APP下载

AMPK调控能量代谢研究进展

2017-10-16满玉蓉高柳玲

生物学杂志 2017年5期
关键词:亚基瘦素磷酸化

陈 标, 满玉蓉, 高柳玲, 潘 庆

(华南农业大学 海洋学院, 广州 510642)

AMPK调控能量代谢研究进展

陈 标, 满玉蓉, 高柳玲, 潘 庆

(华南农业大学 海洋学院, 广州 510642)

腺苷酸激活蛋白激酶(AMP-activated protein kinase, AMPK)作为重要的能量代谢激酶,广泛存在于真核生物,在能量代谢调控中起重要作用。肝脏激酶B1(Liver kinase B1, LKB1)和钙调素依赖蛋白激酶(Calmodulin-dependent protein kinases β,CaMKKβ)可激活AMPK。激活的AMPK通过对脂肪、蛋白质和糖类代谢的调控维持体内能量平衡。另外,AMPK调控因子激活剂与抑制剂、细胞因子可通过上调或下调AMPK表达,调控能量物质代谢。

AMPK; 能量代谢; 激活剂与抑制剂; 细胞因子

AbstractAMP-activated protein kinase (AMPK) is widely existed in eukaryotes and has vital function in energy metabolism. AMPK could be activated by Liver kinase B1 (LKB1) and calmodulin-dependent protein kinases β (CaMKKβ), and it regulates the metabolism of fat, protein and glucose to balance the energy metabolism. Moreover, activator, inhibitor and cytokines regulate energy metabolism through up-regulation or down-regulation of AMPK expression.

KeywordsAMPK; energy metabolism; activator and inhibitor; cytokines

AMPK是一种重要的细胞能量传感器,能维持细胞能量平衡,在调节能量代谢中起重要作用[1]。它主要通过对能量物质氧化、合成及转录关键酶活性调控,实现对能量物质代谢调控[2-3]。目前,有关AMPK调控能量代谢机制尚未完全清楚[1],在水产经济动物能量代谢调控方面研究更少,因此,有必要进一步深入研究AMPK调控鱼类能量代谢相关机制,为深入理解能量物质吸收利用以及饲料配方优化等方面提供理论基础。本文对AMPK调控能量代谢相关机制及研究现状进行综述。

1 AMPK分子结构与组织分布

AMPK是由α、β、γ亚基组成的异源三聚体,α为催化亚基,β、γ为调节亚基[4],每个亚基由不同基因型组成(α1、α2;β1、β2;γ1、γ2、γ3),不同亚基之间12种组合构成复杂的复合体[5]。其中,α亚基分为两个功能区:N端为催化核心区,C端为β、γ亚基结合区;β亚基包含两个保守区:糖原结合区与α、γ亚基结合区域;γ亚基包含4个串行重复CBS区域,该区域与AMPK和AMP连接有关[6]。AMPK各亚基组织分布不同,其中α亚基主要分布于肝脏、肾脏、脑、心脏、骨骼肌;β亚基主要分布于肝脏和骨骼肌;γ亚基在大多数组织中均有表达[7]。

2 AMPK激活调节

1978年证实AMPK上游激酶存在[8],而直到近些年才发现LKB1和CaMKKβ可以磷酸化Thr-172,进而激活细胞中AMPK活性[9-12]。LKB1主要分布于肝脏和肌肉等外周组织,CaMKKβ主要分布于中枢神经系统[13]。研究表明,体外培养细胞和体内骨骼肌细胞中AMPK都需要LKB1激活[10],且LKB1活性表达需要AMP与AMPK结合[14]。CaMKKβ活性表达主要依赖于细胞内钙离子浓度变化,进而调控Thr-172磷酸化[15]。LKB1和CaMKKβ调控AMPK活性途径如图1。

图1 AMPK蛋白激酶信号通路代谢调控[16]

3 AMPK调控能量代谢

AMPK为细胞能量代谢中枢,主要通过调控脂肪、蛋白质与糖合成与转化,维持细胞内能量代谢平衡[17-19],在细胞能量代谢过程起重要作用,具体调控途径如图2。

图2 AMPK蛋白激酶调控能量代谢[4]

3.1 AMPK调控脂肪代谢

AMPK对细胞脂肪代谢起着重要的作用,并且受营养物质及细胞因子等因素的影响[20]。AMPK对脂肪代谢调控,主要通过调节脂代谢转录因子,实现脂肪氧化、合成及转录关键酶基因表达调控,其转录因子主要为过氧化物酶体增殖物激活受体(Phosphatidy inositol 3-kinase, PPAR)、固醇调节元件结合蛋白(Sterol regulatory element binding protein 1c, SREBP-1c)和碳水化合物反应元件结合蛋白(Carbohydate responsive element-binding protein, ChREBP)[2-3]。侯祥红通过添加不同浓度共轭亚麻酸(Conjugated linoleic acid, CLA)于体外培养人体肝癌细胞HepG2,结果显示随着CLA浓度升高,AMPKα磷酸化逐渐下降,同时乙酰辅酶A羧化酶(Acetyl-CoA carboxylase, ACC)表达水平升高,增加了HepG2细胞的脂质沉积[21]。王瑾通过棕榈酸钠和大麻素Ⅰ型受体抑制剂ZH-101-S处理Hep-2细胞,发现磷酸化的AMPK,可以增强线粒体氧化作用,发挥减脂作用[22]。李心慰通过研究非酯化脂肪酸(Non-esterified fatty acids, NEFAs)调控奶牛肝细胞脂肪代谢AMPK代谢信号机制,表明NEFAs可以上调LKB1,促进AMPKα磷酸化与PPARα表达及转录活性,上调脂氧化基因表达[13]。同时,激活的AMPKα抑制SREBP-1c和ChREBP的表达和转录活性,下调脂合成基因的表达。另外,Park等发现亚麻酸可以激活小鼠肝脏中AMPK活性,抑制SREBP-1c表达,减少脂肪沉淀[23]。

3.2 AMPK 调控蛋白质代谢

激活的AMPK可以促进蛋白质分解,维持机体内能量的平衡。激活的AMPK主要通过调控因子真核延长因子2激酶(EEF2K)调节真核延长因子-2(eEF-2)、结节性硬化复合体2(TSC2)、哺乳动物雷帕霉素靶目标(mTOR),调控蛋白质合成与代谢[18]。马延超发现AMPK活化后,可以降低大鼠丝氨酸/苏氨酸蛋白激酶(AKT)磷酸化,活化Akt-FoxO信号通路,调控mafbx、murf1 表达,促进骨骼肌蛋白质降解[24]。Garcia-pereto研究显示热量限制作用可以激活AMPK-PI3K-AKT-eNOS通路[25]。Librán-Pérez等通过分析摄食不同脂肪水平饲料的虹鳟,首次证明虹鳟鱼下丘脑存在AMPK,mTOR及AKT调控蛋白,并发现投喂高脂饲料的虹鳟鱼饥饿3 h,AMPK磷酸化水平降低而mTOR磷酸化水平上升,AMPK与mTOR之间存在负调控关系[26]。此外,Zhou等也表明Ciclopirox olamine (CPX)可以通过激活AMPK,抑制mTORC1信号通路[27]。

3.3 AMPK调控糖代谢

AMPK对糖代谢调控主要通过促进葡萄糖摄取及降低血糖作用,维持体内能量物质平衡。研究表明,激活的AMPK参与调控肝脏糖异生作用,抑制肝脏中G6Pase启动子活性与葡萄糖产生[28]。另外,激活的AMPK可以抑制肝细胞中磷酸丙酮酸羧化酶(phosphoenolpyruvate carboxykinase, PEPCK)调控糖异生途径[19]。邹丰发现黄氏多糖(APS)在体外可活化小鼠骨骼肌细胞系C2C12的AMPK,并主要通过AMPK途径增加其葡萄糖摄取,同时APS也能增加小鼠骨骼肌细胞系C2C12细胞高糖状态下的AMPK活性,提高细胞的葡萄糖摄取[29]。Jin等发现黄酮苷提取物可以刺激AMPK和ACC通路磷酸化,并提高IR-HepG2细胞对葡萄糖的消耗[30]。张夏南研究表明荸荠提取物能够显著激活AMPK蛋白磷酸化、抑制小鼠肝脏pgc-1α和pepck表达,促进葡萄糖代谢[31]。另外,Magnoni首次在鱼类骨骼肌中发现,AMPK可以潜在刺激糖类吸收与利用[32]。

4 AMPK调控因子的作用

AMPK对能量代谢调控主要是通过调控能量物质合成与氧化分解,维持细胞内能量代谢平衡。目前,关于AMPK调控因子的研究主要集中于激活剂与抑制剂、细胞因子等对AMPK活性调控。

4.1 激活剂与抑制剂的作用

廖波通过研究激活剂5-氨基-4-咪哇梭基酞氨核普(5-aminoimidazole-4-carboxamide ribonucleoside, AICAR)和抑制剂8-溴-腺甘一磷酸(Br8-AMP)对猪肝细胞中AMPK活性影响,发现猪肝细胞在AICAR作用30和60 min后,AMPK活性分别升高8.11%和46.20%,而猪肝细胞在Br8-AMP作用30和60 min后AMPK活性分别降低9.13%和22.39%[33]。Jung等发现添加AICAR和二甲双胍后能提高人肝癌细胞和小鼠原代肝细胞SREBP-1活性[34]。冯学敏研究了氟西汀对小鼠肝脏和肝脏原代细胞脂肪代谢影响,结果表明氟西汀可以引起AMPK表达下调[35]。宋科标发现罗汉果苷元具有较好的激活AMPKa的药理活性作用[36]。Deng等通过研究AMPK抑制剂对牛肝细胞脂代谢影响,发现添加AMPK抑制剂能降低ppara、chrebp表达,抑制脂肪合成[37]。

有关激活剂与抑制剂在鱼类AMPK调控能量代谢的研究较少。Lau 等通过在培养基中添加激活剂AICAR,发现AICAR能够显著提高金鱼肝细胞中AMPKα磷酸化及活性[38]。另外,培养基中添加AICAR能增加斑马鱼囊胚细胞中AMPKα磷酸化水平并降低mTOR转录表达水平[39]。

4.2 细胞因子应用

有关细胞因子调控AMPK活性的研究,主要通过瘦素、脂联素、胰岛素、生长素等激素,在整体水平上对能量平衡进行调节[11, 40],但这些激素或细胞因子调节AMPK具体分子机制尚未清楚[1]。

瘦素主要在动物脂肪组织中产生[41],瘦素含量和体脂肪与饥饿状态有一定关系[42]。目前,关于瘦素对AMPK的调控已在不同种类硬骨鱼中进行研究,如大马哈鱼[43]、虹鳟鱼[44]、条纹黑鲈[44]。Minokoshi研究表明,瘦素可以促进AMPK磷酸化,抑制acc表达,刺激脂肪氧化[45]。宋玉峰等通过研究瘦素对黄颡鱼肝脏脂肪代谢影响,表明瘦素可以降低肝脏组织脂肪含量并下调脂肪合成相关酶活性及转录因子表达[46]。Song等发现腹腔注射瘦素能够显著降低黄颡鱼肝脏脂肪含量,同时,瘦素可以降低黄颡鱼肝细胞中TG浓度,提高pparγ、cpt-1表达量,减少肝细胞脂肪沉积[47]。

脂联素具有调节代谢作用,能促进游离脂肪酸的氧化,降低血液中甘油三酯浓度,进而调控能量平衡[48]。Yoon等研究发现脂联素可以激活小鼠肌肉细胞中AMPK及PPAR活性,同时促进aco、cpt1和fabp3表达量,提高肌肉细胞中脂肪氧化水平[49]。Gan等指出脂联素可以通过激活AMPK/ACC2通路抑制鸡脂肪细胞的脂肪合成[50]。Chen 等在细胞水平研究脂联素对脂代谢影响,发现脂联素能够上调奶牛肝细胞AMPK磷酸化及SREBP-1c, ChREBP表达水平,促进脂肪氧化与脂肪累积[51]。Awazawa等发现脂联素可以通过AdipoR1/LKB1/AMPK通路抑制SREBP1c表达,调控肝细胞脂肪合成[52]。有关脂联素在鱼类能量代谢通路的研究较少,Sanchez-aurmaches等研究结果显示,脂联素可以激活虹鳟鱼AKT通路,影响脂肪酸摄取与氧化,同时也发现在不同生理条件下脂联素表现出不同调控作用[53]。

胰岛素是体内唯一的降低血糖激素,同时可以促进糖、脂、蛋白质合成。丁红研通过研究胰岛素对牛肝细胞脂代谢的影响,结果表明肝细胞经过胰岛素处理,AMPK磷酸化水平降低,SREBP-1c 和ChREBP转录活性及表达水平增加,同时上调脂肪合成相关基因表达,促进脂肪合成[54]。Zheng等通过在黄颡鱼腹腔分别注射浓度为0.1和1 μg/g胰岛素,发现不同梯度组黄颡鱼肝脏中PPARα1表达量差异显著,在黄颡鱼肝细胞培养基中添加浓度为100和1000 nmol/L胰岛素,发现添加胰岛素实验组pparα1表达量显著低于对照组[55]。

5 结语

AMPK广泛存在于真核细胞中,在能量代谢调控中起重要作用。通过AMPK分子结构、上下游靶基因、活性调节方面研究的开展,对AMPK功能及代谢调控机理已有初步认知。然而,目前有关AMPK调控脂肪代谢研究尚存在一些亟须解决问题:1)有关AMPK调控脂肪能量代谢研究主要集中于相关转录因子活性及表达,今后应结合分子生物学、生物化学等多种技术手段在细胞与整体水平上深入研究相关代谢调控机理。 2)AMPK调控脂肪代谢在水产经济动物中研究较少,应加大水产经济动物AMPK调控脂肪代谢相关研究,推进水产经济动物脂肪代谢调控机理认知,将为水产经济动物饲料配方优化及肉质调控提供理论依据。

[1]HARDIE D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function [J]. Genes & Development, 2011, 25(18): 1895-1908.

[2]LI Y, XU S, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice [J]. Cell Metabolism, 2011, 13(4): 376-388.

[3]KAWAGUCHI T, OSATOMI K, YAMASHITA H, et al. Mechanism for fatty acid "sparing" effect on glucose-induced transcription regulation of carbohydrate-responsive element-binding protein by amp-activated protein kinase [J]. Journal of Biological Chemistry, 2002, 277(6): 3829-3835.

[4]HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis [J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262.

[5]HARDIE D G. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status [J]. Endocrinology, 2003, 144(12): 5179-5183.

[6]HARDIE D G, HAWLEY S A, SCOTT J. AMP-activated protein kinase-development of the energy sensor concept [J]. The Journal of Physiology, 2006, 574(1): 7-15.

[7]DYCK J R, KUDO N, BARR A J, et al. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5-AMP activated protein kinase [J]. European Journal of Biochemistry, 1999, 262(1): 184-190.

[8]INGEBRITSEN T S, LEE H S, PARKER R A, et al. Reversible modulation of the activities of both liver microsomal hydroxymethylglutaryl coenzyme A reductase and its inactivating enzyme. Evidence for regulation by phosphorylation-dephosphorylation [J]. Biochemical and Biophysical Research Communications, 1978, 81(4): 1268-1277.

[9]HURLEY R L, ANDERSON K A, FRANZONE J M, et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases [J]. Journal of Biological Chemistry, 2005, 280(32): 29060-29066.

[10]SAKAMOTO K, ZARRINPASHNEH E, BUDAS G R, et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1 [J]. American Journal of Physiology-Endocrinology and Metabolism, 2006, 290(5): E780-E788.

[11]KAHN B B, ALQUIER T, CARLING D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism [J]. Cell Metabolism, 2005, 1(1): 15-25.

[12]LIZCANO J M, GÖRANSSON O, TOTH R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1 [J]. The EMBO journal, 2004, 23(4): 833-843.

[13]李心慰. 乙酸、非酯化脂肪酸、生长激素和催乳素调控奶牛肝细胞脂代谢的信号机制 [D].长春:吉林大学, 2013.

[14]HAWLEY S A, BOUDEAU J, REID J L, et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade [J]. Journal of Biology, 2003, 2(4): 28.

[15]HAWLEY S A, PAN D A, MUSTARD K J, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase [J]. Cell metabolism, 2005, 2(1): 9-19.

[16]LONG Y C, ZIERATH J R. AMP-activated protein kinase signaling in metabolic regulation [J]. Journal of Clinical Investigation, 2006, 116(7): 1776.

[17]HARDIE D G. The AMP-activated protein kinase pathway-new players upstream and downstream [J]. Journal of Cell Science, 2004, 117(23): 5479-5487.

[18]CHAN A Y, DYCK J R. Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis: a potential strategy to prevent the development of cardiac hypertrophy [J]. Canadian Journal of Physiology and Pharmacology, 2005, 83(1): 24-28.

[19]ANDREELLI F, FORETZ M, KNAUF C, et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin [J]. Endocrinology, 2006, 147(5): 2432-2441.

[20]TOWLER M C, HARDIE D G. AMP-activated protein kinase in metabolic control and insulin signaling [J]. Circulation Research, 2007, 100(3): 328-341.

[21]侯祥红. 共轭亚油酸对HepG2细胞脂质代谢的影响及其机制研究 [D]. 西安:第四军医大学, 2009.

[22]王 瑾. 外周大麻素Ⅰ型受体抑制剂的筛选及减肥作用机制的研究 [D]. 镇江:江苏大学, 2016.

[23]PARK K G, MIN A K, KOH E H, et al. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine mono phosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways [J]. Hepatology, 2008, 48(5): 1477-1486.

[24]马延超. 运动活化AMPK对骨骼肌蛋白质分解通路Akt-FoxO的影响 [D]. 北京:北京体育大学, 2009.

[27]ZHOU H, SHANG C, WANG M, et al. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK [J]. Biochemical Pharmacology, 2016, 116: 39-50.

[28]BERGERON R, RUSSELL R R, YOUNG L H, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats [J]. American Journal of Physiology-Endocrinology and Metabolism, 1999, 276(5 Pt 1): E938-E944.

[29]邹 丰. 黄芪多糖改善2型糖尿病糖代谢及其对AMPK活性的影响 [D]. 武汉: 武汉大学, 2010.

[30]JIN M N, SHI G R, TANG S A , et al. Flavonoids fromTetrastigmaobtectumenhancing glucose consumption in insulin-resistance HepG2 cells via activating AMPK [J]. Fitoterapia, 2013, 90: 240-246.

[31]张夏南. 杨梅果实酚类物质提取物降糖活性及相关机理研究 [D]. 杭州:浙江大学,2016.

[32]MAGNONI L J, VRASKOU Y, PALSTRA A P, et al. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells [J]. Plos One, 2012, 7(2): e31219.

[33]廖 波. 猪肝细胞的分离培养和AMPK活性调控的研究 [D]. 雅安:四川农业大学, 2003.

[34]JUNG E J, KWON S W, JUNG B H, et al. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver [J]. Journal of Lipid Research, 2011, 52(9): 1617-1625.

[35]冯学敏. 抗抑郁药氟西汀对小鼠肝脏脂质代谢影响及其机制研究 [D]. 南京:南京医科大学, 2012.

[36]宋科标. 罗汉果苷元结构修饰及其激活AMPK磷酸化的构效关系研究 [D]. 上海:华东理工大学,2016.

[37]DENG Q, LIU G, LIU L, et al. BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway [J]. Journal of Cellular Biochemistry, 2015, 116(6): 1070-1079.

[38]LAU G Y, RICHARDS J G. AMP-activated protein kinase plays a role in initiating metabolic rate suppression in goldfish hepatocytes [J]. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2011, 181(7): 927-939.

[39]BREMER K, KOCHA K M, SNIDER T, et al. Sensing and responding to energetic stress: the role of the AMPK-PGC1α-NRF1 axis in control of mitochondrial biogenesis in fish [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 199: 4-12.

[41]BARB C R, HAUSMAN G J, HOUSEKNECHT K L. Biology of leptin in the pig [J]. Domestic Animal Endocrinology, 2001, 21(4): 297-317.

[42]KOLACZYNSKI J W, CONSIDINE R V, OHANNESIAN J, et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves [J]. Diabetes, 1996, 45(11): 1511-1515.

[43]MURASHITA K, UJI S, YAMAMOTO T, et al. Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchusmykiss) [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 150(4): 377-384.

[44]RØNNESTAD I, NILSEN T O, MURASHITA K, et al. Leptin and leptin receptor genes in Atlantic salmon: cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status [J]. General and Comparative Endocrinology, 2010, 168(1): 55-70.

[45]MINOKOSHI Y, KIM Y B, PERONI O D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature, 2002, 415(6869): 339-343.

[46]宋玉峰, 吴 坤, 罗 智, 等. 瘦素对黄颡鱼肝脏脂肪代谢的影响. [C].长沙:2014年中国水产学会学术年会摘要集, 2014: 150.

[47]SONG Y F, WU K, TAN X Y, et al. Effects of recombinant human leptin administration on hepatic lipid metabolism in yellow catfishPelteobagrusfulvidraco: in vivo and in vitro studies [J]. General and Comparative Endocrinology, 2015, 212:92-99.

[48]TOMAS E, TSAO T S, SAHA A K, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation [J]. Proceedings of the National Academy of Sciences, 2002, 99(25): 16309-16313.

[49]YOON M J, LEE G Y, CHUNG J J, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha [J]. Diabetes, 2006, 55(9): 2562-2570.

[50]GAN L, YAN J, LIU Z J, et al. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte [J]. Journal of Cellular Biochemistry, 2015, 116(6): 1090-1100.

[51]CHEN H, ZHANG L, LI X W, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes [J]. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138:445-454.

[52]AWAZAWA M, UEKI K, INABE K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway [J]. Biochemical and Biophysical Research Communications, 2009, 382(1): 51-56.

[54]丁红研. 胰岛素、胰高血糖素通过AMPK信号通路调控犊牛肝细胞脂代谢的机制 [D]. 长春:吉林大学, 2014.

[55]ZHENG J L, ZHUO M Q, LUO Z, et al. Peroxisome proliferator-activated receptor alpha1 in yellow catfishPelteobagrusfulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 183:58-66.

The progress of AMPK in energy metabolism

CHEN Biao, MAN Yu-rong, GAO Liu-ling, PAN Qing

(College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China)

Q555

A

2095-1736(2017)05-0078-05

2016-09-22;

2016-10-13

广东省科技厅研发与产业化项目(2013B090500028); 广州市科技计划项目(2014YZ-00208)

陈 标,博士研究生,主要研究方向为水产经济动物营养与饲料,E-mail: chenbiao11@mails.ucas.ac.cn

潘 庆,教授,博士研究生导师,主要研究方向为水产经济动物营养与饲料,E-mail: qpan@scau.edu.cn

doi∶10.3969/j.issn.2095-1736.2017.05.078

猜你喜欢

亚基瘦素磷酸化
瘦素抵抗与糖尿病相关研究进展
瘦素及瘦素受体基因多态性与冠状动脉慢血流现象的相关性
心脏钠通道β2亚基转运和功能分析
ITSN1蛋白磷酸化的研究进展
Nav1.5与β亚基互作:结构、功能和相关疾病
磷酸化肽富集新方法研究进展
哮喘患儿外周血单个核细胞瘦素及Foxp3的表达
瘦素与血栓栓塞性疾病的相关性研究进展
MAPK抑制因子对HSC中Smad2/3磷酸化及Smad4核转位的影响
组蛋白磷酸化修饰与精子发生