APP下载

基于WOFOST模型的中国主产区冬小麦生长过程动态模拟

2017-07-07黄健熙贾世灵马鸿元侯英雨

农业工程学报 2017年10期
关键词:主产区单产冬小麦

黄健熙,贾世灵,马鸿元,侯英雨,何 亮

(1. 中国农业大学信息与电气工程学院,北京 100083;2. 国家气象中心,北京 100081)

基于WOFOST模型的中国主产区冬小麦生长过程动态模拟

黄健熙1,贾世灵1,马鸿元1,侯英雨2,何 亮2

(1. 中国农业大学信息与电气工程学院,北京 100083;2. 国家气象中心,北京 100081)

大区域尺度WOFOST(world food studies)模型的动态模拟是作物模型区域应用的重要基础。该文以中国冬小麦主产区为研究对象,利用中国冬小麦主产区内 174个农业气象站多年观测数据以及气象站点观测数据,重点优化WOFOST模型中与品种相关的积温参数,即出苗至开花有效积温与开花至成熟有效积温。在冬小麦主产区分区的基础上,以2012—2015年气象数据驱动WOFOST模型,在站点尺度进行冬小麦的物候期、叶面积指数(leaf area index,LAI)和单产动态模拟和精度分析。结果表明:WOFOST模型模拟出苗至开花天数的决定系数R2为0.89~0.94,均方根误差RMSE为7.87~11.52 d,模型模拟开花至成熟天数的R2为0.63~0.77,RMSE为2.99~4.65 d; 模型模拟LAI的R2为0.70~0.83,RMSE为0.89~1.46 m2/m2;灌溉区WOFOST模拟的单产精度R2为0.45~0.59,RMSE为734~1 421 kg/hm2;雨养区WOFOST模拟的单产精度R2为0.48~0.61,RMSE为1 046~1 329 kg/hm2。结果表明,WOFOST模型在全国尺度取得了较高模拟精度,为区域尺度作物模型的农业应用提供了坚实的过程模型基础。

模型;优化;温度;WOFOST;冬小麦;参数标定;物候期;动态模拟

黄健熙,贾世灵,马鸿元,侯英雨,何 亮. 基于 WOFOST模型的中国主产区冬小麦生长过程动态模拟[J]. 农业工程学报,2017,33(10):222-228. doi:10.11975/j.issn.1002-6819.2017.10.029 http://www.tcsae.org

Huang Jianxi, Jia Shiling, Ma Hongyuan, Hou Yingyu, He Liang. Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 222-228. (in Chinese with English abstract)

doi:10.11975/j.issn.1002-6819.2017.10.029 http://www.tcsae.org

0 引 言

冬小麦是中国的 3大粮食作物之一,主要分布在长城以南,长江以北,其种植面积占全国耕地总面积约18%~27%,粮食作物总面积的18%~24%。基于作物生长模型的方法是开展长势监测与产量估测的重要技术手段之一。其区域尺度的应用极大依赖于作物模型的标定精度。

本文选择WOFOST(world food studies)模型作为作物生长动态过程模型。WOFOST作物模型由世界粮食研究中心和瓦赫宁根农业大学共同研发,能够以天为步长定量模拟气象和其他环境因子影响下的作物生长过程[1]。在过去的几十年里,WOFOST模型已经在诸多国家和地区的多个领域得到广泛应用。例如产量风险分析、年际间产量变化分析、土壤状况对产量的影响、气象条件对产量的影响、不同作物品种与耕作制度对产量的影响、气象条件对产量的影响等。且模型对过程的描述是通用的,可以通过改变参数模拟不同的地理位置上的不同作物,因此对作物模型的参数进行标定校准,使其适应于当地的指定作物,是进行模型区域应用的重要前提。WOFOST能够模拟潜在生长、水分胁迫和养分胁迫三种水平[1]。

国内外学者在作物模型区域标定和模型应用做了许多研究与探索。Wit等[2]利用集合卡尔曼滤波方法将遥感的土壤水分估测值同化到WOFOST模型中,纠正该模型土壤水平衡误差,对西班牙、法国、意大利和德国1992−2000年间的冬小麦和玉米进行产量估测,结果表明,数据同化明显改善了 66%地区的冬小麦产量模拟和56%地区的玉米产量模拟。Ma等[3]在华北平原冬小麦标定与区域化WOFOST模型,通过叶面积指(leaf area index,LAI)耦合SAIL-PROSPECT模型来模拟土壤调节植被指数(soil adjust vegetation index, SAVI),最小化模拟与合成的SAVI之间的差异,重新初始化出苗日期,结果表明,该方法在将模拟应用到区域尺度方面具有应用潜力。Boogaard等[4]采用WOFOST模型评估欧盟25个国家的秋播小麦产量差距的优势与限制,结果表明,WOFOST水分胁迫模式下估算秋播小麦的产量精度较高。张建平等[5-10]利用WOFOST模型分析了气候变化与低温冷害对东北地区春玉米产量的影响。张素青等[11]在河南省夏玉米主产区对WOFOST模型进行了校准与验证。孙琳丽等

[12]在内蒙古河套灌区玉米种植区对WOFOST模型进行了适应性分析。陈思宁等[13]分析了PyWOFOST模型在东北玉米种植区的适应性。张建平等[14]选择华北平原冬小麦为研究对象,在WOFOST模型区域适应性分析与检验的基础上,利用区域化的WOFOST模型模拟结果实现干旱灾害对作物影响的定量分析与动态评估。综上所述,目前作物模型标定与验证方面的工作主要集中于单个站点和若干站点的尺度上。尚未见中国主产区尺度WOFOST作物模型标定和适应性研究报道,其主要挑战在于中国冬小麦主产区的WOFOST模型输入参数和初始状态的空间变异性。

本文基于中国冬小麦主产区内的 174个农业气象站点观测数据,在站点尺度,评估WOFOST模型生育期、叶面积指数和单产动态模拟与精度。评价WOFOST模型在全国冬小麦主产区的动态模拟的适应性。

1 材料与方法

1.1 研究区与数据

冬小麦主要分布在长城以南,长江以北,本文的研究区选择中国主要冬小麦种植区,主要包括河北、山西、江苏、安徽、山东、河南、湖北、重庆、四川、贵州、云南、陕西、甘肃、宁夏等省区。

研究区内共包括174个农业气象站点,其中包括15个农业气象试验站点,简称试验站,位置分布如图 1所示。本研究收集了2011至2015年各站点的冬小麦生育期及单产的观测数据。其中关键生育期用于积温参数的计算,并对模拟生育期的验证,单产数据用于对模拟结果精度的检验。此外,试验站还提供不同生育期冬小麦根、茎、叶、贮存器官的干物质质量和实测LAI等生长率参数。

图1 研究区冬小麦分区及农业气象站点分布Fig.1 Winter wheat zone and spatial distribution of agro-meteorological stations in study area

WOFOST模型的气象要素采用中科院青藏高原研究所生产的中国区域地面气象数据集[15-16],主要包括 7个要素,近地面气温,地表气压,近地面空气比湿,近地面全风速,向下短波辐射,向下长波辐射和降水率。空间分辨率为 0.1°,数据获取网址为:“http://www. Tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249369”。选择2011—2015年的气象数据,进行要素计算与格式转换,获得WOFOST模型所需6个气象要素,包括逐日的辐射量、平均水汽压、日最高温、日最低温、风速及降水。

1.2 WOFOST模型参数的校准方法

由于主产区内的冬小麦品种和种植模式存在差异,因此有必要将整个冬小麦主产区划分为相对均质的子区域进行作物模型标定。选取了单产水平、土壤类型、气象条件和种植结构为指标,采用空间聚类的方法,获得冬小麦分区。

WOFOST模型中输入参数包括气象、作物、土壤和田间管理,参数较多,难以实现对每个参数的标定与校准。因此,需要根据WOFOST输入参数的敏感性和物理含义进行分类标定与校准,对于不敏感的参数或低敏感性的参数,采用WOFOST模型默认值或通过文献查阅确定;对于与品种有关,敏感性较高且空间变异性较大的参数,先通过观测数据计算其取值范围,再通过优化算法确定。

对于每个分区,通常还包含若干农业气象站点。在站点尺度上,通过每个农气站点记录的生育期和邻近气象站点观测的日平均温度,计算出与品种相关的积温参数,即出苗至开花有效积温TSUM1与开花至成熟有效积温TSUM2。同时,假设邻近的2 a冬小麦种植的品种不发生变化,因此,把 2011—2014冬小麦生育期标定的TSUM1和TSUM2参数值,分别赋予到WOFOST模拟的2012—2015生育期。此外,WOFOST的出苗日期和重要土壤参数(田间持水量、凋萎系数和初始可利用水含量)是通过每个农业气象站点观测给定。对于每个试验站点,比叶面积(specific leaf area,SLA)根据试验站不同生育期的干物质质量和LAI计算。不同生育期的根、茎、叶、贮存器官的干物质量分配系数,也是通过观测数据计算获得。对于分区中缺失试验站的情况,则采用最近邻站点赋值的方法确定。其他参数值通过文献查阅[17-27]确定或采用WOFOST默认值。表1为WOFOST模型中主要作物参数校准值。

1.3 模型参数的检验方法

模型模拟检验包括了 2个部分:散点图比较以及选择统计评价指标对模拟值和实测值进行定量评价。散点图为出苗至开花天数、开花至成熟天数、单产及LAI模拟值与实测值的回归分析图。统计评价指标选择了决定系数(R2)、一致性系数(D)、变异系数(coefficient of variation,CV)、均方根误差(root mean square error,RMSE)、归一化均方根误差(normalized root mean square error,NRMSE)。其中R2和D反映了实测值与模拟值之间的一致性,越接近1表示模拟效果越好。CV反映了数值离散程度,值越大越能体现数据的空间变异性[28],可将其进行粗略分级:CV<10%,为弱变异性;10%≤CV≤100%;为中等变异性,CV>100%,为强变异性[29]。RMSE和 NRMSE反映了模拟值与实测值之间的相对误差和绝对误差[30],值越小表示模拟效果越好,其中,NRMSE≤10%,为极高精度;10%30%,为低精度[11]。D、CV、RMSE和NRMSE的计算公式如式(1)~(4)。

式中i表示第i个样本;Yi和Xi分别为第i个样本模拟值和实测值;为全部样本实测数据平均值;n为样本数;SD为模拟结果的标准差,为全部样本模拟结果的平均值。

表1 WOFOST模型中主要作物参数校准值范围Table 1 Range of calibrated values of main crop parameters of WOFOST model

2 结果与分析

2.1 模型参数的校准结果

根据上述模型参数校准方法,进行模型的校准。表1为所有冬小麦分区的部分关键参数校准值范围。

2.2 WOFOST模型检验

为验证WOFOST模型在中国冬小麦主产区的动态模拟精度,在站点尺度,以2012—2015年当年的站点观测出苗日期为模拟初始日期,以气象、土壤、作物等参数驱动WOFOST模型进行冬小麦生长模拟,并对模型模拟的出苗至开花天数、开花至成熟的天数、LAI和单产进行模拟结果精度分析与验证。

2.2.1 生育期验证

开花期和成熟期分别是冬小麦营养生长和生殖生长阶段的结束日期,是评价WOFOST模型模拟的重要生育期。该文分别选择出苗期至开花期的天数和开花期至成熟期的天数来进行关键生育期的验证。

2012—2015年,模型对生育期天数的模拟,具有较为相似的模拟精度。由表2可知,出苗至开花的R2在0.89以上,D在0.96以上,说明模拟值与实测值具有较好的一致性,NRMSE在7%以下,模拟误差在7.87~11.52 d之间,表明WOFOST模型能准确模拟冬小麦开花期。开花至成熟天数的R2位于0.63与0.77之间,D在0.87~0.93之间,NRMSE在8%~12%之间,模拟误差在2.99到4.65 d之间。不同热量条件的地区,开花到成熟期的天数差异较大。模拟误差主要依赖于开花期的误差和开花到成熟期的积温精度。以2012年为例(图2),模型模拟出苗至开花天数、开花至成熟天数分别与实测值之间具有较好的相关性,各点均匀的分布在回归线两侧。同时,出苗至开花天数与开花至成熟天数的 CV均在 10%以上,具有显著的空间变异性,能充分解释模拟冬小麦生育期的区域空间变异。

表2 不同年份WOFOST模拟生育期的验证结果精度对比(2012—2015)Table 2 Comparison of simulated growth stages accuracies in different years (2012—2015)

图2 WOFOST模型模拟出苗到开花期天数和开花到成熟期天数对比(2012)Fig.2 Comparison of simulated and measured days from emergence to anthesis and anthesis to maturity (2012)

2.2.2 LAI的验证

由图3可知,2012—2015年模拟LAI与实测值之间的R2在0.70~0.83之间,D在0.88~0.96之间,WOFOST模拟LAI值与实测值之间的一致性较好,RMSE在0.89~1.46 m2/m2之间,NRMSE在50%~63%之间。由敏感性分析结果可知,对LAI最大值敏感的参数主要有叶片最大CO2同化速率、SLATB、初始生物量和叶片衰老系数[19]。本研究中,TDWI和SPAN都采用了默认值,AMAXTB虽然根据参考文献确定,但有一些冬小麦种植区缺少观测数据,采取模型默认值,导致某些站点的WOFOST模拟误差较大。

图3 WOFOST模型模拟LAI值与实测值对比(2012—2015)Fig.3 Comparison of WOFOST simulated and field-measured LAI (2012—2015)

2.2.3 单产的验证

考虑到冬小麦光热和降雨条件的差异,将主产区划分为灌溉区和雨养区分别进行WOFOST模拟,其中黄淮海设定灌溉区,采用WOFOST潜在模式,西北和西南地区设定为雨养区,采用WOFOST的水分胁迫模式。

灌溉区WOFOST模拟的单产精度R2为0.45~0.59,RMSE为734~1 421 kg/hm2;雨养区WOFOST模拟的单产精度R2为0.48~0.61,RMSE为1 046~1 329 kg/hm2。相比较而言,WOFOST模型模拟的灌溉区单产精度总体要高于雨养区,具有更低的RMSE值(表3)。

表3 灌溉区不同年份WOFOST模型模拟单产的验证结果精度对比(2012—2015)Table 3 Comparison of simulated yield accuracies in multiple years in irrigation area (2012—2015)

对于某些年份单产偏低的可能原因是设定的品种相关的参数 TSUM1和 TSUM2等具有较大误差,导致WOFOST模拟的生育期和产量误差较大。由表3可知,灌溉区与雨养区的D位于0.73~0.99之间,说明模拟值与实测值具有很好的一致性。总体而言,而单产模拟的误差主要在于,对单产敏感的参数难以获得准确的空间分布值。

图4 2012和2015年WOFOST模型模拟单产和实测单产相对误差的空间分布图Fig.4 Spatial distribution of relative error of WOFOST simulated and field-measured yield per unit in 2012 and 2015

从单产的空间分布差异来看(图 4),模拟单产精度较高的站点主要分布于黄淮海灌溉区。而模拟单产相对误差较大的点,主要集中在雨养区。可能原因是农业气象站点分布稀疏和关键土壤参数难以准确标定。灌溉区模拟单产的 CV在 14%~22%之间,雨养区模拟单产的CV在25%~40%之间,能解释模拟冬小麦单产的空间变异性,能解释模拟冬小麦单产的空间变异性。

3 讨 论

由于中国冬小麦主产区光热条件和种植品种的差异,WOFOST模型模拟的生育期空间差异性较大,国家农气站点记录的观测数据表明,主产区内冬小麦出苗到开花期历时天数在89~200 d之间,开花到成熟期时天数在20~70 d之间,参数校准后的WOFOST模型能准确扑捉这一差异;WOFOST模型模拟LAI的误差主要来源于对LAI敏感的WOFOST模型输入参数(例如:TDWI和SPAN)未考虑参数的空间变异性;WOFOST单产模拟方面,我们考虑了雨养区和灌溉区的差异,其他影响因素未予考虑,例如:营养和病虫害胁迫等。研究表明,合理的标定WOFOST模型的顺序为生育期,LAI和单产。今后的研究将通过卫星遥感数据和作物模型数据同化获得WOFOST的关键输入参数的空间分布的优化值,从而进一步提高大区域作物模型的模拟能力。标定后的WOFOST模型将为区域尺度的温度胁迫或水分胁迫对产量的影响提供动态过程模型。

4 结 论

本文以WOFOST为动态生长模型,中国冬小麦主产区为研究对象,在分区的基础上,基于农业气象站点观测数据标定WOFOST模型的敏感参数,在站点尺度,动态模拟生育期、LAI和单产。验证结果表明,模型模拟出苗-开花天数的NRMSE在4%~7%之间,模型模拟开花-成熟天数的NRMSE在8%~12%之间,具有较高的模拟精度,CV在14%~20%之间,具有空间变异性。模型模拟的LAI的NRMSE在50%~63%之间。模型模拟单产的NRMSE在11%~28%之间,CV在14%~40%之间,能较好地体现单产的空间差异性。总体来说,WOFOST模型取得了较为理想的模拟精度,具有较好的适应性。

[1]Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Soil Use &Management, 1989, 5(1): 16-24.

[2]Wit A J W De, Diepen C A Van. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts[J]. Agricultural & Forest Meteorology, 2007, 146(1-2): 38-56.

[3]Ma Yuping, Wang Shili, Zhang Li, et al. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10(4): 426-437.

[4]Boogaard Hendrik, Wolf Joost, Supit Iwan, et al. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union[J]. Field Crops Research, 2013, 143(143): 130-142.

[5]张建平,王春乙,杨晓光,等. 温度导致的我国东北三省玉米产量波动模拟[J]. 生态学报,2009,29(10):5516-5522.Zhang Jianping, Wang Chunyi, Yang Xiaoguang, et al.Simulation of yield fluctustion caused by the temperature in Northeast China[J]. Acta Ecologica Sinica, 2009, 29 (10):5516-5522. (in Chinese with English abstract)

[6]张建平,王春乙,赵艳霞,等. 基于作物模型的低温冷害对我国东北三省玉米产量影响评估[J]. 生态学报,2012,32 (13):4132-4138.Zhang Jianping, Wang Chunyi, Zhao Yanxia, et al. Impact evaluation of low temperature to yields of maize in Northeast China based on crop growth model[J]. Acta Ecologica Sinica,2012, 32(13): 4132-4138. (in Chinese with English abstract)

[7]陈振林,张建平,王春乙,等. 应用 WOFOST模型模拟低温与干旱对玉米产量的综合影响[J]. 中国农业气象,2007,28(4):440-442.Chen Zhenlin, Zhang Jianping, Wang Chunyi, et al.Application of WOFOST model in simulation of integrated impacts of low temperature and drought on maize yield[J].Chinese Journal of Agrometeorology, 2007, 28(4): 440-442.(in Chinese with English abstract)

[8]张建平,赵艳霞,王春乙,等. 气候变化情景下东北地区玉米产量变化模拟[J]. 中国生态农业学报,2008,16(6):1448-1452.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al.Simulation of maize production under climate change scenario in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1448-1452. (in Chinese with English abstract)

[9]张建平,赵艳霞,王春乙,等. 不同时段低温冷害对玉米灌浆和产量的影响模拟[J]. 西北农林科技大学学报(自然科学版),2012, 40(9):115-121.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al. Modeling the impact of low temperature disaster during different development stages on grain filling processes and yields of maize[J]. Journal of Northwest A&F University (Nat.Sci.Ed.),2012, 40(9): 115-121. (in Chinese with English abstract)

[10]张建平,赵艳霞,王春乙,等. 不同发育期低温冷害对玉米灌浆和产量影响模拟[J]. 中国农学通报,2012, 28(36):176-182.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al. The simulation of the effects of low temperature disasters on maize growth and yield during different development stages[J]. Chinese Agricultural Science Bulletin, 2012,28(36): 176-182. (in Chinese with English abstract)

[11]张素青,张建涛,李继蕊,等. WOFOST模型在河南省夏玉米主产区的校准与验证[J]. 河南农业科学,2014, 43(8):152-156.Zhang Suqing, Zhang Jiantao, Li Jirui, et al. Calibration andvalidation of WOFOST in main maize-producing regions in Henan[J]. Journal of Henan Agricultural Sciences, 2014,43(8): 152-156. (in Chinese with English abstract)

[12]孙琳丽,侯琼,马玉平,等. WOFOST模型在内蒙古河套灌区模拟玉米生长全程的适应性[J]. 生态学杂志,2016,35(3):1-10.Sun Linli, Hou Qiong, Ma Yuping, et al. Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia[J].Chinese Journal of Ecology, 2016, 35(3): 1-10. (in Chinese with English abstract)

[13]陈思宁,赵艳霞,申双和,等. 基于 PyWOFOST作物模型的东北玉米估产及精度评估[J]. 中国农业科学,2013,46(14):2880-2893.Chen Sining, Zhao Yanxia, Shen Shuanghe, et al. Study on maize yield estimation and accuracy assessment based on PyWOFOST crop model in Northeast China[J]. Scientia Agricultura Sinica, 2013, 46(14): 2880-2893. (in Chinese with English abstract)

[14]张建平,赵艳霞,王春乙,等. 基于 WOFOST作物生长模型的冬小麦干旱影响评估技术[J]. 生态学报,2013,33(6):1762-1769.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al.Evaluation technology on drought disaster to yields of winter wheat based on WOFOST crop growth model[J]. Acta Ecologica Sinica, 2013, 33(6): 1762-1769. (in Chinese with English abstract)

[15]Chen Yingying, Yang Kun, He Jie, et al. Improving land surface temperature modeling for dry land of China[J].Journal of Geophysical Research Atmospheres, 2011,116(116): 999-1010.

[16]Yang Kun, He Jie, Tang Wenjun, et al. On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J].Agricultural and Forest Meteorology, 2010, 150(1): 38-46.

[17]Huang Jianxi, Sedano Fernando, Huang Yanbo, et al.Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology,2016(216): 188-202.

[18]Huang Jianxi, Tian Liyan, Liang Shunlin, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and Forest Meteorology, 2015(204):106-121.

[19]Ma Guannan, Huang Jianxi, Wu Wenbin, et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield[J]. Mathematical & Computer Modelling, 2013, 58(3–4): 634-643.

[20]Ma Hongyuan, Huang Jianxi, Zhu Dehai, et al. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman filter[J]. Mathematical & Computer Modelling, 2013, 58(3–4): 759-770.

[21]Huang Jianxi, Ma Hongyuan, Su Wei, et al. Jointly assimilating MODIS LAI and ET products into the SWAP model to estimate winter wheat yield[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 20158(8): 4060-4071.

[22]Tian Liyan, Li Zhongxia, Huang Jianxi, et al. Comparison of two optimization algorithms for estimating regional winter wheat yield by integrating MODIS leaf area index and world food studies model[J]. Sensor Letters. 2013, 11(6–7): 1261-1268.

[23]何亮,侯英雨,赵刚,等. 基于全局敏感性分析和贝叶斯方法的 WOFOST作物模型参数优化[J]. 农业工程学报,2016,32(2):169-179.He Liang, Hou Yingyu, Zhao Gang, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(2): 169-179. (in Chinese with English abstract)

[24]黄健熙,马鸿元,田丽燕,等. 基于时间序列 LAI和 ET同化的冬小麦遥感估产方法比较[J]. 农业工程学报,2015,31(4):197-203.Huang Jianxi, Ma Hongyuan, Tian Liyan, et al. Comparison of remote sensing yield estimation methods for winter wheat based on assimilating time-sequence LAI and ET[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 197-203.(in Chinese with English abstract)

[25]黄健熙,武思杰,刘兴权,等. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J]. 农业工程学报,2012(04):142-148.Huang Jianxi, Wu Sijie, Liu Xingquan, et al. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012(04): 142-148. (in Chinese with English abstract)

[26]邱美娟,宋迎波,王建林,等. 山东省冬小麦产量动态集成预报方法[J]. 应用气象学报,2016, 27(2):191-200.Qiu Meijuan, Song Yingbo, Wang Jianlin, et al. Integrated technology of yield dynamic prediction of winter wheat in Shandong province[J]. Journal of applied meteorological science, 2016, 27(2): 191-200.(in Chinese with English abstract)

[27]Wu Dingrong, Yu Qiang, Lu Changhe, et al. Quantifying production potentials of winter wheat in the North China Plain[J]. European Journal of Agronomy, 2006, 24(3): 226-235.

[28]Cheng Zhiqiang, Meng Jihua, Wang Yiming. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a New Method with Fast Algorithms[J]. Remote Sensing, 2016,8(4): 303.

[29]Mallants D, Mohanty P B, Jacques D, et al. Spatial Variability Of Hydraulic Properties In A Multi-Layered Soil Profile[J]. Soil Science, 1996, 161(3): 167-181.

[30]戴彤,王靖,赫迪,等. APSIM模型在西南地区的适应性评价:以重庆冬小麦为例[J]. 应用生态学报,2015, 26(4):1237-1243.Dai Tong, Wang Jing, He Di, et al. Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City. Chinese Journal of Applied Ecology,2015, 26(4): 1237-1243. (in Chinese with English abstract)

Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model

Huang Jianxi1, Jia Shiling1, Ma Hongyuan1, Hou Yingyu2, He Liang2
(1.College of Information and Electrical Engineering, China Agricultural University, Beijing100083,China;2.National Meteorological Center, Beijing100081, China)

Crop model calibration and parameterization are essential for model evaluation and agricultural application. It is important for model application to accurately estimate the values of crop model parameters and further improve the performance of model prediction. WOFOST (world food studies) is a well-known, widely applied simulation model to analyze quantitatively the growth and production of field crops, which was originally developed for crops in European countries. It is the base model for Monitoring Agricultural Resources (MARS) Crop Growth Monitoring System (CGMS) in operational use for yield estimation in European Union. Dynamic simulation of WOFOST model in large regional scale is an important basis for regional crop modeling. In this study, we selected the main winter wheat production areas of China as the study area, and the data from 174 agricultural meteorological stations from 2011 to 2014 were used to calibrate several key WOFOST input parameters, especially 2 parameters related with variety, namely the effective accumulated temperature from emergence to flowering (TSUM1) and the effective accumulated temperature from flowering to maturity (TSUM2). On the basis of the zoning of the main winter wheat production areas, we used the meteorological data from 2012 to 2015 to drive the WOFOST model at a single-point scale, to simulate the winter wheat growth and dynamic development. The simulated phenology, LAI(leaf area index) and yield at the station level were evaluated with the field measured data. Results showed that the NRMSE(normalized root mean square error) of LAI ranged from 50% to 63%. The NRMSE of simulated days was 4%-7% from emergence to anthesis period and 8%-12% from anthesis to maturity period, and then CV (coefficient of variation) of the phenology was between 14% and 20%, which meant significant spatial variability. We simulated the yield respectively in irrigated area and rainfed area. And the NRMSE of simulated yield in irrigated area ranged from 11% to 23%, while the NRMSE of simulated yield in rain-fed area ranged from 22% and 28%, and the CV ranged from 14% to 22% for irrigated areas and from 25% to 40% for rain-fed areas, which exhibited significant spatial variability. The NRMSE of simulated LAI was between 50% and 63%, which could be explained that the LAI during different growth stages was all included into the accuracy analysis. Several important input parameters (such as TDWI (initial biomass) and SPAN (leaf senescence coefficient))could be optimized through assimilating remote sensing data into crop model, which could greatly improve the performance of crop model at the regional scale. Our results showed that the WOFOST model is of great potential for simulating the dynamic growth process of winter wheat in China. The calibrated WOFOST provides the dynamic model basis for regional applications,such as assimilating remote sensing data into crop model for crop yield estimation and climate change prediction with crop model.

models; optimization; temperature; WOFOST; winter wheat; parameter calibration; phendogy; dynamic simulation

10.11975/j.issn.1002-6819.2017.10.029

S127

A

1002-6819(2017)-10-0222-07

2016-10-07

2017-05-05

国家自然科学基金(41671418,41471342,41371326)

黄健熙,博士,博士生导师,主要从事农业定量遥感研究。北京中国农业大学,100083。Email:jxhuang@cau.edu.cn

猜你喜欢

主产区单产冬小麦
基于Sentinel-1A数据的冬小麦种植面积提取
主产区小麦收购进度过七成
农大农企联手创山西小麦最高单产新纪录
油菜“不务正业”,单产3.4吨
不误农时打好冬小麦春管“第一仗”
单产948.48千克!“金种子”迸发大能量
我国玉米单产纪录第七次被刷新
数字
全国麦收进度过半 主产区机收率超98%
关于支持主产区发展专用粮食生产的建议