APP下载

观光温室结构楔形箱型矩管柱梁连接节点抗震性能

2017-07-07李晓润陈水荣

农业工程学报 2017年10期
关键词:箱型楔形钢梁

李晓润,宋 波,陈水荣

(1. 北京科技大学土木与资源工程学院,北京 100083;2. 中冶建筑研究总院有限公司,北京 100088)

·农业生物环境与能源工程·

观光温室结构楔形箱型矩管柱梁连接节点抗震性能

李晓润1,2,宋 波1,陈水荣2

(1. 北京科技大学土木与资源工程学院,北京 100083;2. 中冶建筑研究总院有限公司,北京 100088)

为了满足温室结构的建设需要,提出了一种楔形箱型矩管柱与H形钢梁连接节点构造型式,并对该种节点的抗震性能进行研究。利用 ANSYS对该节点进行了往复荷载作用下的有限元模拟分析,讨论了钢梁翼缘、腹板厚度及矩管柱壁厚对钢节点抗震性能的影响。结果表明,楔形箱型节点在往复荷载作用下梁端塑性铰位置向跨中偏移,保证了“强柱弱梁、强节点弱构件”设计理念的实现。累积耗能比传统的外联板式节点高出25.40%,比内隔板式节点减少20.46%,滞回曲线相对饱满,体现了良好的抗震性能。同时,梁翼缘和腹板的厚度及楔形箱形截面宽度变化率对于节点的抗震性能有较大的影响,建议实际工程中截面宽度变化率取1:4。计算结果表明该节点具有良好的抗震性能。

温室;有限元分析,模型;刚性;梁柱节点;滞回曲线;抗震性能;非线性分析

李晓润,宋 波,陈水荣. 观光温室结构楔形箱型矩管柱梁连接节点抗震性能[J]. 农业工程学报,2017,33(10):252-257.

doi:10.11975/j.issn.1002-6819.2017.10.033 http://www.tcsae.org

Li Xiaorun, Song Bo, Chen Shuirong. Seismic performance of wedge-shaped box joint of beam and box column in tourism greenhouse structures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(10): 252-257. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.033 http://www.tcsae.org

0 引 言

随着农业设施的迅速发展,温室结构也向大跨度、大开间发展。并且现有温室中常有展示功能,会在温室两侧增加夹层作为封闭的参观走道。由于需要考虑参观人员较为集中的因素,故温室夹层做法不同于常规温室结构,其截面和连接节点都比常规温室复杂,常常采用民用建筑中的传统连接节点,主要是内隔板式节点和外环板式节点。内隔板式节点内部施焊困难,制作加工不便;外环板式节点外环尺寸较大,美观性较差。

而温室结构中因载荷较小,箱型矩管柱截面长度和宽度一般会小于300 mm,此时温室结构中采用的刚接节点通常采用外环板形式,环板外露较大,导致美观性较差。

并且,在最近的几次地震中,传统的钢框架梁柱连接节点发生了大量脆性破坏,没有表现出延性性能[1]-[3]。国内外学者大量研究表明:钢框架抗震设计应以“强柱弱梁,强节点弱构件”为原则[4]。Popov和 Pinkney[11]对24个节点试件进行了 1:3的拟静力试验,试验中,钢梁连接于两端固定的短柱上,分别采用焊接和盖板连接。结果表明,梁柱节点能够承受多次循环荷载,破坏时,裂纹通常发生在焊缝附近。宋振森[12]对6个大尺寸T型强轴连接刚性节点进行了循环加载试验,结果表明,节点板强弱、梁翼缘塑性抵抗矩与全截面塑性抵抗矩的比值以及焊缝的质量对梁柱节点的性能影响较大。王新武[13]对 3个狗骨式刚性节点进行了试验,结果表明,梁上翼缘与柱连接处对接焊缝的撕裂是破坏的主要原因,节点破坏时的抗弯承载力远没有达到梁全截面塑性弯矩抵抗矩,滞回曲线稳定饱满,延性系数超过 3.0,节点转角达到0.03。然而,目前的研究主要针对民建常规节点的抗震性能,对适用于温室结构梁柱连接节点的研究还没有开展[14]。

考虑到温室行业柱截面小,加内隔板施工空间小,质量难保证。且温室柱多为热镀锌柱,基本在工厂加工完成,现场组装,很少焊接。开发一种取消内隔板、施工方便的梁柱连接节点用于温室结构是亟待解决的问题。本文提出了H型钢梁与楔形矩管柱连接节点,该节点取消了矩管柱内的隔板,减小了内隔板的焊接。并且无需在矩管柱外增加环板,因而较为美观。文中通过有限元数值模拟,对所提出的H型钢梁与楔形矩管柱连接节点的抗震性能进行研究,以期获得该节点的滞回耗能能力和应力分布,为此节点的应用提供了一定的研究基础。节点相比常规节点避免了矩管柱内横隔板的施焊制作困难,相比外环板节点简洁美观,具有较好的实用价值。

1 H型钢梁与楔形箱形矩管柱连接节点有限元分析

H型钢梁与楔形箱型矩管柱连接节点的楔形箱形部分与牛腿的作用相当。该节点的楔形箱型部分与柱的连接采用全焊缝连接,在工厂加工完成,运至现场再与梁进行拼接(见图 1)。此外,相对于外联式节点而言,即使采用截面比较小的矩管混凝土柱,也不存在外环加强板与柱之间尺寸相差过大的问题[20],便于建筑专业对建筑物的处理和对建筑内部的装饰等。

图1 楔形箱型节点构造图Fig.1 Configuration diagram of wedge box joint

1.1 模型的建立

大型公共温室屋面跨度多在15 m左右,常设夹层作为参观平台,夹层载荷相比屋面较大,因此有必要对用于温室夹层的节点进行研究。平台结构中梁的跨度多在6~8 m,在模拟时,多取梁的反弯点位置施加位移荷载,反弯点位置约在在梁跨 1/4~1/3位置,故柱一端梁取1.6 m长,柱两侧梁长共3.2 m。采用1:1的比例来建立模型,节点原型的几何尺寸如下所示:柱截面为箱型B350 mm(高)×350 mm(宽)×12 mm(腹板壁厚)×12 mm(翼缘壁厚),梁截面为 H300 mm(高)×150 mm(宽)×6.5 mm(腹板壁厚)×9 mm(翼缘壁厚),节点区楔形箱型钢牛腿长度为400 mm,楔形箱型牛腿处焊接竖向肋板,且牛腿处的翼缘板和竖向肋板厚度均为12 mm,牛腿腹板厚度为8 mm。节点的有限元分析模型如图2所示。

图2 楔形箱型节点分析模型Fig.2 Analysis model of wedge box joint

本文同时对内隔板式和外联板式 2种传统的节点形式也进行了研究(见图3所示),其中柱和梁的截面尺寸与楔形箱形节点一致。内隔板式节点中内隔板的厚度与翼缘板一致,取12 mm;外联板式节点,外联板的厚度与翼缘板一致,也为12 mm,方管柱角点到外联板斜边的距离为110 mm,斜边为45度角。

图3 传统节点分析模型Fig.3 Analysis model of traditional joints

1.2 材料本构关系及强化模型

在荷载作用下,物体内某一点存在的应力状态和应变状态的关系成为本构关系,是材料本身固有的特征。节点模型均采用Q345钢材,屈服强度为345 MPa[30],材料本构为双线性模型,如图4所示。

图4 Q345钢材本构关系Fig.4 Q345 constitutive relations

1.3 约束条件和加载制度

参考《建筑抗震试验规程》(JGJ/T 101-2015)[31]中的拟静力试验方法,对节点的抗震性能进行低周反复荷载作用下的抗震性能模拟。通过对结构施加约束来模拟实际的情况——在柱底部截面施行固结,将所有的自由度均予以限制;为了保证节点在受力计算时为稳定结构,不形成可变结构体系,对柱顶截面的X、Y两个方向的自由度进行了限制,对考察梁端弯矩没有影响;通过对梁端部施加往复的Z方向位移荷载,荷载步为10步,以此来进行非线性分析。经过大量试算,发现位移达到40 mm后,节点已经进入非线性状态。故位移的最大值设置为40 mm。约束条件见图5所示。加载制度见图6所示,加载时每级循环2次,直至结构破坏。

图5 模型约束示意图Fig.5 Applied constrain in model

图6 节点加载制度Fig.6 Loading rules of joint

同时,柱轴压力主要作用是对柱两端进行固定,对于考察梁端弯矩及节点滞回性能影响较小,考虑到温室结构中有部分平台荷载可能较大,故此处按轴压比 0.46计算柱子轴力,取1 200 kN。

2 有限元计算结果及分析

2.1 节点性能对比

经过计算,得到的楔形箱型节点和内隔板节点及外联板节点的应力分布云图(见图 7)。图中红色集中区域代表了节点进入塑性状态,形成塑性铰。从图中可以看出,内隔板式节点塑性铰出现在柱边外约200 mm处,楔形箱型节点和外环板节点的塑性铰则出现在柱边外侧约450和500 mm处,但楔形箱型节点相比外环板节点塑性铰形成区域较小,可以较好的满足“强节点弱构件”的要求。

图7 3种节点应力分布云图Fig.7 Stress contours of 3 joints

节点的 P-Δ滞回曲线是由节点梁端的竖向位移和对应的柱端剪力组成的关系曲线,其所包围的面积可以反映结构吸收能量的大小,图8a对比了3种节点的滞回耗能能力。由表 1可以看出,楔形箱型节点累积耗能较传统的外联板式节点超出 25.40%,比内隔板式节点减少20.46%,利用R表示楔形箱型节点与其他2种节点耗能能力的差值。由节点在各级加载滞回曲线峰值所连成的骨架曲线(反映了构件在各个不同阶段的受力与变形特性)上可以看出,楔形箱型节点刚度要大于外联板式节点(见图8b)。由于温室结构中需要采用的矩管柱截面往往较小,无法实现内隔板式节点,常用外联板式节点,而楔形箱型节点抗震性能要优于外联板式节点,同时该节点仅为增加竖板形成的局部箱型截面,可在加工厂与柱整体制作,现场与梁拼接,施工安装便捷,故可以替代常规外联板式节点应用于实际工程。

因此,楔形箱型节点应力分布更为合理,在解决了内隔板式节点施工及浇筑混凝土不便的缺陷后,承载力没有明显的下降,刚度还略有提升,有利于结构的抗震。

2.2 节点参数分析

为了更多了解楔形箱型节点受力特点,在数值模拟中进行参数化分析,讨论了梁柱壁厚对节点性能的影响。各模型构件型号见表2所示。

图8 3种节点的滞回曲线和骨架曲线Fig.8 Hysteretic curves and skeleton curves of 3 joints

表1 3种节点累积耗散能量Table 1 Cumulative dissipated energy of 3 joints

表2 不同分析模型构件的型号Table 2 Type of components in analysis models

不同梁、柱尺寸模型的滞回曲线如图 9所示。通常柱壁厚大于梁翼缘板厚,在梁截面不变的情况下,柱壁厚分别为12、14、16 mm,即对模型1、2、3进行对比,3个模型的滞回曲线基本重合,可以看出在梁翼缘厚度小于柱壁厚的情形下,柱壁厚的变化对于节点的滞回曲线影响较小。但梁的翼缘和腹板的厚度对于节点的承载力和抗震性能有较大的影响,随着梁翼缘和腹板壁厚的增加,节点的初始刚度、屈服荷载和极限承载力具有明显的增大,抗震性能具有显著的提高。

图9 梁柱截面厚度对节点耗能能力的影响Fig.9 Effect of different section thickness on energy dissipation capacity

通常由于柱截面比梁宽,为了传力平滑过渡,梁柱连接采用逐步扩展的形式,利用a表示节点的截面宽度变化率,如图10所示。随着截面宽度变化率由1:2减小到1:5,节点滞回曲线更为饱满(见图11a),意味着节点的耗能能力在不断增强;同时节点的屈服后刚度随之提高(见图 11b)。上述分析表明,对于楔形箱形节点截面宽度变化率对节点的耗能能力有一定的影响。且随着截面宽度变化率的减小,节点的耗能能力越大。考虑到截面宽度变化率过小时,楔形箱形节点过长增加了加工厂焊接切割的制作工作量,且增加了运输的不便,因此建议实际工程中截面宽度变化率取1:4。

图10 截面宽度变化率aFig.10 Change rate of cross section width a

图11 截面宽度变化率对节点耗能能力的影响Fig.11 Effect of change rate of cross section width on energy dissipation capacity

3 结 论

针对传统H型钢梁与箱型钢柱刚性节点施工不便、抗震性能较差的问题,开发出楔形箱型节点。对节点进行了抗震性能研究,得出以下主要结论:

1)楔形箱型节点抗震性能要优于外联板式节点,故可以替代常规外联板式节点应用于实际工程。与传统节点形式相比,楔形箱型节点的耗能能力有一定的提高,累积耗能比传统的外联板式节点高出25.40%。滞回曲线相对饱满,体现了良好的抗震性能。

2)楔形箱型节点在往复荷载作用下,梁端塑性铰位置向跨中偏移,保证了“强柱弱梁、强节点弱构件”设计理念的实现。

3)楔形箱型节点中,梁翼缘和腹板的厚度对于节点的抗震性能有较大的影响,在梁翼缘和腹板厚度不超过柱壁厚的情况下,增加梁的翼缘和腹板的厚度可以显著提高节点的抗震性能,同时不会产生“强梁”的抗震不利后果。

4)楔形箱型截面宽度变化率对节点的耗能能力也有较大影响。随着宽度变化率由1:2减小到1:5,节点的耗能能力在不断增强。但箱型楔形截面宽度变化率过小会导致节点制作安装较为困难,因此建议实际工程中宽度变化率取1:4。

[参 考 文 献]

[1]聂建国,王宇航,陶慕轩,等. 钢管混凝土叠合柱-钢筋混凝土梁外加强环节点抗震性能试验研究[J]. 建筑结构学报,2012,33(7):88-97.Nie Jianguo, Wang Yuhang, Tao Muxuan, et al.Experimental study on seismic behavior of laminated steel tube column-concrete beam joint with outer stiffening ring[J].Journal of Building Structures, 2012, 33(7): 88-97. (in Chinese with English abstract)

[2]张艳霞,叶吉健,赵微,等. 自复位平面钢框架推覆分析[J]. 地震研究,2014,37(3):477-484.Zhang Yanxia, Ye Jijian, Zhao Wei, et al. Pushover analysis of self-centering steel moment-resisting plane frame[J].Journal of seismological research, 2014, 37(3): 477-484. (in Chinese with English abstract)

[3]薛建阳,刘祖强,彭修宁. 钢结构异型节点受力性能及非线性有限元分析[J]. 西安建筑科技大学学报,2010,42(5):609-613.Xue Jianyang, Liu Zuqiang, Peng Xiuning. Mechanical properties and non-linear finite element analysis of steel abnormal joints[J]. Journal Xi`an university of architecture and technology (Natural Science Edition), 2010, 42(5): 609-613. (in Chinese with English abstract)

[4]李兆凡,石永久,陈宏. 改进型钢结构梁柱节点非线性有限元分析[J]. 建筑结构,2002,32(9):15-17.

[5]陆新征,叶列平,缪志伟,等. 建筑抗震弹塑性力学分析[M]. 中国建筑工业出版社,2011.Lu Xinzheng, Ye Lieping, Miao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. China Architecture & Building Press, 2011. (in Chinese with English abstract)

[6]徐伟良,方垒. 半刚性端板连接节点性能的非线性有限元分析[J]. 四川建筑科学研究, 2011,37(5):4-7.Xu Weiliang, Fang Lei, Nonlinear finite element analysis for the behavior of semirigid end-plate connection[J]. Sichuan Building Science, 2011, 37(5): 4-7. (in Chinese with English abstract)

[7]Andre Plumier. General report on local ductility[J]. J. of Constructional Steel Research, 2000, 55(1): 91-107.

[8]Kawano A, Matsui C. New connections using vertical stiffeners between H-shaped beam and hollow or concrete-filled square tubular columns[C]. composite construction in steel and concrete Ⅲ: Proceedings of an engineering foundation conference, Irsee, Germany, July 9-14,

[9]陈志华,苗纪奎,赵莉华,等. 方钢管混凝土柱-H 钢梁节点研究[J]. 建筑结构,2007,37(1):50-56.Chen Zhihua, Miao Jikui, Zhao Lihua, et al. Study on joint of concrete-filled rectangular tublar column and H-shaped steel beam[J]. Building structure, 2007, 37(1): 50-56. (in Chinese with English abstract)

[10]苗纪奎,陈志华. 方钢管混凝土柱与钢梁的外肋环板节点抗震性能试验研究[J].地震工程与工程振动,2007,27(2):85-90.Miao Jikui, Chen Zhihua. Experimental study on seismic performance of vertical stiffener joints between concrete filled square steel tubular column and steel beam[J]. Journal of earthquake engineering and engineering vibration, 2007,27(2): 85-90. (in Chinese with English abstract)

[11]Popov E P, Pinkey R B. Cyclic yield reversal in steel building connection[J]. Journal of the Structural Division,American Society of Civil Engineers, 1969, 95(3): 327-353.

[12]宋振森. 刚性钢框架梁柱节点在地震作用下的累积损伤破坏机理及抗震设计对策[D]. 西安:西安建筑科技大学,2001.Song Zhensen. Damage Accumulation Collapse Mechanism and Design Criteria of Welded Steel Beam-to-column Connections Under Seismic Load[D]. Xi`an: Xi`an University of Architecture and Technology, 2001. (in Chinese with English abstract)

[13]王新武. 钢框架梁柱连接研究[D]. 武汉:武汉理工大学,2003.Wang Xinwu. Research on Beam-to-column Connections of Steel Frame[D]. Wuhan: Wuhan University of Technology,2003. (in Chinese with English abstract)

[14]贾金青,孙洪梅. 一种新型牛腿的设计与应用[J]. 建筑结构,2002,32(3):29-30.

[15]王来,王铁成,邓芄. 方钢管混凝土框架内隔板节点抗震性能的试验研究[J]. 地震工程与工程振动,2005,25(1):76-80.Wang Lai, Wang Tiecheng, Deng Peng. Experimental research on seismic performances of joint reinforced with innerring stiffener of concrete filled square tubular frame[J].Earthquake engineering and engineering vibration, 2005,25(1): 76-80. (in Chinese with English abstract)

[16]宗周红,葛继平,杨强跃. 反复荷载作用下方钢管混凝土柱与钢梁连接节点非线性有限元分析[J]. 建筑结构学报,2006,27(2):75-81.Zong Zhouhong, Ge Jiping, Yang Qiangyao. Nonlinear finite element analysis of the concrete filled square steel tubular column to steel beam connections under low-cycle reversed loading[J]. Journal of building structures. 2006, 27(2): 75-81. (in Chinese with English abstract)

[17]李黎明,陈志华,李宁. 隔板贯通式梁柱节点抗震性能试验研究[J]. 地震工程与工程振动,2007,27(1):46-53.Li Liming, Chen Zhihua, Li Ning. Experimental study on seismic capability of disphragm-through style beam-column joint[J]. Journal of earthquake engineering and engineering vibration, 2007, 27(1): 46-53. (in Chinese with English abstract)

[18]Kuramoto H, Nishiyama I. Seismic performance and stress transferring mechanism of through-column-type joints for composite reinforced concrete and steel frames[J]. Journal of Structural Engineering, 2004, 130(2): 352-360.

[19]Nishiyama I, Fujimoto T, Fukumoto T, et al. Inelastic force-deformation response of joint shear panels in beam-column moment connections to concrete-filled tubes[J].Journal of Structural Engineering, 2004, 130(2): 244-252.

[20]韩林海. 钢管混凝土结构-理论与实践[M]. 北京:科学出版社,2004.

[21]周天华,何保康,陈国津,等. 方钢管混凝土柱与钢梁框架节点的抗震性能试验研究[J]. 建筑结构学报,2004,25(1):9-16.Zhou Tianhua, He Baokang, Chen Guojin, et al.Experimental studies on seismic behavior of concrete-filled steel square tubular column and steel beam joints under cyclic loading[J]. Journal of building structures, 2004, 25(1):9-16. (in Chinese with English abstract)

[22]周天华, 郭彦利,卢林枫,等. 方钢管混凝土柱-钢梁节点的非线性有限元分析[J]. 西安科技大学学报,2005,25(3):283-287.Zhou Tianhua, Guo Yanli, Lu Linlan, et al. Nonlinear FEM analysis of bearing capacity behavior of concrete-filled square tubular column and steel beam joints[J]. Journal of earthquake engineering and engineering vibration, 2005,25(3): 283-287. (in Chinese with English abstract)

[23]周天华,聂少锋,卢林枫,等. 带内隔板的方钢管混凝土柱-钢梁节点设计研究[J]. 建筑结构学报,2005,25(5):23-29.Zhou Tianhua, Nie Shaofeng, Lu Linfeng, et al. Design of concrete-filled square tube column and steel beam joint with internal diagrams[J]. Journal of building structures, 2005,25(5): 23-29. (in Chinese with English abstract)

[24]金刚,丁洁民,陈建斌. 方钢管混凝土结构内隔板式节点试验研究[J]. 结构工程师,2005,21(4):75-80.Jin Gang, Ding Jiemin, Chen Jianbin. Experimental study on connections with steel diaphragm between CFRT column andsteel beam[J]. Structural Engineers. 2005, 21(4): 75-80. (in Chinese with English abstract)

[25]金刚,丁洁民,陈建斌. 矩形钢管混凝土柱-钢梁节点抗震性能试验研究与分析[J]. 建筑结构,2007,37(2):88-93.Jin Gang, Ding Jiemin, Chen Jianbin. Experimental studies and FEM analysis of seismic behavior of connection between concrete-filled rectangular tubular column and steel beam. [J].Building structures, 2007, 37(2): 88-93. (in Chinese with English abstract)

[26]聂建国,秦凯,张桂标. 方钢管混凝土柱内隔板式节点的抗弯承载力研究[J]. 建筑科学与工程学报,2005,22(1):42-49.Nie Jianguo, Qin Kai, Zhang Guibiao. Experimental research and theoretical analysis on flexural capacity of connections for concrete- filled steel square tubular columns with inner diaphragms[J]. Journal of Architecture and Civil Engineering.2005, 22(1): 42-49. (in Chinese with English abstract)

[27]聂建国,秦凯,肖岩等. 方钢管混凝土柱节点的试验研究及非线性有限元分析[J]. 工程力学,2006,23(11):99-109.Nie Jianguo, Qinkai, Xiao Jian, et al. Experimental investigation and nonlinear finite element analysis on the behavior of concrete-filled square steel tubular column connections[J]. Engineering mechanics, 2006, 23(11): 99-109. (in Chinese with English abstract)

[28]聂建国,秦凯,刘嵘. 方钢管还挺难柱与钢-混凝土组合梁连接的内隔板式节点的抗震性能试验研究[J]. 建筑结构学报,2006,27(4):1-9.Nie Jianguo, Qin Kai, Liu Rong. Experimental study on seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams with interior diaphragms[J]. Journal of building structures, 2006, 27(4): 1-9. (in Chinese with English abstract)

[29]王静峰,韩林海,江莹. 方钢管混凝土柱-钢梁外加强环节点的非线性有限元分析[J]. 沈阳建筑大学学报,2007,23(2):177-181.Wang Jingfeng, Han Linhai, Jiang Ying. Nonlinear fem analysis of steel beam-to-concrete filled steel square tube column connections with external stiffening rings[J]. Journal of Shenyang Jianzhu university, 2007, 23(2): 177-181. (in Chinese with English abstract)

[30]GB50017-2003,钢结构设计规范[S]. 中国计划出版社,2003.GB50017-2003, Code for design of steel structures[S]. China Planning Press, 2003. (in Chinese with English abstract)

[31]JGJ/T 101-2015,建筑抗震试验规程[S]. 中国建筑工业出版社,2015.JGJ/T 101-2015, Specification for seismic test of buildings[S]. China Architectures and Building Press, 2015. (in Chinese with English abstract)

Seismic performance of wedge-shaped box joint of beam and box column in tourism greenhouse structures

Li Xiaorun1,2, Song Bo1, Chen Shuirong2
(1.School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing100083,China;2.Central Research Institute of Building and Construction, MCC group Co., LTD, Beijing100088,China)

In order to meet the requirement of the greenhouse structure construction, a wedge-shaped box joint connecting box column and H-shaped beam was proposed to overcome the inconvenient construction and poor seismic performance of the conventional joint in the H-shaped beam and box section column, such as the conventional outboard plate joint and the internal baffles joint. The finite element simulation analysis of the joints under cyclic loading was carried out by the finite element analysis software ANSYS. The seismic performance of the joint was analyzed and compared with the conventional outboard plate joint and the internal baffles joint. The influences of the flange and web thickness of the beam, and the thickness of the rectangular tube column on the seismic performance of the joint were discussed. The seismic performance of the wedge-shaped box joint was better than that of the outboard plate joint, so it could be applied to the actual engineering instead of the conventional outboard plate joint. The cumulative energy consumption was 25.40% higher than that of the outboard plate joint,and 20.46% lower than that of the internal baffles joint. The stiffness of the wedge-shaped box joint was larger than that of the outboard plate joint. The hysteretic curve of the joint was relatively full, which embodied the good seismic performance. The plastic hinge of the internal baffles joint appeared at about 200 mm outside the column edge. The plastic hinge of the wedge-shaped box joint and the outboard plate joint was about 450 and 500 mm outside the column edge, respectively.However, the region area in the wedge-shaped box joint was smaller than the other joints. The plastic hinge position of the wedge-shaped box joint moved to the middle of the span under cyclic loadings, which ensured the design concept of "strong column with weak beam, strong node with weak component". The thickness of the flange and web of the wedge-shaped box joint had a great influence on the seismic performance. In the case of no exceeding the thickness of the column, the initial stiffness, the yield load and the ultimate bearing capacity of the joint were obviously increased with the increasing of the thickness of the flange and web of the beam, which meant that the seismic performance of the joint was improved. At the same time the adverse consequence of strong beam would not be produced. The change rate of cross section width of wedge-shaped box had a great influence on the energy dissipating capacity of the joint. As the change rate of cross section width decreased from 1:2 to 1:5, the energy dissipating capacity of the joint and the stiffness after yielding increased. However, it was difficult to make the production and installation of the joint. In practical engineering, it was suggested the change rate of cross section width should equal 1:4. Therefore, the distribution of the stress in the wedge-shaped box joint was more reasonable. After solving the defects of the internal baffles joint, such as the inconvenience of the construction and pouring concrete, the bearing capacity and stiffness of the wedge-shaped box joint were improved, which were beneficial to the seismic resistance of a structure. The above results show that the wedge-shaped box joint has a good seismic performance and is more suitable for tourism greenhouse structures.

greenhouse; finite element method; models; rigidity; beam-column joint; hysteresis curve; seismic behavior;non-linear analysis

10.11975/j.issn.1002-6819.2017.10.033

S625

A

1002-6819(2017)-10-0252-06

2016-08-25

2017-03-29

国家“863”项目(2009AA0323);国家科技支撑计划课题(2012BAJ13B01)

李晓润,男,山东曹县人,教授级高工,博士研究生,主要从事结构工程、 钢结构与组合结构等的研究。北京 北京科技大学土木与资源工程学院, 100083。lixiaorun2000@sina.com

猜你喜欢

箱型楔形钢梁
基于挠度分析变截面箱型梁的剪力滞效应
塔机内爬钢梁及焊接锚脚加固设计及验证
箱型柱内隔板电渣焊焊缝超声波检测工艺探讨
History of the Alphabet
钢丝绳楔形接头连接失效分析与预防
Eight Surprising Foods You’er Never Tried to Grill Before
一种建筑钢结构用便于安装的钢梁
枝城长江大桥钢梁锈蚀调查及防护措施研究
楔形板AGC系统仿真研究
箱型梁剪力滞效应的解耦求解