APP下载

三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征

2017-09-25张国伟汤达祯徐银波

煤炭学报 2017年8期
关键词:芦草油页岩泥岩

张国伟,陶 树,汤达祯,徐银波,崔 义,王 琼

(1.中国地质大学(北京) 能源学院,北京 100083; 2.中国地质大学(北京) 煤层气国家工程中心煤储层实验室,北京 100083; 3.中国地质调查局油气资源调查中心,北京 100029; 4.中国华能集团,北京 100031)

三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征

张国伟1,2,陶 树1,2,汤达祯1,2,徐银波3,崔 义4,王 琼1,2

(1.中国地质大学(北京) 能源学院,北京 100083; 2.中国地质大学(北京) 煤层气国家工程中心煤储层实验室,北京 100083; 3.中国地质调查局油气资源调查中心,北京 100029; 4.中国华能集团,北京 100031)

三塘湖盆地二叠系芦草沟组油页岩发育于石头梅凸起附近,位于三塘湖盆地西南缘。通过电感耦合等离子体质谱仪(ICP-MS)对油页岩中微量元素和稀土元素地球化学特征进行研究。研究表明:和中国煤相比研究区油页岩中比较富集V,Cr,Ni,Cu,Ge,As,Se,Rb,Sr,Mo,Cd,Sb,有毒元素、致癌元素Cd,Ni,As,Cd等含量明显高于地壳和中国煤中平均含量;REE富集情况低于北美页岩水平,稀土元素分布模式表明LREE明显富集,HREE相对亏损,Eu随深度正负异常变化频繁。δCe,δEu,Sr/Ca,Sr/Ba,V/(V+Ni)及V/Cr的值总体上反映出该区油页岩形成于贫氧-缺氧,水体盐度咸水-淡水的较深水环境

油页岩;微量元素;稀土元素;芦草沟组;三塘湖盆地

随着常规石油资源的快速消耗,油页岩作为一种重要的替代能源以其广泛的分布、巨大的储量、多层次的利用价值引起了全世界的关注[1]。我国油页岩资源较丰富(探明资源量315×108t,预测资源量4 520×108t,其中所含页岩油资源量476×108t),分布范围广,分布在20个省和自治区、47个盆地,共有80个含矿区[2-4]。我国油页岩多形成于湖泊相,如三叠纪桦甸油页岩和抚顺油页岩,白垩纪松辽油页岩,以及济阳凹陷和鄂尔多斯盆地油页岩。另外,西藏羌塘地区胜利河和长蛇山矿区海相油页岩资源也极为可观[5-11]。

因微量元素和稀土元素具有稳定的地球化学特征和潜在的经济价值,引起广泛的关注。我国煤、页岩及油页岩中伴生的大量的微量、稀土元素,不仅具有极大的综合利用潜力,而且蕴含有大量的地质信息,其在分析油页岩成因、演化、盆地构造背景和沉积环境等方面有广泛的应用[12-17]。微量元素及稀土元素的富集主要取决于“源”的供给,元素运移、富集的物理化学属性,是多种地质作用和元素本身性质共同作用的结果,后生作用可改变其富集和配分模式:主要以独立矿物、磷酸盐矿物、吸附于黏土矿物及与有机质结合等和其他矿物相伴生。

笔者选取三塘湖盆地二叠系芦草沟组油页岩为研究对象,研究其中微量元素和稀土元素的富集特征及配分模式,建立油页岩的成矿条件和微量元素、稀土元素之间的关系,从微观层面剖析油页岩成矿的外部因素,以期解决油页岩成矿的沉积环境特征及物源信息,为研究区油页岩的综合开发利用提供参考。

1 地质背景

三塘湖盆地位于准噶尔盆地的东北缘,处于西伯利亚板块和准噶尔板块碰撞接合部,是准噶尔周缘增生造山带的一部分,是叠合在古生代褶皱基底之上的晚古生代—中新生代叠合改造型陆内沉积盆地[18]。早中二叠世,三塘湖盆地陆内伸展演化,普遍发育火山岩;中二叠世早期发育一套三角洲相、河流相及湖泊相沉积,沉积岩中广泛分布有凝灰岩,中二叠世中期芦草沟组发育滨浅湖—半深湖沉积,岩性以页岩、暗色泥岩、泥灰岩、泥质白云岩为主;中二叠世晚期条湖组火山活动活跃,条湖组与下伏的芦草沟组整合接触,条湖组地层岩性以火山岩为主(玄武岩,粗面岩,玄武安山岩,安山岩等),同时出现粗砂岩,粉砂质泥岩等正常沉积岩夹层[19-22]。

三塘湖盆地油页岩出露于石头梅剖面、跃进沟剖面(图1(a))。底部是一套暗色凝灰质泥岩和白云岩、灰岩互层,页理化明显;中部发育暗色泥岩、油页岩和灰白色白云岩;顶部为一套暗色凝灰质泥岩。芦草沟组暗色泥岩中可见大量介形类化石及孢粉化石,其有机质含量较高,是三塘湖盆地极为重要的烃源岩。

据三塘湖盆地样品总有机碳含量测试结果(表1),样品TOC含量分布在0.59%~12.40%,平均4.82%,对含油率大于3.5%的油页岩样品进行统计,油页岩样品TOC含量平均值在9.16%左右,生烃潜量(S1+S2)平均值在68.37 mg/g,基本上达到了中质油页岩品质标准。

2 样品的采集和测试方法

对三塘湖YY1井(图1)二叠系芦草沟组自下而上分层采集了26个样品,自上而下编号为YY1~YY26。样品采集后立即储存在塑料袋中以防止污染和氧化。随后对样品破碎、缩分,粉碎至200目进行微量元素和稀土元素分析。将定容后的样品在X series II电感耦合等离子体质谱仪(ICP-MS)上进行微量元素和稀土元素检测,测试过程和方法参照RYU等(2011)[23]。

3 结果和讨论

3.1 微量元素的地球化学特征

对比中国上陆壳中各种微量元素的平均含量(克拉克值),采用富集系数来刻画油页岩中微量元素富集和分散的程度。三塘湖盆地二叠纪芦草沟油页岩中微量元素V,Cr,Ni,Cu,Ge,As,Se,Rb,Sr,Mo,Cd,Sb平均含量稍高于地壳均值(表2),其余元素含量均值小于或接近于中国上陆壳丰度。根据GLUSKTOR提出的微量元素含量高于地壳克拉克值6倍以上为富集的原则,三塘湖二叠系芦草沟组油页岩中有元素As,Se,Cd,Sb富集,且Se富集系数EF为24.55,但仍低于全国煤中Se的算术均值富集系数467.04[24]。与中国煤、世界煤中微量元素均值相比[15],三塘湖油页岩中Li,V,Cr,Co,Ni,Cu,Zn,Ga,As,Rb,Sr,Zr,Mo,Cd,Sb,Cs,Ba等元素含量较高。其中有毒元素Be,Cd,Pb,Tl,致癌元素As,Be,Cd,Cr,Ni和Pb,含量从剖面上看,Be,Pb,Cd在上部和下部含量较高,而在剖面中部Tl,Cr,As,Ni含量较高(图2),其中Cd,Ni,As,Cd等有毒、致癌元素含量均高于地壳丰度、我国煤和世界煤的平均含量。从整体上看,三塘湖油页岩二叠系芦草沟油页岩中微量元素总体水平较高。因此,在对油页岩的后续的开发利用中,要注意有毒、有害微量元素对人体和环境造成的危害。

图1 三塘湖地区地质图及采样钻孔剖面Fig.1 Geological map and location lithological profile of borehole in Santanghu area (a)三塘湖盆地构造区划及井位分布图;(b)研究区地质图;(c)巴油页-1井(YY-1)钻井综合柱状图

样品编号岩性Tar/%TOC含量/%S1/(mg·g-1)S2/(mg·g-1)S3/(mg·g-1)(S1+S2)/(mg·g-1)YY1-1泥岩09860502620660232092YY1-2泥岩—187021122061143YY1-3油页岩—47501817200181738YY1-4泥岩39082003453650245399YY1-5泥岩—324122358028480YY1-6油页岩36773107946250454704YY1-7泥岩27747410025560482656YY1-8油页岩35461708442580264342YY1-9油页岩820124018092610449441YY1-10油页岩60694435169691187320YY1-11泥岩09883118713370411524YY1-12泥岩—406031185035216YY1-26泥岩15639613823450502483YY1-13油页岩51789809772380427335YY1-14泥岩23950905336760453729YY1-25油页岩503116007592420459317YY1-16泥岩—224038744047782

续 表

表2三塘湖地区油页岩中微量元素测试结果(样品数22个)
Table2ConcentrationsoftraceelementsinoilshalefromLucaogouFormationinSantanghuminearea(samplenumberis22)

测试项目最小值/(μg·g-1)最大值/(μg·g-1)均值/(μg·g-1)中国上陆壳均值/(μg·g-1)中国煤中均值/(μg·g-1)世界煤中均值/(μg·g-1)富集系数Li1272283405947620031801200096Be014197071550211160013B142229142000————Sc1991786761830438390092V4856183409214630035102500146Cr171450533116250015401600125Mn2060014750058840————Co34720748532400708510036Ni88693112655130013701300204Cu133061833419320017501600107Zn215181164962510041402300097Ga44118539931800655580055Ge090297174140278220125As88826871514250379830606Se0534021670072471302455Rb2863863550229249251400544Sr18600267400116407210001400011000550Zr45002045094401900089503600050Nb2599655604900944370011Mo0602012848160308220530Ag022036032————Cd003100039005025022793Sn034187089590211100015Sb1567862860190840921504Cs0004041401700113100008Ba186705340036061660001590015000050Hf150521294430371120068Ta025079043310062028014W021368092340108110027Tl005057025088047063029Pb286144376719001510780040Bi036057046027079097172Th0907983432500584330014U006460155810243240019

注:富集系数EF=样品中的平均含量/地壳中的平均含量。

图2 三塘湖地区油页岩中微量元素(Be,Pb,Cd,Tl,Cr,As和Ni)剖面变化曲线Fig.2 Content variations of trace elements (Be,Pb,Cd,Tl,Cr,As and Ni) along the oil shale seam profile

3.2 微量元素的地质意义

油页岩中微量元素含量受多种因素和多期作用控制,往往是多因素叠加的结果。三塘湖地区距陆源区近、陆源碎屑搬运距离短,且该区岩浆活动频繁,油页岩中有害微量元素的富集不仅和母岩性质有关而且也和岩浆热液的性质有关[21-22]。

微量元素具有稳定的化学性质,对环境变化敏感且记录和保存有丰富的地质信息,常将其作为地球化学的指示剂和指纹,来研究油页岩的沉积环境、保存条件、成矿作用和模式。笔者采用Sr/Cu,Sr/Ba,V/(V+Ni),V/Cr等比值来研究三塘湖盆地二叠系芦草沟组油页岩形成时期沉积环境和保存条件的演化[26-30]。

巴油页1井样品中Sr/Cu比值在3.0~128.5,平均47.5,Sr/Cu比值有从底部向上逐渐减小的趋势,和油页岩(泥页岩)层的发育厚度有很好的相关性(图3),芦草沟组二段沉积期是温湿的气候条件。Sr/Ba比值在0.42~8.15,平均3.77,在钻井剖面上反映水体盐度有明显的变化,芦草沟组二段沉积时期水体环境为盐湖环境向淡水变化,油页岩发育层段水体为微咸水环境,且变化趋势跟沉积气候变化相一致(图3)。V/(V+Ni)比值在0.52~0.91,指示芦草沟油页岩沉积于厌氧环境,仅有1处样品反应弱氧化环境;V/Cr比值在1.86~4.95,指示沉积水体为贫氧-缺氧的环境,仅个别泥岩样品沉积于富氧水体(图3),且为浅灰色泥岩,有机质含量较低。

3.3 稀土元素地球化学特征

化学元素Y与镧系元素有相似之处,常将其和稀土元素一起讨论。稀土元素包括轻稀土元素、中稀土和重稀土元素。轻稀土元素总量用LREE表示,指从La—Nd各稀土元素的含量总和。中稀土总量用MREE表示,指从Sm—Ho各稀土元素的含量总和。重稀土元素总量用HREE表示,指从Er—Lu各稀土元素的含量总和。三塘湖芦草沟油页岩中的稀土总量(ΣREE)79.84~495.49 μg/g,平均为135.13 μg/g(表3),大部分样品的∑REE值低于北美页岩的平均值(173.21 μg/g)、中国煤(162.51 μg/g)、世界黑色页岩(134.19 μg/g)和大陆壳(150.68 μg/g),高于美国煤中的∑REE(53.59 μg/g)和海相油页岩(西藏长蛇山油页岩ΣREE=68.19 μg/g)[31-32]。

图3 三塘湖地区巴油页1井芦草沟组岩古气候和环境指数Fig.3 Vertical-variability map of paleoclimate and water salinity of the Lucaogou Formation

续 表

注:cc为大陆壳平均含量;Shale为世界黑色页岩平均含量。

轻、重稀土元素含量的比值(∑LREE/∑HREE)在一定程度上反映所分析样品的轻、重稀土元素的分异程度。陆源物质搬运过程中,轻稀土元素易被细粒沉积物吸附,越靠近物源区轻稀土元素越相对富集。研究区二叠系芦草沟油页岩中∑LREE为66.00~355.34 μg/g,∑HREE为13.84~140.15 μg/g,∑LREE/∑HREE值为2.54~5.02,低于NASC(7.43;Haskin 等,1968)和大陆壳(7.72;TAYLOR,1964)。该区二叠系芦草沟油页岩具有轻稀土元素相对富集的配分型式。

北美页岩标准化稀土元素配分模式中除YY-2样品,其余油页岩样品中稀土元素的组成均低于北美页岩(图4)。两种标准化稀土元素的配分模式中,YY-2号样品相比于其他样品均表现出明显的富集。δCe反映稀土元素Ce异常价态变化。一般δCe>1.05为正异常,δCe<0.95为负异常。实测泥页岩样品的δCe介于0.76~2.07,平均值为1.50,多数表现为正异常(图5,表4)。δEu指稀土元素Eu异常价态变化情况。陆源物质一般继承Ce的亏损。δEu>1.05为正异常,δEu<0.95为负异常。实测泥页岩样品的δEu介于0.77~1.27(表4),既有正异常又有负异常(图5),主要反映了沉积水体深度变化频繁,致使水体的氧化还原环境发生变化。

图4 三塘湖地区油页岩样北美页岩标准化稀土 元素配分模式Fig.4 NASC-normalized REE patterns of Santanghu oil shales

图5 研究区油页岩样品Ce和Eu异常情况Fig.5 Plot of Ce and Eu anomaly in Santanghu

δCe反映稀土元素Ce异常价态变化。一般δCe>1.05为正异常,δCe<0.95为负异常。实测泥页岩样品的δCe介于0.76~2.07,平均值为1.50,多数表现为正异常(图5,表4)。δEu指稀土元素Eu异常价态变化情况。陆源物质一般继承Ce的亏损。δEu>1.05为正异常,δEu<0.95为负异常。实测泥页岩样品的δEu介于0.77~1.27(表4),既有正异常又有负异常(图5),主要反映了沉积水体深度变化频繁,致使水体的氧化还原环境发生变化。

表4研究区油页岩样品稀土元素主要参数
Table4ValuesofkeyrareearthelementratiosofoilshalesinSantanghu

样号ΣREELREE/HREE(La/Yb)NδCeδEu(La/Sm)N(Gd/Yb)NYY-113115272493615310027441476YY-249549254913907607829602411YY-317524337789411408832111836YY-412783387783014010133751806YY-511641319603514010835181394YY-612949364658115409934311542YY-713632354702415509631891743YY-89917502845119011639331775YY-913400369858612409933621961YY-1012951323561115410235681332YY-1110411342701713810731741812YY-129098447707219311538501538YY-268409463897914411636132006YY-1314875300512216309532281323YY-149664404715815811138171599YY-168577468706520712140681506YY-1811276302611114108326001905YY-2010574290494115707733031291YY-197984477749219712741941673YY-2210392450929619111636642272YY-2116463390988812509045531679YY-2316036307618513008832481483

注:(La/Sm)N,(La/Yb)N中下标N代表球粒陨石标准化的值;δCe=CeN/(LaN×PrN)0.5;δEu=EuN/(SmN×GdN)0.5。

4 结 论

(1)和中国煤相比三塘湖盆地二叠系芦草沟组油页岩较富集V,Cr,Ni,Cu,Ge,As,Se,Rb,Sr,Mo,Cd,Sb,其中,有毒元素、致癌元素Cd,Ni,As,Cd等含量明显高于地壳和中国煤中平均含量。研究区二叠系芦草沟油页岩中微量元素总体水平较高。因此,要注意有毒、有害微量元素对人体和环境造成的危害。

(2)研究区二叠系芦草沟组油页岩中REE富集情况低于北美页岩水平,稀土元素分布模式表明LREE明显富集,HREE相对亏损,Eu随深度正负异常变化频繁,δCe,δEu,Sr/Ca,Sr/Ba,V/(V+Ni)及V/Cr的值含量总体上反映出该区油页岩形成于贫氧-缺氧、微咸的较深水环境。

[1] 李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009,29(5):11-16. LI Jianzhong,DONG Dazhong,CHEN Gengsheng,et al.Prospects and strategic position of shale gas resources in China[J].Natural Gas Industry,2009,29(5):11-16.

[2] 刘招君,柳蓉.中国油页岩特征及开发利用前景分析[J].地学前缘,2005,12(3):315-323. LIU Zhaojun,LIU Rong.Oil shale resource state and evaluating system[J].Earth Science Frontiers,2005,12(3):315-323.

[3] 侯祥麟.中国页岩油工业[M].北京:石油工业出版社,1984:17-20.

[4] 李景明,王红岩,赵群.中国新能源资源潜力及前景展望[J].天然气工业,2008,28(1):149-153. LI Jingming,WANG Hongyan,ZHAO Qun.Potential and prospects on new energy sources in China[J].Natural Gas Industry,2008,28(1):149-153.

[5] 刘招君,孟庆涛,柳蓉.中国陆相油页岩特征及成因类型[J].古地理学报,2009,11(1):105-114. LIU Zhaojun,MENG Qingtao,LIU Rong.Characteristic and genetic types of continental oil shales in China[J].Journal of Palaeogeography,2009,11(1):105-114.

[6] 刘传联,舒小辛.济阳坳陷下第三系湖相生油岩的微观特征[J].沉积学报,2001,19(2):293-298. LIU Chuanlian,SHU Xiaoxin.The microscopic characteristics of three lacustrine source rocks of the Jiyang depression[J].Acta Sedimentologica Sinice,2001,19(2):293-298.

[7] 刘立,王东坡.湖相油页岩的沉积环境及其层序地层学意义[J].石油实验地质,1996(3):311-316. LIU Li,WANG Dongpo.Sedimentary environment of lacustrine oil shale and its sequence stratigraphic significance[J].Petroleum Geology and Experiment,1996(3):311-316.

[8] QIAN J,WANG J,LI S.Oil shale development in China[J].Oil Shale,2003,20(3):356-359.

[9] XIUGEN F,JIAN W,WENJUN Q,et al.Re-Os(ICP-MS) dating of marine oil shale in the Qiangtang basin,northern Tibet,China.[J].Oil Shale,2008,25(1):47-55.

[10] FU X,WANG J,TAN F,et al.Sedimentological investigations of the Shengli River-Changshe Mountain oil shale(China):relationships with oil shale formation[J].Oil Shale,2009,26(3):373-381.

[11] FU X,JIAN W,ZENG Y,et al.Geochemical and palynological investigation of the Shengli River marine oil shale(China):Implications for paleoenvironment and paleoclimate[J].International Journal of Coal Geology,2009,78(3):217-224.

[12] RANTITSCH G,MELCHER F,MEISEL T,et al.Rare earth,major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps:hydrothermal versus hydrogenous origin of stratiform manganese deposits[J].Mineralogy & Petrology,2003,77:109-127.

[13] KASPER-ZUBILLAGA J J,ROSALES-HOZ L,BERNAL J P.Rare earth elements in corals from the Isla de sacrificios reef,Veracruz,Mexico[J].Chemie der Erde-Geochemistry,2010,70(1):55-60.

[14] DAI S,Li D,CHOU C L,et al.Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu Surface Mine,Jungar Coalfield,Inner Mongolia,China[J].International Journal of Coal Geology,2008,74(3):185-202.

[15] TAO S,TANG,D Z,LI J J,et al.Indexes in evaluating the grade of Bogda Mountain oil shale in China[J].Oil Shale,2010,27(2):179-189.

[16] AHMAD I,CHANDRA R.Geochemistry of loess-paleosol sediments of kashmir valley,India:Provenance and weathering[J].Journal of Asian Earth Sciences,2013,66:73-89.

[17] SAMINPANYA S,DUANGKRAYOM J,JINTASAKUL P,et al.Petrography,mineralogy and geochemistry of Cretaceous sediment samples from western Khorat Plateau,Thailand,and considerations on their provenance[J].Journal of Asian Earth Sciences,2014,83(2):13-34.

[18] 周鼎武,柳益群,邢秀娟,等.新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J].中国科学,2006,36(2):143-153. ZHOU Dingwu,LIU Yiqun,XING Xiujuan,et al.Reconstruction of palaeo-tectonic environment and regional tectonic setting of the permian basalt in the Tu-Ha santanghu basins,Xinjiang[J].Science China Press,2006,36(2):143-153.

[19] 柳益群,李红,朱玉双,等.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J].沉积学报,2010,28(5):861-867. LIU Yiqun,LI Hong,ZHU Yushuang,et al.To explore the origin of dolomite:Permian lacustrine eruptive hydrothermal dolomites,Santanghu basin,Xinjiang Province[J].Acta Sedimentologica Sinice,2010,28(5):861-867.

[20] LIU Y Q,JIAO X,LI H,et al.Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang,NW China[J].Science China Earth Sciences,2012,55(2):183-192.

[21] 焦鑫,柳益群,周鼎武,等.“白烟型”热液喷流岩研究进展[J].地球科学进展,2013,28(2):221-232. JIAO Xin,LIU Yiqun,ZHOU Dingwu,et al.Progress of research on“White Smoke Type” exhalative hydrothermal rocks[J].Advances in Earth Science,2013,28(2):221-232.

[22] 柳益群,焦鑫,李红,等.新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩[J].中国科学:地球科学,2011,41(12):1862-1871. LIU Yiqun,JIAO Xin,LI Hong,et al.Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang[J].Science China:Earth Sciences,2011,41(12):1862-1871.

[23] JONG-SIK Ryu,ANDREW D Jacobson,CHRIS Holmden,et al.The major ion,δ44/40Ca,δ44/42Ca,and δ26/24Mg geochemistry of granite weathering at pH=1 andT=25 ℃:power-law processes and the relative reactivity of minerals[J].Geochimica et Cosmochimica Acta,2011,75(20):6004-6026.

[24] DAI S,REN D,CHOU C L,et al.Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94(3):3-21.

[25] JONES B,MANNING D A C.Comparison of geochemical indices Used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111:111-129.

[26] TAO S,TANG D Z,XU H,et al.Organic geochemistry and elements distribution in Dahuangshan oil shale,southern Junggar Basin:Origin of organic matter and depositional environment[J].International Journal of Coal Geology,2013,115:41-51.

[27] COUCHEL.Calculation of palaeosalinites from boron and clay mineral data[J].AAPG Bull.,1971,55:1829-1839.

[28] HATCH J R,LEVENTHAL J S.Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.[J].Chemical Geology,1992,99:65-82.

[29] 邹建华,刘东,田和明,等.内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J].煤炭学报,2013,38(6):1012-1018. ZOU Jianhua,LIU Dong,TIAN Heming,et al.Geochemistry of trace and rare earth elements in the Late Paleozoic Coal from Adaohai Mine,Inner Mongolia[J].Journal of China Coal Society,2013,38(6):1012-1018.

[30] TAYLOR S R.Abundance of chemical elements in the continental crust:A new table[J].Geochimica et Cosmochimica Acta,1964,28(8):1273-1285.

[31] HASKIN L A,HASKIN M A,FREY F A,et al.Relative and absolute terrestrial abundances of the rare earths[J].Origin & Distribution of the Elements,1968:889-912.

[32] WANG X.Geochemistry of Late Triassic coals in the Changhe Mine,Sichuan Basin,southwestern China:Evidence for authigenic lanthanide enrichment[J].International Journal of Coal Geology,2009,80(3):167-174.

GeochemicalcharacteristicsoftraceelementsandRareearthelementsinPermianLucaogouoilshale,SantanghuBasin

ZHANG Guowei1,2,TAO Shu1,2,TANG Dazhen1,2,XU Yinbo3,CUI Yi4,WANG Qiong1,2

(1.SchoolofEnergyResources,ChinaUniversityofGeosciences(Beijing),Beijing100083,China; 2.CoalReservoirLaboratoryofNationalCBMEngineeringCenter,ChinaUniversityofGeosciences(Beijing),Beijing100083,China; 3.OilandGasSurvey,ChinaGeologicalSurvey,Beijing100029,China; 4.ChinaHuanengGroup,Beijing100031,China)

The Permian Lucaogou Formation oil shale in Santanghu Basin was developed near the Shitoumei uplift,located in the southwestern margin of the Santanghu Basin.The geochemical characteristics of trace elements and rare earth elements in the selected oil shale samples from the Santanghu area were measured by using inductively-coupled plasma mass spectrometer(ICP-MS)technique.The results show that the content of some elements,such as V,Cr,Ni,Cu,Ge,As,Se,Rb,Sr,Mo,Cd and Sb,in this studied area are higher than that in the Chinese coals,and also some toxic elements and Carcinogenic element (e.g.Cd,Ni,As,Cd) are obvious higher than that in the earth crust and the average content of the Chinese coals.The average contents of REE is lower than that in the North American Shale Composite (NASC),and the REE distribution patterns shows that the samples of the selected area has an obvious enrichment of the light rare earth elements (LREEs),than that of the heavy rare earth elements (HREEs),with Eu frequency changes with depths,reflecting a strong fractional degree among LREEs and a slight fractional degree among HREEs.On the whole,the value of δCe,δEu,Sr/Ca,Sr/Ba,V/(V+Ni) and V/Cr indicate that the oil shale in this area was developed in oxygen poor to deficit condition,and reflect that the oil shale in this area was deposited in a relative deeper-water environment with salinity water.

oil shale;trace elements;rare earth elements;Lucaogou Formation;Santanghu Basin

10.13225/j.cnki.jccs.2016.1427

P618.12

:A

:0253-9993(2017)08-2081-09

中央高校基本科研业务费专项资金资助项目(2652014008)

张国伟(1990—),男,山东菏泽人,硕士。Tel:010-82322011,E-mail:2106150039@cugb.edu.cn

张国伟,陶树,汤达祯,等.三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征[J].煤炭学报,2017,42(8):2081-2089.

ZHANG Guowei,TAO Shu,TANG Dazhen,et al.Geochemical characteristics of trace elements and Rare earth elements in Permian Lucaogou oil shale,Santanghu Basin[J].Journal of China Coal Society,2017,42(8):2081-2089.doi:10.13225/j.cnki.jccs.2016.1427

猜你喜欢

芦草油页岩泥岩
泥岩路基填料抗剪性能实验研究
准噶尔盆地吉木萨尔凹陷页岩油地球化学特征及油—源对比
基于Matlab 和Monte Carlo 方法的油页岩非均质热弹塑性损伤模型
芦草轻柔
XRF与XRD技术在膏盐岩层地质卡层及沉积环境分析中的应用研究
风化泥岩地质断层水疏排工艺探讨
对油页岩勘探现状的评价分析
芦草
柴北缘鱼卡地区中侏罗统石门沟组油页岩资源潜力
高孔低渗泥岩渗流-损伤耦合模型与数值模拟