孤网下水轮机PID调速器抗速度饱和研究
2017-11-17门闯社南海鹏廖伟丽
门闯社,南海鹏,关 欣,廖伟丽
孤网下水轮机PID调速器抗速度饱和研究
门闯社,南海鹏,关 欣,廖伟丽
(西安理工大学水利水电学院,西安 710048)
水轮机调节系统稳定性对电网安全稳定运行具有重要意义,当电网容量较小或因事故处于孤网运行时,水轮机调节系统的作用显得尤为突出,但国内外多个水电站均出现了随负载扰动幅值增加系统调节品质迅速下降甚至发生频率发散振荡的现象。该文考虑调速器接力器速度限制等非线性因素,建立了水轮机调节系统仿真模型,在5%负载扰动下整定了调速器参数,当负载扰动幅值从5%增加至10%时衰减度从2.52%增加至8.84%,当负载扰动幅值增加至15%时系统调节过程发散,重现了孤网下水电机组随负载扰动幅值增加系统稳定性下降的现象,经过分析发现引起这一问题的主要原因是PID调速器的速度饱和,主要体现为接力器速度限制引起的比例项和积分项速度饱和。针对此问题,提出了1种抗速度饱和的微分优先型PID调节器,经改进后,负载扰动幅值分别为5%、10%以及15%时,衰减度分别为2.52%、2.19%以及1.79%,随负载扰动幅值增加系统稳定性无明显变化,表明改进调节器能够有效抑制调速器的速度饱和,大大降低了调节品质对负载扰动幅值的敏感性,并将该调节器应用在多布水电站的中,得到了满意的效果,该方法进一步完善了水轮机调速器的控制算法,具有重要的理论指导意义和工程应用价值。
计算机仿真;水轮机;稳定性;水轮机调节系统;孤网;PID;速度饱和
0 引 言
水轮机调节系统的稳定性对保障电网安全稳定具有重要意义[1-3],但国内外多个电站均出现了电网侧有较大负载扰动时机组调节品质迅速下降甚至发生频率发散振荡的现象,当机组处于孤网运行时该问题尤为突出[4-7]。通常孤网运行是指电网中只有1台或本台机组容量占电网容量比重相当大的运行方式[8],在电网薄弱地区或电网事故情况下均有可能形成机组的孤网运行,此时系统常具有负载扰动幅值大、负载扰动频繁、稳定性差等特点[9-13],如渭沱水电站、满拉水电站、马迹塘电站等多个电站均出现了孤网下负载扰动幅值较大时机组运行不稳定的现象[14-18]。渭沱水电站为了解决负载扰动过大时调节不稳定的问题,减小了调速器的比例增益和积分增益[14],但这种方法必然造成一次调频的速动性降低;满拉水电站孤网运行时发生调节失稳现象,工作人员通过逐渐减小导叶开限将机组出力逐渐减小至0,待电网稳定后再逐渐增加机组出力[15],这种方法在电网功率扰动时机组不但没有提供适当的调节,同时其输出功率降低必然对电网造成新的扰动;马迹塘电站孤网运行时负载扰动幅值达到机组容量20%,为了避免机组调节出现不稳定现象,对所带孤网负荷的变化量及变化率进行了严格限制[16],这种方法造成了机组调节能力降低,电网对负载要求较高。可见目前工程中并没有从根本上解决机组孤网下随负载扰动幅值增加机组稳定性下降的问题,其解决方案要么以牺牲机组速动性为代价要么提高了电网及负荷的要求甚至对电网调节造成新的干扰。
本文考虑了接力器速度限制、位置限制、调速器位置饱和抑制等非线性因素,建立了水轮机调节系统仿真模型,通过仿真重现了孤网下水电机组随负载扰动幅值增加系统稳定性下降的现象,分析发现大负载扰动时系统稳定性低的主要原因是大负载扰动时调节器输出值的变化率较大,当其大于整定的接力器速度限制值时,接力器无法及时跟随调节器输出,进而形成调速器的速度饱和。针对此问题,本文提出了1种抗速度饱和的微分优先型PID控制算法,以期解决电站孤网运行稳定性不足的问题。
1 系统稳定性下降的原因分析
为分析系统稳定性随负载扰动幅值增加而降低的原因,建立了考虑接力器速度限制、位置限制、调速器位置饱和抑制等非线性因素的水轮机调节系统仿真模型[19-23],其仿真原理框图如图1所示,其中引水系统为刚性水击,水轮机为理想水轮机,随动系统中考虑配压阀行程限制(接力器速度限制)、接力器行程限制,调节器中考虑了对接力器位置饱和的抑制[24-26]。
注:fr为频率给定;f为机组频率;yD为微分项输出值;yP为比例项输出值;yI为积分项输出值;yc为调节器输出值;δ为配压阀行程;yg为接力器行程;mg0为负载扰动幅值;KD为微分增益,s;TD为微分项时间常数,s;KP为比例增益;KI为积分增益,s–1;bp是永态差值系数;TyB为辅助接力器响应时间常数,s;Ty为接力器响应时间常数,s;δmax为配压阀行程上限;δmin为配压阀行程下限;ymax为接力器行程上限;ymin为接力器行程下限;Tw为水流惯性时间常数,s;en为被控制系统自调节系数;Ta为机组惯性时间常数,s;s为拉普拉斯算子。
调节器中需要将调速器的控制算法离散后进行计算[27-29]。PID输出值为比例项、积分项以及微分项输出值之和,表示为
式中为计算周期数;P()为第个计算周期的比例项输出值;I()为第个计算周期的积分项输出值;D()为第个计算周期的微分项输出值。
比例项输出值等于比例增益与频率偏差的乘积,即
式中P为比例增益;D()为第个计算周期的频率偏差。
积分项采用遇限削弱积分法对位置饱和进行抑制,当PID输出值PID大于最大限制值max或小于最小限制值min时该周期内不进行积分累积,即其输出值为上周期积分项输出值;当PID输出值PID介于min与max之间时,输出值为上周期输出值与该周期内的积分增量的累加,即积分项输出为
式中c()为第个计算周期调节器输出值;条件A为PID()≥max;条件B为min≥PID()。I为积分增益,s–1;为计算周期,s;()为第个计算周期的频率偏差D()与目标偏差pc()的差值,为避免迭代计算,常采用上周期的调节器输出值c(–1)替代该周期的输出值c();p为永态差值系数。
微分项常采用实际微分环节,其离散形式可以表示为[26]
式中D为微分时间常数,s;D为微分增益,s。
机械惯性时间常数a取值一般在5~10 s,取a为 5 s;水流惯性时间常数w一般不大于2~4 s,取w为 2 s;永态差值系数一般在0~8%之间,取p为4%;不考虑被控系统的自调节能力,取n为0;辅助接力器响应时间常数yB取0.02 s;接力器响应时间常数T取0.1 s;微分时间常数D取0.05 s;配压阀行程上限max取0.01(对应接力器开启时间O为10 s);配压阀行程下限min取–0.005(对应接力器关闭时间C为20 s)[26,30-31]。
为分析负载扰动幅值对动态品质的影响,按国家标准中对孤立负荷试验要求[32],初始时刻机组带孤立的、90%额定功率负载,通过寻优得到5%负载扰动最优PID参数为P=2.0、I=0.4 s–1、D=1.7 s,调节过程如图2中的曲线①所示,按此组最优调节参数,系统负载扰动幅值分别为10%、15%时调节过程如图2中的曲线②、③所示,对应调节品质如表1所示。频率偏差峰值指机组频率偏差的绝对值与机组频率稳态值的比值,调节时间指频率进入并保持在稳态频率±0.2%范围内所需时间,衰减度指与起始偏差符号相同的第2个转速偏差峰值与起始偏差峰值之比[30-32]。
注:Dy为调节器输出值与接力器行程之间的行程差,①减5%额定负载②减10%额定负载③减15%额定负载,下同。
表1 采用传统PID调节器负载扰动过渡过程调节品质结果
注:频率偏差峰值指机组频率偏差峰值的绝对值与机组频率稳态值的比值;调节时间指频率进入并保持在稳态频率(±0.2)%范围内所需时间;衰减度指与起始偏差符号相同的第二个转速偏差峰值与起始偏差峰值之比;—指系统调节过程发散,无对应的调节指标。
Note: Peak value of frequency deviation is the ratio between the absolute value of frequency deviation peak and the steady frequency value of unit; Regulating time is the time that frequency come and keep into the ±0.2% stability frequency range; Attenuation is the ratio between the second peak deviation with the same sign as start deviation and the peak value of frequency deviation; — mean the regulating process is divergent and the regulating index is non-existent.
由图2a中频率的变化过程可以看出,随负载扰动幅值增加系统调节品质迅速下降甚至发生频率发散振荡的现象,同样由表1可以看出,随负载扰动幅值增加系统衰减度增加即转速波动的衰减速度减慢,系统稳定性变差,这一结论与实际电站孤网下运行时发生的现象一致。由调节器输出与接力器行程曲线可以看出,在扰动初期调节器输出值的变化率大于整定的接力器速度限制值,接力器无法及时跟随调节器输出,形成接力器与调节器之间的行程差,且随负载扰动幅值增加该行程差增加,这一现象就是调速器的速度饱和。
从图2b中调节器的输出与接力器行程曲线可以看出,在减负荷初期,调节器输出值c的变化速度大于整定的接力器速度限制值,此时接力器不能及时跟随调节器输出值,经过一段时间的累积后在调节器输出值反向处形成图中的行程差Δ,之后调节器输出值由降低变为增加,但接力器行程仍旧按照原来的方向降低,直至调速器输出值等于接力器行程值。这一时段内接力器运动方向与调节器输出值的变化方向相反,从而导致了系统稳定性下降。可见,速度饱和是引起负载扰动幅值增加时系统稳定性下降的主要原因。
为进一步分析PID调节器中速度饱和对稳定性的影响过程,调节器各部分阶跃扰动结果如图3所示,其中虚线为接力器按整定的速度限制值运动时的行程曲线max。
由图3可以看出,在扰动初期比例项输出值p的变化速度大于整定的接力器速度限制值,形成饱和区域P,随接力器行程的变化,比例项引起的饱和逐渐减小,此过程中积分项的输出增量不能影响接力器的运动,形成饱和区域I;微分项在扰动初期较大,但迅速衰减,形成饱和区域D。由区域P、I、D的形状可以看出,微分项在扰动初始时刻具有较大的输出有利于系统快速响应,随后快速衰减,频率变化初期,微分输出能够加快主配压阀的动作,起到对频率变化的超前校正作用,同时其饱和区域D较小;相对微分项而言,比例项与积分项输出值在扰动初始时刻较小,对加快主配压阀的运动作用较小,且饱和区域随时间衰减较慢,饱和区域P、I较大,对系统的稳定性的影响较大。可见,引起调速器速度饱和的主要因素是比例项输出值的过大变化速度及积分项的过多累积。
注:ymax为接力器按整定的速度限制值运动时的行程曲线;RP为比例项形成的速度饱和区域;RI为积分项形成的速度饱和区域;RD为微分项形成的速度饱和区域。
2 速度饱和抑制方法
由上述分析可知调速器的速度饱和主要体现为比例项与积分项的速度饱和。针对比例项的速度饱和,将比例项输出值的变化速度限制在接力器开启速度与关闭速度之间;针对积分项速度饱和,采用当比例项速度受限或调节器输出幅值受限时停止积分项累积;鉴于微分形成的饱和区域D较小,为保证调速器的超前校正作用对微分项输出值的速度不进行限制,该算法即为抗速度饱和的微分优先型PID调节器控制算法。
注:vmax为接力器速度上限;vmin为接力器速度下限。
改进PID调节器原理框图如图4所示,计算方法如下。
PID输出值为比例项、积分项以及微分项输出值之和,按照(1)式进行计算。
当比例项输出值的变化速度超出最快速度限制时按最快速度变化,否则其输出值等于比例增益与频率偏差的乘积,即
式中条件C为PD()–p(–1)≥max;条件D为min≥PD()–p(–1);max为接力器速度上限,max=1/O,O为接力器开启时间,s;min为接力器速度下限,min=–1/C,C为接力器关闭时间,s。
当PID输出值PID幅值受限时该周期内不进行积 分累积;当P的变化速度受限时该周期内不进行积分累积。即
式中()按式(4)进行计算,微分项的输出按式(6)进行计算。
改进调节器对阶跃输入的响应曲线如图5所示,其中虚线为接力器以整定的速度限制值运动时的行程值max。在扰动初期,微分项具有较大的输出值,能够保证调节器的超前校正作用,其形成的饱和区域较小;比例项输出按照整定的接力器速度限制值运动,不再形成速度饱和区域,可以有效避免比例项的速度饱和;积分项在扰动初期输出为0,当比例项输出值小于max时积分项开始累积,不再形成速度饱和区域,可以有效避免积分项形成的速度饱和。
图5 改进PID调节器阶跃响应图
采用改进调节器进行仿真,仿真参数、仿真初始工况以及负载扰动幅值均与本文中采用传统调节器的仿真相同,所得机组转速及开度变化如图6a所示,对应调节品质见表2。
由图6b可以看出,负载扰动幅值不同时机组转速及接力器行程变化过程较为相似,调节器输出值与接力器行程在扰动初期具有较小的差值,随后差值迅速消除,接力器能够以较快速度跟随调节器输出值。由表2中衰减度的变化过程可以看出随负载扰动幅值增加频率衰减度没有明显变化,频率偏差峰值与负载扰动幅值基本能够呈现倍数关系,随负载扰动幅值增加系统稳定性没有明显降低,在较小负载扰动幅值下整定的调速器参数能够适宜于较大负载扰动过程。
图6 采用改进PID调节器负载扰动过渡过程
表2 采用改进PID调节器负载扰动过渡过程调节品质结果
3 工程范例
多布水电站采用灯泡贯流式双调节机组,水轮机型号为GZD665-WP-485,机组额定功率为30 MW,额定转速为125 r/min,额定水头为16.7 m,额定流量为204 m3/s,机械惯性时间常数a=3.132 s,水流惯性时间常数w= 1.22 s,导叶接力器响应时间常数=0.2 s,转轮叶片接力器响应时间常数=0.2 s,导叶开启时间yg=14 s,桨叶开启时间zg=27 s,导叶关闭时间ys=20 s,桨叶关闭时间zs=40 s,初始稳定工况下机组工作在额定水头,带90%额定电阻负载即发电机及负载自调节系数g=–0.9,水轮机转矩对转速的传递系数=–0.7,水轮机转矩对水头的传递系数=1.307,水轮机转矩对导叶接力器行程的传递系数=0.952,水轮机转矩对桨叶接力器行程的传递系数=0.388,流量对转速的传递系数qx=0.432,流量对水头的传递系数qh=0.257,流量对导叶开度的传递系数qy=0.699,流量对桨叶开度的传递系数qz=0.4922,通过寻优获得5%负载扰动下调速器最优调节参数P=1.2,I=0.2 s–1,D=1.2 s。分别减5%、15%及25%负载扰动过渡过程曲线如图7所示,对应调节品质如表3所示。
由图7及表3可以看出,采用改进前的调节器时,随负载扰动幅值增加机组稳定性降低甚至出现调节发散的现象;采用改进后的调节器时,随负载扰动幅值增加机组稳定性无明显降低。
表3 多布水电站负载扰动过渡过程调节品质结果
图7 多布水电站负载扰动过渡过程
4 结 论
本文通过仿真研究了孤网下水力发电机组负载扰动时系统稳定性随负载扰动幅值增加而下降的问题,指出随负载扰动幅值增加调节系统稳定性下降的原因,并提出了改进方法,得到如下结论。
1)机组孤网下随负载扰动幅值增加系统稳定性下降的主要原因是调速器速度饱和,即当负载扰动幅值较大时,扰动初期调节器输出值的变化率大于整定的接力器速度限制值,接力器无法及时跟随调节器输出,形成接力器与调节器之间的行程差,且随负载扰动幅值增加该行程差增加,当调速器输出值反向时接力器运动方向不能及时反向,进而降低了系统的稳定性,主要体现在比例项与积分项速度饱和。
2)提出了抗速度饱和的微分优先型PID调节器控制算法,该算法在传统PID算法基础上增加了比例项速度限制环节、比例项速度受限时积分项停止积分环节,对微分项不进行速度限制,该方法能够有效抑制调速器的比例项和积分项速度饱和,同时又保留了微分项的超前校正作用,可以有效抑制速度饱和现象,该控制算法在孤网下具有较高的稳定性。
[1] Krishnamoorthy Natarajan. Robust PID controller design for hydro-turbines[J]. IEEE Transactions on Energy Conversion, 2005, 20(3): 661-667.
[2] Ling Daijian, Tao Yang. An analysis of the Hopf bifurcation in a hydro-turbine governing system with saturation [J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 512-515.
[3] Mei Shengwei, Gui Xiaoyang, Shen Chen, et al. Dynamicextending nonlinear H∞control and its application to hydraulic turbine governor[J]. Science in China, Series E: Technological Sciences, 2007, 50(5): 618-635.
[4] Yin C C, Kashem M M, Michael N. Stability of a Hydraulic Governor Turbine System for Isolated Operation[C]//2007 Australasian Universities Power Engineering, Perth, Australia, 2007: 1-8.
[5] Huang Qingsong, Zhai Xiaojuan, Zheng Yuan, et al. Study on stability of hydroelectric generating set influenced by the governor parameters under isolated grid[C]//2012 International Conference on Advanced Material and Manufacturing Science, Beijing, China, 2014: 1799-1803.
[6] Merino J, Veganzones C, Sanchez J A, et al. Power system stability of a small sized isolated network supplied by a combined wind-pumped storage generation system: A case study in the canary islands[J]. Energies, 2012, 5(7):2351-2369.
[7] Maria R G Z, Jurandir I Y. Primary control system and stability analysis of a hydropower plant[J]. IFAC Proceedings Volumes, 2006, 39(7): 165-170.
[8] 中国电器工业协会. GB/T 31066-2014电工术语水轮机控制系统[S]. 北京:中国标准出版社,2015.China electrical equipment industry association. GB/T 31066-2014 Electro-technical terminology-Control system for hydraulic turbines [S]. Beijing: China standard press, 2007.
[9] Antonio C. Padoan Jr., Christophe Nicolet., Basile Kawkabani, et al. Stability study of a mixed islanded power network[C]// 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010, Sao Paulo, Brazil. 2011: 218-225.
[10] Emmanuel J T, Evangelos N D. A method for optimal spinning reserve allocation in isolated power systems incorporating an improved speed governor model[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1629-1637.
[11] Wozniak L. Determining hydro generating system stability and performance[J]. International water power and dam construction, 1991, 43(8): 25-30.
[12] Fawzi A, Rahman J. Influence of speed governors of hydropower stations on frequency stabilization of fixed- speed wind farm[J]. International Journal of Emerging Electric Power Systems, 2013, 14(2): 189-198.
[13] Jimenez O F, Chaudhry M H, et al. Stability limits of hydroelectric power plants[J]. Journal of Energy Engineering, 1987, 113(2): 50-60.
[14] 苟琪. 灯泡贯流式机组单机孤网运行的稳定[J]. 四川水利水电, 1993(42): 81-83. Gou Qi. Stability if isolated operation of Bulb tubular unit[J]. Sichuan Water Power, 1993(42): 81-83. (in Chinese with English abstract)
[15] 孙宁, 徐礼达. 满拉水电站机组振荡原因分析与处理[J]. 水力发电,2001(3): 14-15.
[16] 彭平. 贯流式机组孤立电网稳定运行的研究[J]. 湖南电力, 1996(3): 43-47.
[17] 吕佳军, 朱彬, 熊智, 等. 瑞丽江一级水电站孤网运行浅析[J]. 机电信息, 2015(33): 26-27.
[18] 陈忠民. 220 kV供配电系统孤网运行试验与实践[J]. 有色矿冶,2015, 31(1): 42-50.Chen Zhongmin. Isolated Net Running Test and Practice in 220 kV power distribution system[J]. Non-Ferrous Mining and Metallurgy, 2015, 31(1): 42-50. (in Chinese with English abstract)
[19] Zhang Hao, Chen Diyi, Xu Beibei, et al. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient[J]. Energy Conversion and Management, 2015, 90(1): 128-137.
[20] Moreira C, Fulgêncio N, Silva B. Identification of dynamic simulation models for variable speed pumped storage power plants[C]//Journal of Physics: Conference Series, 2017, 813(1): 1-6.
[21] 杨建东,曾威,杨威嘉,等. 水泵水轮机飞逸稳定性及其与反S特性曲线的关联[J]. 农业机械学报,2015,46(4): 59-64. Yang Jiandong, Zeng Wei, Yang Weijia, et al. Runaway stabilities of pump-turbines and its correlations with S characteristic curves[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 59-64. (in Chinese with English abstract)
[22] International Electrotechnical Commission. IEC 61362-2012 Guide to specification of hydraulic turbine governing systems[S]. IEC, 20-12.
[23] Martínez-Lucas G, Sarasúa J I, Sánchez-Fernández J Á, et al. Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation[J]. Renewable Energy, 2015, 83(04): 245-255.
[24] Hušek P. PID controller design for hydraulic turbine based on sensitivity margin specifications[J]. International Journal of Electrical Power and Energy Systems, 2014, 55(09): 460-466.
[25] Li Wei, Vanfretti L, Chompoobutrgool Y. Development and implementation of hydro turbine and governor models in a free and open source software package [J]. Simulation Modelling Practice and Theory, 2012, 24(02): 84-102.
[26] 沈祖怡. 水轮机调节(第三版)[M]. 北京:中国水利水电出版社,1997.
[27] 刘觉民,谭立新,王正富,等. 基于数字控制的原动机调速器仿真系统[J]. 湖南大学学报(自然科学版),2008,35(4):47-50.Liu Juemin, Tan Lixin, Wang Zhengfu, et al. Simulationsystem of generator governor based on digital processor[J]. Journal of Hunan University (Natural Sciences), 2008, 35(4): 47-50. (in Chinese with English abstract)
[28] 南海鹏,陈嘉谋. 水轮机微机调速器PID调节器的实现及其稳定性分析[J]. 大电机技术,1990(4):52-56. Nan Haipeng, Chen Jiamou. Realization of the PID regulator of the Microprocessor-based governor for water turbine and its stability analysis[J]. Large Electric Machine and Hydraulic Turbine, 1990(4): 52-56. (in Chinese with English abstract)
[29] 杨根科,谢剑英. 微型计算机控制技术[M]. 北京:国防工业出版社,2016.
[30] 魏守平. 水轮机调节系统仿真[M]. 武汉:华中科技大学出版社,2011.
[31] 水电水利规划设计总院. NB/T 35021-2014水电站调压室设计规范[S]. 北京:中国电力出版社,2014.Hydropower planning and design institute. NB/T 35021-2014 Design code for surge chamber of hydropower stations[S]. Beijing: China electric power press, 2014.
[32] 中国电器工业协会. GB/T9652.2—2007水轮机控制系统试验[S]. 北京:中国标准出版社,2007.China electrical equipment industry association. GB/T 9652. 2-2017 Test code of control systems for hydraulic turbines[S]. Beijing: China standard press, 2007.
门闯社,南海鹏,关 欣,廖伟丽. 孤网下水轮机PID调速器抗速度饱和研究[J]. 农业工程学报,2017,33(21):92-98. doi:10.11975/j.issn.1002-6819.2017.21.011 http://www.tcsae.org
Men Chuangshe, Nan Haipeng, Guan Xin, Liao Weili. Study on anti-speed saturation of PID governor for isolated hydraulic turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 92-98. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.011 http://www.tcsae.org
Study on anti-speed saturation of PID governor for isolated hydraulic turbines
Men Chuangshe, Nan Haipeng, Guan Xin, Liao Weili
(710048,)
The stability of hydraulic turbine control system plays an important role in the safety and stability of power grid, especially in the small capacity grid systems and the isolated grid systems. However, it repeatedly appears in some hydropower stations at home and abroad that with the load disturbance amplitude increasing, the system stability rapidly decreases and even the frequency divergent oscillation occurs in the process, such as Weituo power station, Manla power station and Majitang power station. In order to solve this problem, Weituo power station reduces the proportional gain and integral gain of governor, but this method will reduce the primary frequency regulation speed. Manla power station gradually reduces the guide vane opening limit and makes the unit output reduced to 0, and then gradually increases the unit output when the power grid is steady. This method can’t provide proper adjustment in the power grid disturbance, and the unit output decreases will inevitably cause new disturbance to the power grid. Majitang power station limits the variable quantity and the change rate of load, but this method can’t fully perform the adjustment ability of the unit, and the power grid has higher requirements to load. So, it doesn’t fundamentally solve the problem. In this paper, a simulation model of hydraulic turbine control system is built and the calculation method for the regulator is introduced which considers the nonlinear factors such as the limit of servomotor speed, the limit of servomotor displacement and the restraining measures for the limit of servomotor displacement. Decay rate of 5% rated load disturbance is 2.52%, the decay rate of 10% rated load disturbance is 8.84%, and in the 15% rated load disturbance process occurs divergent oscillation through the simulation. Those results reproduce the phenomena that with the load disturbance amplitude increasing, the system stability decreases. A step response of regulator is researched and the results show the PID (proportional, integral, derivative) regulator speed saturation is the main cause of this problem mainly reflected in the proportion and integral parts. That is the proportional output change rate is greater than the maximum of servomotor speed and the integral output is overmuch. Based on the results, an improved PID method is proposed which limits the rate of proportional output value, stops the integral change when proportional output is limited, and the differential output does not change considering the advance correction action of differential part. The step response results of improved PID regulator show the speed saturation is restrained. The decay rate of 5% rated load disturbance is 2.52%, the decay rate of 10% rated load disturbance is 2.19%, and the decay rate of 15% rated load disturbance is 1.79% by using the improved regulator. The simulation results show the improved regulator can effectively restrain the speed saturation of the regulator for ensuring the excellent regulation quality. Finally, an engineering example of load disturbance processing of Duobu power station is simulated. The system frequency divergent oscillation appears in 25% rated load disturbance process in isolated power grid by using original speed governor, but the decay rate of 25% rated load disturbance is 4.76% and the regulation quality is satisfactory by using improved governor. The conclusions obtained are as follows: 1) The main cause of the problem that with the load disturbance amplitude increasing, the system stability rapidly decreases and even the frequency divergent oscillation occurs in the process is regulator speed saturation, mainly reflected in the proportional and integral speed saturation. 2) The improved PID regulator can restrain the speed saturation, ensure the advance correction action of regulator and the high stability is proved by using simulation and engineering examples in the small capacity grid systems and the isolated grid systems. The method proposed in this paper improves the control algorithm of the hydraulic turbine regulator, and has important practical value in engineering application.
Computer simulation; turbines; stability; regulating system for hydraulic turbines; isolated grid; PID; speed saturation
10.11975/j.issn.1002-6819.2017.21.011
TK73
A
1002-6819(2017)-21-0092-07
2017-05-26
2017-10-19
国家自然科学基金资助项目(51679196);国家自然科学基金资助项目(51479166);国家自然科学基金资助项目(51339005)
门闯社,博士生,主要从事水力机械过渡过程及控制研究。Email:menchuangshe@126.com