广西融水特色红心杉木优树材质性状变异规律研究
2017-06-19李魁鹏韦正成黄开勇董利军黄鸿飞谭文婧
李魁鹏,韦正成,黄开勇*,董利军,黄鸿飞,陈 琴,戴 俊,谭文婧
(1. 广西林业科学研究院,国家林业局中南速生材繁育实验室,广西优良用材林资源培育重点实验室, 广西 南宁 530002;2. 广西国有贝江河林场, 广西 融水 545300)
广西融水特色红心杉木优树材质性状变异规律研究
李魁鹏1,韦正成2,黄开勇1*,董利军2,黄鸿飞2,陈 琴1,戴 俊1,谭文婧2
(1. 广西林业科学研究院,国家林业局中南速生材繁育实验室,广西优良用材林资源培育重点实验室, 广西 南宁 530002;2. 广西国有贝江河林场, 广西 融水 545300)
[目的]通过测定和分析广西融水种源红心杉木优树材质性状指标,以了解该地区红心杉木材性状变异规律。[方法]以广西融水种源60株20年生的红心杉木优树为研究材料,测定单株材积、红心率、基本密度、组织比量、管胞性状、微纤丝角等10个材质性状指标,分析各材性性状指标分布和变异规律及性状间的相关关系。[结果]表明:红心率、基本密度、木射线比量、管胞比量、管胞长、管胞宽、管胞长宽比等性状数据分布服从正态分布。融水两个地区红心杉优树轴向薄壁细胞比量的变异系数分别为35.08%和44.97%,变异较大。管胞比量变异系数分别为3.28%和3.56%,变异较小。红心率、木射线比量、管胞长、管胞宽、微纤丝角等性状差异极显著(P<0.01),轴向薄壁细胞比量差异显著(P<0.05)。10个材质性状间存在12对表型显著相关。[结论]测定的10个性状均是连续性数量性状。早、晚材的管胞长度、管胞宽度和管胞长宽比等性状数据呈从心材至边材逐渐增加的规律。作为重要经济性状的红心率与木射线比量呈极显著正相关(P<0.01),单株材积与轴向薄壁细胞比量呈显著正相关(P<0.05),而单株材积与基本密度的相关性不显著,这使红心杉木生长量与材性相结合的遗传改良成为可能。
杉木;红心;材性;变异;相关
杉木(Cunninghamiaianceolata(Lamb.)Hook.)是我国特有的用材树种,分布于我国秦岭和长江流域以南各省区,其生长快,材性好,用途多,栽培面积大,是我国最重要的用材和商品材树种之一。自20世纪50年代,我国开始以速生、高产为目标的杉木遗传育种工作取得了显著成效,针对材性的改良已成为现阶段杉木育种的重要目标。1976 年中国林科院主持的全国杉木地理种源试验,收集全国62个种源的杉木在南方省区66个试验点进行测定研究。因种质好,速生性强,生产力高,适应性广等特点,确定广西融水杉木种源为全国优良种源[1]。
融水杉木主要包括糠杉和黄枝杉2种类别。本研究踏查选取广西融水种源60株20年生的杉木优树,其叶片较尖而稍硬,先端锐尖,叶表面有光泽,嫩枝和新叶为浅绿色,无白色蜡粉,属杉木的黄枝杉类别[2]。黄枝杉因心材比例大且色红而坚实,又被素称红心杉。目前,红心杉木良种选育、苗木培育等相关研究已在江西、广东陆续开展[3-4],但关于红心杉木材质性状变异规律的研究仍无报道。本研究通过测定红心杉木优树胸径、红心率、基本密度、组织比量、管胞性状、微纤丝角等材质指标,深入分析红心杉材质性状的变异规律,为开展广西融水种源红心杉的遗传多样性、木材产量与质量的综合遗传改良等研究工作打下良好的基础, 具有重要的理论价值和生产实践应用意义。
1 材料
运用5株优势木对比法(国标GB10018),在广西融水县永乐和下洞两乡分别踏查选取20年生红心杉优树30株,共60株。红心杉优树生长地的地理及林分情况见表1。在红心杉优树1.3 m处,用直径5 mm的生长锥从北朝南方向取由树皮至髓心的完整木芯2根,其中,1根用于基本密度、组织比量和微纤丝角测定,另1根用于管胞形态测定。把每根木芯(从髓心至树皮)平均切成三部分,即心部(H)、中部(M)和边部(S)。
表1 红心杉优树生长地的地理及林分情况
2 方法
2.1 测定方法
2.1.1 材积 按广西林业勘测设计院编制的杉木立木蓄积公式[5]计算材积(V):
V= 0.656 71×10-4×D1.769 412×H1.069 769
式中:D为胸径;H为树高。
2.1.2 基本密度 将每根木芯分别按心部(H)、中部(M)和边部(S)采用排水法测定生材体积(V生),然后把木样置于鼓风干燥箱烘至绝干,称质量(W绝)。根据公式ρ基=W绝/V生计算基本密度(ρ基)。具体方法依照《GB-1933-2009 木材密度测定方法》进行。
2.1.3 木材管胞形态的测定 将每根木芯的心部(H)、中部(M)和边部(S)分别按早晚材取样,即H-早、H-晚、M-早、M-晚、S-早、S-晚,对6个部分样品进行测定。采用富兰克林离析法[6]对木材管胞进行离析。利用 Nikon 80i显微成像系统对每一试件随机测定 100根完整管胞长度、宽度和腔径。
2.1.4 木材红心率
基于客户的资源融合,开发系统信息的模块化展示,根据客户需求信息的规范化模型,进行客户需求信息构建,其包含了客户需求信息的结构和特征,这些特征以不同颜色的醒目“标签”备注客户喜好,具有较强的读取性质。使酒店可以把握客户进入酒店的黄金时期,掌握客户重点信息,对其进行定位精准的针对性的“一对一”差异营销。其间包括根据模块化信息处理得出的信息,提供个性化的产品和服务,在保证盈利的情况下进行价格歧视,使客户对酒店产生强烈信任感和归属感。推行以“顾客为中心”的新文化,充分发挥客户管理系统的查询和数据开采功能,使客户培养更加便捷高效。
红心率= (红心长/去皮木芯长)2×100%
2.1.5 组织比量测定 采用徒手切片法对上述每根木芯的心部(H)、中部(M)和边部(S)进行横切面切取,然后对切片进行蕃红染色、脱水、透明、树胶封片处理,制成玻片。采用普通光学显微镜, 用0.5网形目镜尺,每个试样测定60 次以上,计算各组织的百分比量。
2.1.6 微纤丝角测定 采用徒手切片法对上述每根木芯的心部(H)、中部(M)和边部(S)进行弦切面切取。采用硝酸-铬酸法离析切片,采用Nikon 80i显微成像系统测定次生壁S2层的微纤丝与管胞主轴的夹角,微纤丝角测定100次。
2.2 统计分析方法
3 结果与分析
3.1 红心杉优树材质性状数据频度分布与统计检验
对60株红心杉优树的材积、红心率、基本密度、木射线比量、轴向薄壁细胞比量、管胞比量、管胞长、管胞宽、管胞长宽比、微纤丝角等10个材性表型性状数据频度分布的分析表明:60株红心杉优树所有10个性状均具有连续性数量性状(图1)。对60株红心杉优树的10个表型性状数据进行正态分布检验,从表2看出:材积、红心率、基本密度、轴向薄壁细胞比量、管胞比量性状偏度数据为正值,呈正偏态分布,其余性状数据呈负偏态分布。材积、轴向薄壁细胞比量、微纤丝角性状P值<0.05,表明这3个性状数据不服从正态分布,其余性状数据符合正态分布。
图1 融水红心杉木优树的10个材性表型性状数据频度分布规律Fig.1 Histogram of 10 wood property characters number of Red-heart Chinese Fir from Rongshui
3.2 红心杉木优树管胞形态的径向变异规律
对60株红心杉优树心部(H)、中部(M)和边部(S)的早、晚材管胞长度、管胞宽度、管胞长宽比等进行测定,结果(图2)表明:红心杉优树早、晚材的管胞长度、管胞宽度和管胞长宽比都呈从木材心部至边部逐渐增加的趋势,心部、中部及边部晚材的管胞长度和管胞长宽比均比早材的大,而心部、中部及边部晚材的管胞宽度均比早材的小。
3.3 红心杉优树材质性状变异分析
对融水2地区各30株红心杉优树材质性状变异的分析(表3)表明:红心杉木材品质在融水2地区具有不同程度的差异。经T-检验,融水2地区优树间红心率、木射线比量、管胞长、管胞宽、微纤丝角等性状差异极显著(P<0.01),轴向薄壁细胞比量差异显著(P<0.05),单株材积和基本密度差异显著(P<0.1)。2地区红心杉优树轴向薄壁细胞比量变异系数分别为35.08%和44.97%,变异较大;管胞比量变异系数分别为3.28%和3.56%,变异较小。材积和红心率作为重要的经济性状,2地区红心杉优树单株材积和红心率平均值分别为0.684、0.594 m3和46.809%、55.042%。
表2 融水红心杉木优树10个材性表型性状数据分布正态性检验
图2 红心杉木优树管胞形态的径向变异规律Fig.2 Radial variation of Tracheid morphology of Red-heart Chinese Fir from Rongshui
表3 融水红心杉木优树10个材性性状变异
注:Δ表示0.1显著;*表示0.05显著;**表示0.01显著,下同。
Note:Δ presents 0.1 significant difference level, * presents 0.05 significant difference level, **presents 0.01 significant difference level.The same below.
3.4 红心杉木优树材质性状相关性分析
运用Spearman方法对融水红心杉优树材质性状进行相关性分析,结果(表4)表明:10个材质性状间存在12对表型显著相关,其中,红心率与木射线比量、木射线比量与轴向薄壁细胞比量、木射线比量与管胞比量、木射线比量与微纤丝角、轴向薄壁细胞比量与管胞比量、管胞长与管胞宽、管胞长与管胞长宽比、管胞长与微纤丝角、管胞宽与微纤丝角等9对性状极显著相关(P<0.01),单株材积与轴向薄壁细胞比量、基本密度与管胞宽等2对性状显著相关(P<0.05),单株材积与管胞比量显著相关(P<0.1)。
表4 融水红心杉木优树10个材性性状相关分析
4 讨论
生长量直接决定林木个体和单位面积的木材产量, 是用材树种遗传改良重要的育种目标,而生长与材质性状的遗传相关性是目前林木遗传研究的热点,研究主要集中在生长性状与木材基本密度、管胞长度、管胞宽等材性性状的相关关系上[7-8]。木材密度是木材品质重要的因子之一, 它影响木材的力学强度, 直接或间接决定木材的产量和品质。木材基本密度作为针叶树材性的重要指标,在针叶材改良中具有重要地位[9-11]。有研究表明,杉木生长与材质性状间呈不显著负相关[12-15]。本研究中,融水红心杉优树单株材积与轴向薄壁细胞比量呈显著正相关,与管胞比量呈显著负相关,而与基本密度间呈不显著负相关,这使红心杉生长量与材性相结合的遗传改良成为可能。
本研究采用生长锥取样测定分析融水红心杉优树材质性状变异规律,选取木质部心部、中部和边部3个样点进行材质性状测定, 基本反应了株内径向的变异趋势[16-17]。融水红心杉优树胸径处管胞长度从髓心到树皮表现为增加的趋势, 径向变异规律应属PashinⅡ型[18]。针叶树材主要由管胞、薄壁细胞、木射线组织构成,而管胞组织占针叶木材体积的90%以上[19]。有研究表明,管胞长宽比大于50的木材适宜制浆造纸,且愈大愈好[19];管胞长度保持在330 μm以上, 纸张的耐折度、撕裂指数、耐破指数等不再受其影响,而管胞长度越长、管胞长宽比越大,纸张的各项物理力学性能均得到有效提高[21-22]。本研究中,融水红心杉优树的管胞比量分布在80.012%~91.937%,管胞长度分布在1 951~2 898 μm,远大于330 μm,管胞宽度分布在36~44 μm,管胞长宽比分布在52~79。融水红心杉木材不仅是优异的建筑材,也是良好的纸浆材。
微纤丝角为细胞壁中纤维素链的螺旋卷索与纤维轴之间的夹角[23]。已有研究表明,微纤丝角影响木材管胞的基本强度和特性[24], 与木材强度、硬度密切相关[25],是无节木材强度的重要决定因素,是影响木材综合性质的一个重要因子。本研究中,融水红心杉优树微纤丝角分布在5.879°~8.675°,且微纤丝角与木射线比量显著负相关,与管胞长、管胞宽显著正相关。
近年来,融水种源杉木面临着基因资源逐渐丧失的困境,种质资源的保护已成当务之急。本研究通过对融水下洞、永乐2地区红心杉优树材质性状研究发现,2地区红心杉优树在材质性状上存在广泛而显著差异,本研究结果为开展融水红心杉种质资源的挖掘、保护和利用工作提供了坚实的理论依据和实践基础。
5 小结
通过分析广西融水种源红心杉优树材质性状的变异规律,发现测定的10个性状均是连续性数量性状,红心率、基本密度、木射线比量、管胞比量、管胞长、管胞宽、管胞长宽比等性状数据服从正态分布;早、晚材的管胞长度、管胞宽度和管胞长宽比等性状数据呈从心材至边材逐渐增加的规律;单株材积和红心率是重要的经济性状,这2个性状在两地区的表型平均值分别为0.684、0.594 m3和46.809%、55.042%;红心率等6个表型性状存在极显著或显著差异。10个材质性状间存在12对表型显著相关,其中,单株材积与轴向薄壁细胞比量呈显著正相关(P<0.05),红心率与木射线比量呈极显著正相关(P<0.01),而单株材积与基本密度相关不显著,这使红心杉生长量与材性相结合的遗传改良成为可能。
[1] 全国杉木种源试验协作组. 杉木造林区种源选择[J].林业科学研究,1988,1(1):1-13.
[2] 叶培忠,陈岳武. 杉木自然类型的研究[J]. 林业科学,1964,9(4):297-310.
[3] 胡德活,郝玉宝,梁 机,等. 广东乐昌杉木种质资源库无性系生长与材质性状的变异分析[J]. 西南林业大学学报,2011,31(6):1-5.
[4] 刘子英,王武文,刘 涛. 陈山红心杉速生丰产培育试验[J]. 江西林业科技,2012(5):7-9,29.
[5] 邓绍林. 桂西北杉木人工林伐根直径材积表编制及应用[J]. 广西林业科学,1999,28(3):138-141.
[6] Donaldson L A. Within and between tree variation in microfibril angle inPinusradiada[J].New Zealand Journal of Forestry, 1993, 22(1):77-86.
[7] Irbe I, Sable I, Noldt G,etal. Wood and tracheid properties of Norway spruce (Piceaabies(L.) Karst.) clones grown on former agricultural land in Latvia[J]. Baltic Forestry, 2015, 21(1):114-123.
[8] Pande P, Rawat L. Effect of growth on wood traits in seed-raised plantations ofDalbergiasissooRoxb.[J]. Journal of Forestry Research, 2015, 26(1):241-245.
[9] 刘斯通,郑会全,梁瑞友,等. 杉木种子园 20 年生子代林优树的初评[J]. 中南林业科技大学学报,2012,32(9):20-23.
[10] 王秋玉,曲丽娜,贾洪柏,等. 白桦天然种群木材纤维性状、微纤丝角和基本密度的变异[J]. 东北林业大学学报,2007,35(2):1-3,6.
[11] 赵承开,高建亮,朱林峰,等. 无性系杉木木材物理性质研究[J]. 中南林学院学报,2006,26(6):165-168.
[12] 黄寿先, 周传明, 朱栗琼,等.杉木半同胞家系生长和材性遗传变异研究[J].广西植物,2004,24(6): 535-539.
[13] 施季森,叶志宏,陈岳武,等.杉木木材材性的遗传和变异研究——Ⅱ.杉木种子园自由授粉子代间木材密度的遗传变异和性状之间的相关性[J].南京林业大学学报:自然科学版,1987,11(4):15-25.
[14] 王润辉,胡德活,郑会全,等. 杉木无性系生长和材性变异及多性状指数选择[J]. 林业科学,2012,48(3):45-50.
[15] 李晓储,黄利斌,王 伟,等. 杉木木材基本密度变异的研究[J]. 林业科学研究,1999,12(2):179-184.
[16] 吴义强,罗建举. 巨桉无性系株内、株间解剖性质变异的研究[J]. 中南林学院学报,2000,20(3):34-41.
[17] 罗建举. 桉树纸浆用材林木材遗传学特性的研究[D ].北京: 中国林业科学研究院,1999.
[18] Panshin A J, Carl de Zeeuw. Textbook of wood technology 2[M].New York: Mc Graw Hill Book Company, 1980.
[19] 郭明辉. 红松人工林木材解剖特征的径向变异[J]. 东北林业大学学报,2001,29(4) : 12-15.
[20] Yoshizawa N,Kiyomiya m,Idei T. Variations in tracheid length and morphological changes in tracheid tips associated with the development of compression wood[J]. Wood Science and Technology,1987,21(1) : 1-10.
[21] 白默飞,刘盛全,周 亮,等. 兴安落叶松管胞形态特征和微纤丝角及其径向变异的研究[J]. 安徽农业大学学报,2009,36(2):189-193.
[22] 汪贵斌,曹福亮,柳学军,等. 落羽杉种源木材微纤丝角和纤维形态的变异[J].林业科学,2007,43(6): 117-122.
[23] Walke J C F,Butterfield B G. The importance of microfibril angle for the processing industries[J]. New Zealand Forestry, 1995, 40(4): 34-40.
[24] Prud H R E, Noah J. Determination of fibril angle distribution in wood fiber: A comparison between the Xray diffraction and the polarized microscopemethods[J]. Wood and Fiber Science, 2007, 6(4): 282-288.
[25] Fang S Z,Yang W Z,Fu X X. Variation of microfibril angle and its correlation to wood properties in poplars[J]. Journal of Forestry Research, 2004, 15(4) : 261-267.
(责任编辑:徐玉秀)
Research on Variation Pattern of Wood Properties of Red-heart Chinese Fir Plus Trees, a Featured Provenance from Rongshui of Guangxi
LI Kui-peng1, WEI Zheng-cheng2, HUANG Kai-yong1, Dong Li-jun2, HUANG Hong-fei2, CHEN Qin1, DAI Jun1, TAN Wen-jing2
(1.Guangxi Forestry Research Institute, Key Laboratory of Central South Fast-growing Timber Cultivation of State Forestry Administration, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning 530002, Guangxi, China;2.Beijianghe State-owned Forest Farm of Guangxi, Rongshui 545300, Guangxi, China )
[Objective]To Measure and analyze the wood properties of red-heart Chinese fir (Cunninghamialanceolata) plus trees, the provenance from Rongshui of Guangxi, and to investigate the wood properties variation pattern of the trees. [Method] Sixty 20-year-old plus trees of red-heart Chinese fir were chosen as research material. The wood properties such as wood volume, wood basic density, tissue proportion, tracheid properties and tracheid microfibril angle were assayed and the variation pattern of relevant wood properties was analyzed. [Result] The heartwood ratio, wood basic density, xylem ray proportion, tracheid proportion, tracheid length, tracheid width, and the length-width ratios of tracheid obeyed normal distribution. The variable coefficient of axially parenchyma proportion of red-heart Chinese fir plus trees from two plots in Rongshui was 35.08% and 44.97% respectively, showing a significant variation. The variable coefficient of tracheid proportion was 3.28% and 3.56% respectively, showing a small variation. There were highly significant differences (P<0.01) in heartwood ratio, xylem ray proportion, tracheid length, tracheid width, tracheid microfibril angle and significant differences(P<0.05)in parenchyma proportion between the plus trees from the two locations. There were 12 significant phenotype correlations among 10 wood properties data. [Conclusion] All the 10 characters assayed are continual quantitative. The data of tracheid length, tracheid width and length-width ratios of tracheid of early wood and late wood increase from heartwood to sapwood. The heartwood ratio and individual volume are both important economic characters. There are very significant positive correlation (P<0.01) between heartwood ratio and xylem ray proportion, and significant positive correlation (P<0.05) between the individual volume and axially parenchyma proportion. The volume of individual tree does not correlate significantly with the wood basic density, which makes it possible to the genetic improvement of volume combined with wood properties of red-heart Chinese fir.
Cunninghamialanceolata; red heart; wood properties; variation; correlation
10.13275/j.cnki.lykxyj.2017.03.009
2016-07-29
广西重点研发计划(桂科AB16380052);广西科学研究与技术开发计划项目(桂科能1598025-48);广西林业科技项目(桂林科字[2012]第10号)
李魁鹏(1984—),博士,主要从事杉木遗传育种研究.E-mail:kuipeng.li@gmail.com
* 通讯作者:黄开勇,研究员,主要从事杉木培育与遗传改良研究.E-mail:huangky73@163.com
S791.27
A
1001-1498(2017)03-0424-06