羊膜干细胞对严重烧伤大鼠早期心肌损伤的保护作用
2017-08-26牟欢刘洋刘剑
牟欢 刘洋 刘剑
[摘要] 目的 探討羊膜干细胞(AMSCs)对严重烧伤大鼠早期心肌损害的作用及相关作用机制。 方法 采用酶消化法分离培养AMSCs,并用流式细胞仪对所分离培养细胞表面分子标志物进行检测,并进行体外诱导成脂、成骨分化鉴定。24只健康雄性SD大鼠,按照随机数字表法进行实验分组,分为单纯烧伤(burn)组、AMSCs组、假伤(sham)组。实验大鼠背部于98℃热水浴15 s,制成30%总体表面积Ⅲ度烧伤模型,伤后即刻burn组、AMSCs组大鼠分别腹腔注射0.9%氯化钠10 mL(50 mL/kg)行抗休克治疗,3 h后两组大鼠分别经尾静脉注射PBS和AMSCs;sham组仅对大鼠背部于37℃水浴15 s,模拟烧伤模型制作过程。48 h后采集三组大鼠腹主动脉血及心肌组织标本,采用ELISA法检测乳酸脱氢酶(LDH)、血清肌酸激酶(CK)的含量,RT-PCR法检测组织中凋亡相关因子(caspase-3),炎性相关因子TNF-α、IL-1β及抑炎因子IL-10 mRNA表达水平。对所得实验数据进行单因素方差分析、LSD-t检验。 结果 采用酶消化法培养的AMSCs传至第3代后检测均表达CD29、CD44、CD90、CD105,而CD34阳性率较低,可在体外向成骨成脂诱导分化。与sham组比较,burn组大鼠血清LDH、CK的含量显著增高(P < 0.05),AMSCs组CK、LDH含量与burn组相比显著降低(P < 0.05)。burn组大鼠心肌中TNF-α、caspase-3、IL-1β mRNA水平均高于sham组(P < 0.05),AMSCs组心肌组织中TNF-α、caspase-3、IL-1β mRNA水平显著低于burn组(P < 0.05)。burn组大鼠心肌组织中IL-10 mRNA表达量显著低于sham组(P < 0.05),AMSCs组大鼠心肌组织中IL-10 mRNA表达量与burn组比较显著增高(P < 0.05)。 结论 严重烧伤早期采用AMSCs治疗可显著降低心肌CK、LDH水平,减轻严重烧伤导致的心肌组织损伤,降低心肌细胞凋亡,减少炎症细胞因子IL-1β和TNF-α表达,促进抑炎细胞因子IL-10的表达水平,对严重烧伤大鼠心脏细胞损伤具有重要的保护作用。
[关键词] 烧伤;心肌损伤;羊膜干细胞;炎症因子;细胞凋亡
[中图分类号] R644 [文献标识码] A [文章编号] 1673-7210(2017)07(a)-0004-05
[Abstract] Objective To explore the effects and related mechanism of amniotic mesenchymal stem cells (AMSCs) for rats myocardial injury induced by severe burns. Methods The AMSCs were obtained by the method of collagenase-pancreatic enzyme digestion. Biological markers were assayed with flow cytometry. The activity of AMSCs was identified using adipogenic and osteoplastic differentiation. 24 healthy male SD rats were randomly divided into sham group, burn group and AMSCs group. The dorsal skin of rats in burn group and AMSCs group were exposed to 98℃ water for 15 s which led to the third degree, 30% TBSA burns, while the rats in the sham group were exposed to 37℃ water for 15 s. Rats in burn group and AMSCs group were given 0.9% 10 mL (50 mL/kg) saline intraperitoneally immediately after burns. PBS or AMSCs were injected through caudal vein 3 hours later. 48 hours later, rats were sacrificed and the myocardium and blood from aorta abdominalis were collected. The levels of creatine kinase (CK), lactic dehydrogenase (LDH) were detected by ELISA. The mRNA levels of caspase-3, TNF-α, IL-1β and IL-10 were detected by RT-PCR. The data were analyzed through AVONA and LSD-t test by SPSS. Results The positive rates of CD29, CD44, CD90, CDl05 were very high in the third generation of AMSCs, however, the positive rate of CD34 was low. AMSCs underwent osteogenic and adipogenic differentiation after induction. The levels of CK and LDH in rats of the burn group were significantly increased compared with the sham group (P < 0.05). The levels of CK and LDH in AMSCs group were significantly lower than those in the burn group (P < 0.05). The mRNA levels of caspase-3, IL-1β and TNF-α in the myocardium of the burn group were significantly increased compared with the sham group (P < 0.05). The mRNA levels of caspase-3, IL-1β and TNF-α in myocardium of the AMSCs group were significantly lower than those in the burn group (P < 0.05). The mRNA level of IL-10 in the burn group was significantly lower than that in the sham group (P < 0.05). In the AMSCs group, the expression of IL-10 mRNA was significantly higher than that in the burn group (P < 0.05). Conclusion AMSCs can protect against myocardial injury induced by severe burns. The levels of CK and LDH decreased, indicating that the injury of myocardial decreased. During which, the inflammatory factors, IL-1β and TNF-α mRNA decreased and anti-inflammatory factor IL-10 mRNA increased.
[Key words] Burns; Myocardial injury; Amniotic mesenchymal stem cells; Inflammation factor; Cell apoptosis
烧伤患者早期即存在心功能及心肌细胞的损害。大量研究表明:间充质干细胞(mesenchymal stem cells,MSCs)的免疫调节和旁分泌作用十分强大,能够明显抑制炎性反应,起到保护多脏器功能的作用[1-3]。羊膜间充质干细胞(amniotic mesenchymal stem cells,AMSCs)具有向三胚层分化的多向分化潜能[4],由于其同源性,故不引起免疫排斥反应,且致瘤性较低,并且通过分泌多种因子参与促细胞增殖,减少炎性反应,调节损伤修复[5-6]。大量研究表明,体外培养的多能干细胞可诱导心肌梗死后心肌细胞再生[7-8]。AMSCs对严重烧伤后心肌细胞损害的作用机制目前尚不清楚。因此,本研究旨在观察大鼠Ⅲ度烧伤后,经外周静脉输注AMSCs对心肌细胞损伤的影响,并探讨其可能的作用机制,进而为以后采用AMSCs治疗严重烧/创伤引起的脏器损害提供科学依据。
1 材料与方法
1.1 动物、主要仪器及试剂来源
SPF级SD雄性大鼠24只,体重(210±15)g,鼠龄8~10周,由西安交通大学医学部提供。胶原酶Ⅰ、DMEM培养基、胎牛血清、胰蛋白酶-乙二胺四乙酸、油红O、茜素红购自美国Sigma公司;青霉素、链霉素双抗购自上海碧云天生物技术有限公司;肌酸激酶(creatine kinase,CK)、乳酸脱氢酶(lactate dehydrogenase,LDH)检测试剂盒购自美国R&D公司;Trizol试剂购自美国Invitrogen公司;反转录试剂盒、SYBR Green荧光定量试剂盒购自日本TaKaRa公司。IQ5TM实时荧光定量聚合酶链式反应(polymerase chain reaction,PCR)仪购自美国Bio-Rad公司,IX71型倒置荧光显微镜购自日本Olympus公司,流式细胞仪购自美国BD公司,3-18K高速冷冻离心机购自德国Sigma公司。
1.2 人AMSCs培养鉴定
获取健康清洁级羊膜组织,产妇知情同意,经第四军医大学第一附属医院医学伦理委员会批准(编号XJYYLL-2015393)。0.125%胰蛋白酶消化4次,每次10 min,再经0.1%胶原酶90 min消化后分离、培养、纯化AMSCs,形态学观察第3代细胞,细胞表面分子标志物CD29、CD31、CD34、CD45、CD90、CD105通过流式细胞仪检测,并进行成骨成脂诱导分化鉴定。
1.3 实验分组及动物模型制备
将24只健康清洁级雄性SD大鼠,按照随机数字表法分为假伤(sham)组、单纯烧伤(burn)组、AMSCs组,每组8只实验动物。各组大鼠腹腔注射1%戊巴比妥钠溶液(40 mg/kg)麻醉后,行背部脱毛,将脱毛大鼠仰卧位固定在专用实验烧伤模具上,burn组和AMSCs组大鼠背部脱毛部分用98℃热水浴15 s,制成占体表面积30%的Ⅲ度烧伤,伤后即刻两组大鼠分别腹腔注射0.9%氯化钠10 mL(50 mL/kg)行抗休克治疗,伤后3 h burn组尾静脉注射PBS 100 μL,AMSCs组尾静脉注射AMSCs(2.5×107个/mL)100 μL。sham组大鼠背部脱毛部分37℃水浴15 s模拟烧伤过程。伤后各组大鼠均采用单笼饲养。
1.4 标本采集
分组处理48 h后,各组大鼠脱臼处死,腹主动脉采血备血清,并收集心肌组织分装冻存于-80℃冰箱。
1.5 实验检测指标
1.5.1 血清LDH、CK含量 取血清冻存标本,每组4份。ELISA法测定血清中LDH、CK含量。
1.5.2 心肌组织凋亡相关蛋白caspase-3、炎性细胞因子TNF-α、IL-1及抑炎细胞因子IL-10 mRNA表达 采用实时荧光定量RT-PCR检测。每组各取50 mg心肌组织标本,Trizol提取总RNA,定量RNA浓度,反转录cDNA。实时荧光定量PCR仪行定量分析,内参照为甘油醛-3-磷酸脱氢酶(GAPDH),扩增反应条件:95℃ 30 s,95℃ 10 s,60℃ 20 s,40个循环。计算循环阈值(Ct),采用2-ΔΔCt法进行相对基因表达分析。引物序列见表1。
1.6 统计学方法
采用SPSS 13.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。
2 结果
2.1 AMSCs的培养鉴定
AMSCs传至第3代呈圆形和短梭形,流式鉴定均表达CD29、CD44、CD90、CD105,阳性细胞率分别为95.7%、89.6%、93.4%、98.8%,而CD34阳性细胞率为2.8%。培养的AMSCs经成骨诱导培养21 d后镜下在胞质中可见大量Alizarin茜素红染色后形成的棕红色颗粒状沉淀物,见图1。
2.2 三组血清LDH、CK水平测定
三组大鼠血清LDH、CK水平差异有统计学意义(P < 0.05),其中,burn组大鼠血清CK、LDH水平高于sham组(P < 0.05),AMSCs组CK、LDH水平显著低于burn组(P < 0.05)。见表2。
2.3 三组心肌组织中TNF-α、IL-10、IL-1β、caspase-3 mRNA表达情况
三组心肌组织中TNF-α、IL-10、IL-1β、caspase-3 mRNA表達总体比较差异有统计学意义(P < 0.05)。其中,burn组大鼠心肌组织中TNF-α、IL-1β、caspase-3 mRNA表达量高于sham组(P < 0.05),AMSCs组大鼠心肌组织中TNF-α、IL-1β、caspase-3 mRNA表达量低于burn组(P < 0.05);burn组大鼠心肌组织中IL-10 mRNA表达量低于sham组(P < 0.05),AMSCS组大鼠心肌组织中IL-10 mRNA表达量显著高于burn组(P < 0.05)。见表3。
3 讨论
严重烧伤后由心肌细胞损伤导致的心功能不全直接影响患者休克期的平稳度过[9]。受损的心肌细胞能否及时恢复直接关系到心功能的恢复,与患者的生命息息相关。成人心肌细胞不可再生[10],及时有效逆转严重烧伤早期心肌细胞的持续损伤、减轻组织炎性反应,是改善心肌功能关键治疗措施之一。
AMSCs作为一种理想的种子细胞,不仅可多向分化,并表现为低免疫原性和免疫抑制作用,在调节损伤修复中具有独特优势[11]。Song等[12]研究发现,在大鼠心肌梗死模型中通过移植人AMSCs治疗,可有效恢复心肌组织损伤,进而改善心脏功能。此外,梗死心肌周围表现为VEGF、EGF、MCP-1等促进血管生成生长因子表达,证明AMSCs可能通过旁分泌效应保护心肌细胞。本实验结果表明,经尾静脉输注AMSCs可明显降低严重烧伤大鼠血清中LDH、CK的含量,从而改善心功能。
严重燒伤后心肌损伤的同时亦可见大量炎症细胞浸润。本实验检测发现burn组大鼠心肌组织中促炎因子TNF-α、IL-1β mRNA表达量较sham组明显增高,抑炎因子IL-10 mRNA表达量明显降低;与burn组相比,AMSCs组大鼠心肌组织中TNF-α、IL-1β mRNA表达量明显下降,IL-10 mRNA表达量明显增高。说明经AMSCs处理的严重烧伤大鼠心脏中IL-10表达上调,而TNF-α和IL-1β的表达被抑制。有研究表明,心肌细胞凋亡在心功能损伤中具有重要作用[13]。本实验发现烧伤后大鼠心肌组织中细胞凋亡相关蛋白caspase-3 mRNA表达水平显著增高,采用AMSCs治疗后,较burn组比较,大鼠caspase-3 mRNA表达显著降低,提示AMSCs可能通过抑制心肌细胞凋亡,发挥保护心肌细胞的作用。
此外,研究显示,AMSCs有强大的旁分泌作用,还可分泌多种炎症抑制因子,如TGF-α、IL-10、巨噬细胞迁移抑制因子(macrophage migration inhibitory factor,MIF)、防御素等,具有很好的抗炎作用[14-16]。Murphy等[17]通过腹腔注射移植AMSCs至博来霉素致肺损伤小鼠模型,能明显抑制促炎因子TNF-α、TGF-β、IFN-γ的基因表达,减少炎症细胞浸润。
综上所述,本实验中笔者观察到早期通过AMSCs处理可促进严重烧伤大鼠心肌组织内抑炎因子IL-10的表达,减少IL-1β和TNF-α等炎症因子的释放,减轻组织损伤,维护心肌功能,从而达到保护心肌细胞的目的。严重烧伤后机体处于一种多因素、错综调控局面,对于AMSCs保护脏器功能的具体分子机制仍需深入探讨。
[参考文献]
[1] Weil BR,Markel TA,Herrmann JL,et al. Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms [J]. Surgery,2009,146(2):190-197.
[2] 谢松涛,樊磊,杨龙龙,等.脂肪间充质干细胞对严重烧伤大鼠早期心肌损伤的保护作用[J].中华损伤与修复杂志电子版,2015,10(4):4-8.
[3] Méndez-Ferrer S,Michurina TV,Ferraro F,et al. Mesenchymal and haematopoietic stem cells form a uniquebone marrow niche [J]. Nature,2010,466(7308):829-834.
[4] Insausti CL,Blanquer M,Bleda P,et al. The amniotic membrane as a source of stem cells [J]. Histol Histopathol,2010, 25(1):91-98.
[5] Koh JW,Shin YJ,Oh JY,et al. The expression of TIMPs in cryo-preserved and freeze-dried amniotic membrane [J]. Curr Eye Res,2007,32(7-8):611-616.
[6] Vosdoganes P,Hodges RJ,Lim R,et al. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep [J]. Am J Obstet Gynecol,2011,205(2):15626-1533.
[7] Hu X,Xu Y,Zhong Z,et al. A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates:Paracrine Activity Without Remuscularization [J]. Circ Res,2016,118(6):970-983.
[8] Takahashi K,Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell,2006,126(4):663-676.
[9] 黄跃生.烧伤后早期心肌损害的分子机制及防治研究进展[J].中华烧伤杂志,2004,20(5):257-259.
[10] Nguyen PK,Rhee JW,Wu JC. Adult stem cell therapy and heart failure,2000 to 2016:a systematic review [J]. JAMA Cardiol,2016,1(7):831.
[11] Ge X,Wang IN,Toma I,et al. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells [J]. Stem Cells Dev,2012,21(15):2798-2808.
[12] Song YS,Joo HW,Park IH,et al. Transplanted Human Amniotic Epithelial Cells Secrete Paracrine Proangiogenic Cytokines in Rat Model of Myocardial Infarction [J]. Cell Transplant,2015,24(10):2055-2064.
[13] 张家平,黄跃生,周新,等.严重烫伤大鼠心肌细胞凋亡与心功能损害的关系[J].中华烧伤杂志,2002,18(5):272-275.
[14] Toda A,Okabe M,Yoshida T,et al. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues [J]. J Pharmacol Sci,2007,105(3):215-228.
[15] Perrini C,Strillacci MG,Bagnato A,et al. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model [J]. Stem Cell Res Ther,2016, 7(1):169.
[16] Angelini A,Castellani C,Ravara B,et al. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process [J]. J Heart Lung Transplant,2011, 30(11):1281-1293.
[17] Murphy S,Lim R,Dickinson H,et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function [J]. Cell Transplant,2011,20(6):909-923.
(收稿日期:2017-02-24 本文編辑:程 铭)