胞模型,发现H2S通过使GSK-3beta去磷酸化等机制减少缺氧复氧细胞凋亡。通过离体心脏缺血再灌注模型研究,Ji[13]和Zhang[14]发现H2S通过开放K+-ATP通道从而提高心功能恢复,减少心律失常,减少凋亡和梗死面积。应用离体心脏复苏模型,Minamishima[15]认为H2S可以保护线粒体功能,减轻氧自由基产生,激活NO合成酶3。Sivarajah[16,17]在大鼠的心肌缺血再灌注研究中,证实H2S可以减少心肌梗死面积,作用机制为抑制p38MAPK和NF-κB活性。Calvert[18]发现H2S预处理可以减少缺血再灌注鼠的心肌梗死面积,增加心肌收缩力,其机制包括激活Nrf-2,增加HO-1、硫氧还蛋白1等抗氧化物表达,上调Hsp90 、Hsp70、Bcl-2、Bcl-xL和COX-2。在离体大鼠供体心脏的长期保存中,将H2S加入到无心脏保存作用的KH液中,发现H2S使KH液对供体心脏具有良好的保存效果,其效果与目前常用的心脏保存液STH液相当。其后又有研究[19]发现H2S在动物模型体外循环心肺转流中具有保护作用。
本研究发现停搏后离体大鼠心肌HIF-1α表达下调,加入1μM NaHS(外源性H2S供体)可以降低心肌HIF-1α表达的下调幅度,同时可以下调IL-6、IL-10以及TNF-α的表达。HIF-1由缺氧诱导产生,能与促红细胞生成素(EPO)基因上的缺氧反应元件(HRE)结合,从而促进其转录[20]。HIF-1由α和β两个亚单位组成,两个亚单位聚合后才能发挥转录因子的作用。HIF-1对凋亡具有双向调节作用。在急性缺氧时,HIF-1可减少细胞凋亡的发生,对细胞有保护作用,在缺血再灌注损伤时可提高细胞的存活率。
H2S和HIF-1α均对心肌具有保护作用,二者之间是否具有内在联系,H2S的心肌保护作用是否由HIF-1α介导?有研究发现H2S可以独立引起漂亮新小杆线虫体内HIF-1α的表达增加。HIF-1α参与了低氧环境下H2S的血管生成作用。在以上研究的基础上,HIF-1α很可能参与了H2S的心脏保护作用。
表5 各组H9C2心肌细胞HIF-1α、IL-6、IL-10、TNF-α的表达(n=3)
[1]Satterly SA,Salgar S,Hoffer Z,et al. Hydrogen sulfide improves resuscitation via non-hibernatory mechanisms in a porcine shock model[J]. J Surg Res,2015,199(1):197-210.
[2]Hu X,Li TS,Jin Z,et al. Possible role of hydrogen sulfide on the preservation of donor rat hearts[J]. Transplant Proc,2007,39(10):3024-9.
[3]Budde MW,Roth MB. Hydrogen Sulfide Increases Hypoxiainducible Factor-1 Activity Independently of von Hippel-Lindau Tumor Suppressor-1 in C. elegans[J]. Molecular Biology of the Cell,2010,21(1):212-7.
[4]Kimura H. Hydrogen sulfide: from brain to gut[J]. Antioxidants &Redox Signaling,2010,12(9):1111-23.
[5]Whiteman M,Perry A,Zhou Z,et al. Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors[J]. Handb Exp Pharmacol,2015,230:337-63.
[6]Yuan B,Tang WH,Lu LJ,et al. TLR4 upregulates CBS expression through NF-κB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity[J]. World J Gastroenterol,2015,2 1(28):8615-28.
[7]Dai SH,Chen T,Wang YH,et al. Sirt3 attenuates hydrogen peroxideinduced oxidative stress through the preservation of mitochondrial function in HT22 cells[J]. Int J Mol Med,2007,104(39):15560-5.
[8]Calvert JW,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling[J]. Circ Res,2009,105(4):365-74.
[9]Hu Y,Chen X,Pan TT,et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways[J]. Pflugers Archiv : European journal of physiology,2008,455(4):607.
[10]Nakano S,Ishii I,Shinmura K,et al. Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions[J]. J Mol Med (Berl),2015,93(8):879-89.
[11]Li H,Zhang C,Sun W,et al. Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes[J]. Cell Biosci,2015,5:43.
[12]Yao LL,Huang XW,Wang YG,et al. Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP[J]. Am J Physiol Heart Circ Physiol,2010,298(5):H1310-9.
[13]Peake BF,Nicholson CK,Lambert JP,et al. Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemiareperfusion injury by activating Nrf2 signaling in an Erk-dependent manner[J]. Am J Physiol Heart Circ Physiol,2013,304(9):H1215-24.
[14]Zhang Z,Huang H,Liu P,et al. Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K ATP channels[J]. Can J Physiol Pharmacol,2007,85(12):1248-53.
[15]Minamishima S,Bougaki M,Sips PY,et al. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice[J]. Circulation,2009,120(10):888-96.
[16]Sivarajah A,Collino M,Yasin M,et al. Thiemermann, Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R[J]. Shock, 2009,31(3):267-74.
[17]Sivarajah A,McDonald MC,Thiemermann C,et al. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat[J]. Shock,2006,26(2):154-61.
[18]Calvert JW,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling[J]. Circ Res,2009,105(4):365-74.
[19]Szabó G,Veres G,Radovits T,et al. Cardioprotective effects of hydrogen sulfide[J]. Nitric Oxide,2011,25(2):201-10.
[20]Xu G,Xue M,Wang H,et al. Hypoxia-inducible factor-1α antagonizes the hypoxia-mediated osteoblast cell viability reduction by inhibiting apoptosis[J]. Exp Ther Med,2015,9(5):1801-6.
Influence of hydrogen sulfide on inflammatory factors after myocardial ischemia-reperfusion injury
Huang Yanni*, Zhao Xiangxiang, Zhang Yali, Cheng Gong.
*Department of Internal Medicine, People's Hospital of Zhouzhi County, Shaanxi Province, Zhouzhi 710400, China.
Corresponding author: Cheng Gong, E-mail: xianchenggong@163.com
ObjectiveTo observe the influence of hydrogen sulfide (H2S) on myocardial ischemia
reperfusion injury.MethodsSD rats (n=24) were randomly divided into groups A, B and C (each n=8), and model of Langendorff cardiac perfusion in vitro was established. The groups were given, respectively, perfusion of KH solution, KH solution+NaHS (prepared with HCl and Na2S just before using, 1μM) and STH solution. At the time points of T0 (30 min before the operation), T1 (15 min after asystole), T2 (30 min after asystole), T3 (15 min after heart resuscitation) and T4 (30 min after heart resuscitation), the expressions of hypoxia inducible factor-1α (HIF-1α), interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) in perfusion solution were detected by using enzyme-linked immunosorbent assay (ELISA). H9C2 myocardial cells were divided into groups 1, 2 and 3, given, respectively, KH solution, KH solution+NaHS and STH solution, stored for 6 h and then recovered to room temperature. The expressions of HIF-1α, IL-6, IL-10 and TNF-α in cell supernatant were detected by using ELISA.ResultsThe expression of HIF-1α decreased in all groups after asystole compared with before (all P<0.05). The expression of HIF-1α increased in group B compared with group A and group B at time points of T2, T3 and T4 (all P<0.05). The expressions of IL-6, IL-10 and TNF-α increased in all groups after asystole compared with before (all P<0.05). The expressions of IL-6, IL-10 and TNF-α were lower in group B than those in group A and group C at time points of T2, T3 and T4 (all P<0.05). The expression of HIF-1α increased significantly, and expressions of IL-6, IL-10 and TNF-α decreased significantly in group 2 compared with group 1 and group 3 (all P<0.05).ConclusionH2S can reduce inflammatory reactions, improve expression of HIF-1α and play a role of protecting myocardium in rats with myocardial ischemia-reperfusion injury.
Hydrogen sulfide; Ischemia-reperfusion; Inflammatory factors; Myocardium; Rats
R541.4
A
1674-4055(2017)11-1372-03
1710400 周至,周至县人民医院内科;2710068 西安,陕西省人民医院心内二科
程功,E-mail:xianchenggong@163.com
10.3969/j.issn.1674-4055.2017.11.23
姚雪莉