APP下载

内毒素在肝胰岛素抵抗中对肝细胞线粒体功能的影响

2017-06-03王文递林雅玲宋彬妤刘晓梁

中国医药导报 2017年12期
关键词:胰岛素抵抗氧化应激

王文递++林雅玲++宋彬妤++刘晓梁+王明亮++赵成瑞++王旭文++吴惠文

[摘要] 目的 研究果糖饮食及皮下注射内毒素(LPS)致大鼠肝胰岛素抵抗(IR)及内毒素血症中,LPS对肝细胞线粒体功能的影响。 方法 30只SD雄性大鼠随机分为三组。对照组(NC组):普通饲料喂养;果糖组(HFD组):10%果糖水喂养;LPS组:皮下注射LPS 300 μg/(kg·d)。8周糖耐量实验后,检测血浆肝酶、空腹胰岛素、LPS变化,计算IR指数;检测肝组织氧化损伤及能量代谢指标;Western blot检测肝组织胰岛素信号转导蛋白及线粒体内膜蛋白(UCP2)表达;观察肝组织病理学变化。分离培养大鼠肝细胞分为四组。NC组:DMEM培养液培养;HFD组:培养液+果糖水(4.5 g/L);LPS组:培养液+LPS(10 mg/L);果糖+LPS组(H+L组):培养液+果糖水(4.5 g/L)+LPS(10 mg/L)。20 h后,检测肝细胞线粒体功能及胰岛素信号转导蛋白表達。 结果 与NC组比较,HFD组与LPS组LPS、肝酶及氧化损伤产物显著升高,能量代谢异常(P < 0.01),胰岛素信号转导蛋白表达降低,UCP2表达升高(P < 0.01);HFD组与LPS组上述指标变化差异无统计学意义(P > 0.05)。HFD组、LPS组和H+L组细胞上清液氧化损伤产物高于NC组(P < 0.05或P < 0.01),能量代谢异常(P < 0.05),胰岛素信号转导蛋白表达下降,UCP2表达升高(P < 0.05或P < 0.01);各干预组之间以上指标变化差异无统计学意义(P > 0.05)。 结论 果糖饮食及皮下注射LPS致大鼠肝IR中,伴有内毒素血症。LPS可促发肝氧化应激,影响肝细胞线粒体功能,促进代谢性疾病的发生。

[关键词] 内毒素血症;胰岛素抵抗;氧化应激;线粒体功能

[中图分类号] R33 [文献标识码] A [文章编号] 1673-7210(2017)04(c)-0033-06

[Abstract] Objective To study the effect of LPS on hepatic mitochondrial function in rats with hepatic insulin resistance (IR) and endotoxemia caused by fructose diet and subcutaneous injection of endotoxin. Methods 30 SD male rats were randomly divided into three groups. The control group (NC group), fed with the general feeding; fructose group (HFD group), fed with 10% fructose water; LPS group was administered subcutaneously with LPS [300 μg/(kg·d)]. 8 weeks later, glucose tolerance test was measured, the changes of liver enzymes, fasting plasma insulin and LPS were detected, and HOMA-IR was calculated. The indexes of hepatic oxidative damage and energy metabolism were measured. Western blot was used to detect the insulin signal transduction proteins and mitochondrial transmembrane protein (UCP2) in hepatic tissue. The pathological changes of liver tissue were observed. Rat hepatocytes were isolated and divided into four groups: NC group incubated with DMEM medium; HFD group incubated with medium containing fructose water (4.5 g/L); LPS group incubated with medium containing LPS (10 mg/L); fructose + LPS group (H + L group) incubated with medium containing fructose water (4.5 g/L) and LPS (10 mg/L). After 20 h, the mitochondrial function and protein expression of insulin signal transduction were detected. Results Compared with NC group, the levels of plasma LPS, liver enzymes, HOMA-IR and oxidative damage products in HFD group and LPS group were significantly increased (P < 0.01), energy metabolism was abnormal (P < 0.01), insulin signal transduction protein expressions were decreased and UCP2 expressions were increased (P < 0.01); these indexes had no significant differences between the HFD group and the LPS group (P > 0.05). Compared with NC group, oxidative damage products of the cell supernatant in HFD group, LPS group and H+L group were higher (P < 0.05 or P < 0.01), energy metabolism was abnormal (P < 0.05), insulin signal transduction protein expressions were decreased and UCP2 expressions were increased (P < 0.05 or P < 0.01); these indexes had no significant difference between the three intervention groups (P > 0.05). Conclusion Fructose diet and subcutaneous injection of LPS can induce liver insulin resistance, and accompany with endotoxemia. LPS can initiate liver oxidative stress, affect hepatocytes mitochondrial function, and promote the occurrence of metabolic diseases.

[Key words] Endotoxemia; Insulin resistance; Oxidative stress; Mitochondrial function

近年来,随着生活方式的改变,代谢性疾病的发病率逐年增高。研究显示,代谢性疾病发病的共同基础为胰岛素抵抗(insulin resistance,IR)。肝脏作为机体的重要代谢器官,在代谢疾病的发生中起关键作用。Cani等[1]研究发现,小鼠给予4周高脂饮食或内毒素(lipopolysaccharide,LPS)注射早期便出现肝促炎因子表达增加及肝IR。可见,肝脏是LPS诱导损伤的首要的目标。研究显示,肝细胞损伤时往往伴有线粒体功能异常,促氧化物质生成增加[2-4],说明氧化应激(oxidative stress,OS)致线粒体功能损伤在代谢疾病中扮演着重要角色。本研究拟通过果糖饮食及皮下注射LPS诱导大鼠发生肝IR及内毒素血症,结合体内及体外实验研究LPS对肝细胞线粒体功能的影响,以期进一步阐明内毒素血症在代谢疾病发生中的作用。

1 材料与方法

1.1 动物与分组

30只雄性SD大鼠,体重180~200 g,购自山西医科大学实验动物中心,合格证号:0107010。随机分为三组,每组各10只。对照组(normal control,NC组),正常饮食;果糖组(high fructose diet,HFD组),给予标准饲料+10%果糖水;LPS组,给予正常饮食并皮下注射LPS 300 μg/(kg·d)。8周末乙醚麻醉,腹主动脉采血并分离血浆,部分肝组织置于4%多聚甲醛溶液固定或-80℃保存。

1.2 细胞分离与分组

采用胶原酶二步灌流法[5-7]分离培养大鼠肝细胞并分为四组:NC组,DMEM培养基培养;HFD组,培养液+果糖水(4.5 g/L)[8];LPS组,培养液+LPS(10 mg/L)[9];果糖+LPS组(H+L组),培养液+果糖水(4.5 g/L)+ LPS(10 mg/L)。20 h后,吸取细胞上清液,收集肝细胞于-40℃保存。

1.3 主要试剂

谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-PX)、谷丙转氨酶(glutamic-pyruvic transaminase,ALT)、谷草轉氨酶(glutamic oxalacetic transaminase,AST)试剂盒购自南京建成公司。胰岛素、鲎试剂盒购于R&D公司。8-羟基脱氧鸟苷(8-hydroxy-2deoxyguanosine,8-OhdG)、丙二醛(Malondialdehyde,MDA)、4-羟壬烯醛(4-hydroxynonenal,4-HNE)、二磷酸腺苷(adenosine diphosphate,ADP)、三磷酸腺苷(adenosine triphosphate,ATP)ELISA试剂盒购自上海西唐公司。胰岛素受体底物1(insulin receptor substrate 1,IRS1)及其磷酸化蛋白(phosphorylated insulin receptor substrat 1,p-IRS1Try632)购自Santa Cruz公司,解偶联蛋白2(uncoupling protein 2,UCP2)、磷脂酰肌醇3-激酶(phospha?鄄tidylinositol3-kinase,PI3K)及其磷酸化蛋白(phosphorylated phosphatidylinositol-3-kinase,p-PI3KTyr458)购自Abcam公司。

1.4 检测指标与方法

1.4.1 腹腔注射糖耐量实验(IPGTT) 每周检测大鼠体重,8周末空腹腹腔注射50%葡萄糖溶液(2 g/kg)。尾静脉采血,采用快速血糖仪(罗氏活力型)分别检测注射前(0 min)、注射后(15、30、120 min)血糖水平。

1.4.2 血浆肝酶、LPS检测及肝IR评估 采用酶法测定血糖、血浆AST及ALT;鲎试剂法检测LPS水平;ELISA检测胰岛素变化,计算IR指数(HOMA-IR)。公式:HOMA-IR=空腹血糖(mmol/L)×空腹胰岛素(EU/mL)/22.5。

1.4.3 氧化损伤产物及能量代谢指标检测 酶法测定GSH-PX,ELISA法检测肝组织与肝细胞8-OhdG、MDA、4-HNE、ADP及ATP的变化。

1.4.4 肝组织病理学检测 取固定后的肝组织,常规石蜡包埋、切片,HE染色,观察其病理学变化。

1.4.5 Western blot检测 组织或细胞样本,加入裂解液于冰上裂解,4℃ 13 000 r/min离心10 min,取上清,BCA法定量并调整蛋白样品浓度后煮沸变性,经电泳及转膜后,于5% BSA或脱脂奶粉中封闭2 h,加一抗4℃过夜孵育,TBST洗涤3 次/10 min,加二抗,室温孵育90 min,洗涤后滴加ECL发光液,于Fluor Chem成像系统采集并分析蛋白表达。

1.5 统计学方法

采用 SPSS 17.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验;以P < 0.05为差异有统计学意义。

2 结果

2.1 在体实验

2.1.1 大鼠一般状况 实验期间,HFD组与LPS组大鼠体重在2~6周显著高于NC组,差异有统计学意义(P < 0.05或P < 0.01)。见图1。

2.1.2 IPGTT结果 与NC组相比,HFD组与LPS组糖耐量异常,差异有统计学意义(P < 0.05或P < 0.01)。见图2。

2.1.3 血浆肝酶、LPS及肝IR评估结果 HFD组与LPS组血浆肝酶、LPS及HOMA-IR较NC组显著升高(P < 0.01);HFD组与LPS组各指标比较,差异无统计学意义(P > 0.05)。见表1。

2.1.4 氧化损伤产物及能量代谢指标变化 与NC组相比,HFD组与LPS组氧化损伤产物显著增高(P < 0.01),抗氧化物质GSH-PX及能量代谢指标明显下降(P < 0.01);HFD组与LPS组各指标比较,差异无统计学意义(P > 0.05)。见表2。

2.1.5 肝组织病理学变化 HE染色后光镜下可见NC组肝细胞无空泡和坏死,而HFD组与LPS组肝细胞包浆内有明显脂滴空泡。见图3。

2.1.6 Western blot结果 与NC组相比,HFD组与LPS组胰岛素信号转导蛋白p-IRS1Tyr632/IRS1和p-PI3KTyr458/PI3K比值显著降低(P < 0.01),UCP2表达显著升高(P < 0.01);HFD组与LPS组各蛋白表达水平比较,差异无统计学意义(P > 0.05)。见图4。

2.2 离体实验

2.2.1 氧化损伤产物及能量代谢指标检测结果 HFD组、LPS组和H+L组氧化损伤产物较NC组显著增高(P < 0.05或P < 0.01),能量代谢指标较NC组显著降低(P < 0.05);HFD组、LPS组和H+L组间各指标差异无统计学意义(P > 0.05)。见表3。

3 讨论

线粒体是细胞中制造能量主要场所,其代谢的稳定影响细胞正常生理功能。研究证实,线粒体功能异常在代谢疾病发病中发挥重要作用[10-12]。代谢疾病发病的共同基础为IR。研究发现,小鼠给予高脂饮食或LPS注射后,出现血浆LPS升高及肝IR[1,13]。Zhou等[14]研究也证实,高果糖饮食致大鼠发生代谢疾病中伴有内毒素血症。本研究旨在探讨高果糖饮食致大鼠肝IR中,LPS对肝细胞线粒体功能的影响,为进一步阐明代谢疾病发病提供理论依据。

实验结果显示,果糖诱导大鼠肝IR时,肝脏处于OS状态(MDA、4-HNE增多及GSH-PX减少),且伴有线粒体结构和功能损伤(8-OhdG增高,ADP及ATP降低)。Bonnard等[15]研究亦证实,高糖、高脂饮食可致小鼠肌细胞活性氧(ROS)生成增加,线粒体功能異常。由此可见,OS与肝细胞线粒体功能障碍参与果糖致大鼠肝IR的发病。研究结果同时显示,皮下低剂量注射LPS模拟内毒素血症及体外实验LPS干预肝细胞,均可致过氧化物生成增多及线粒体损伤。由此推测,在肝IR中,LPS可诱导ROS生成增多,使肝脏处于OS状态,致使线粒体功能障碍。OS与细胞线粒体关系密切。线粒体既是ROS产生的主要场所,又是ROS攻击的首要目标。由于线粒体DNA缺乏保护性组蛋白修饰,ROS可干扰线粒体DNA、RNA复制及氧化线粒体蛋白,影响其功能[16-17]。此外,ROS还可诱导线粒体内膜通透性改变,使Ca2+大量内流,引起线粒体氧化磷酸化障碍,损伤线粒体[18-19]。内流Ca2+不仅会致ATP合成减少加重细胞损伤,且可通过激活Ca2+依赖性蛋白酶促进ROS生成。可见,OS与线粒体功能损伤相互作用,损伤肝细胞,促进肝IR的发生。

UCP2是线粒体内膜蛋白,在调节线粒体内氧化磷酸化和ATP产生中发挥着重要作用。正常线粒体可通过氧化磷酸化解偶联和启动抗氧化防御系统对抗氧化损伤作用。Chan等[20]发现,胰岛β细胞UCP2 mRNA表达增高可使线粒体氧化磷酸化过程解偶联,减少ATP产生。本实验结果显示,果糖及LPS致肝细胞损伤时,UCP2表达升高,说明果糖与LPS促进了UCP2的表达,可能与其代偿性发挥抗氧化功能有关。实验结果提示,LPS可引起肝UCP2的表达上调,使线粒体能量储备减少,最终导致线粒体功能障碍。实验中还发现,果糖在肝损伤中对线粒体的影响与LPS十分相似,其机制有待进一步探讨。

综上所述,果糖致肝损伤时,LPS可促发肝脏OS,影响线粒体功能,促使肝脏IR及代谢疾病的发生。

[参考文献]

[1] Cani PD,Amar J,Iglesias MA,et al. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes,2007, 56(7):1761-1772.

[2] Kojima H,Sakurai S,Uemura M,et al. Mitochondrial abnor?鄄mality and oxidative stress in nonalcoholic steatohepatitis [J]. Alcoholism,Clinical and Experimental Research,2007,31(Supplement):61-66.

[3] Mantena SK,King AL,Andringa KK,et al. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases [J]. Free Radical Biology & Medicine,2008,44(7):1259-1272.

[4] Koek GH,Liedorp PR,Bast A. The role of oxidative stress in non-alcoholic steatohepatitis [J]. Clinica Chimica Act:International Journal of Clinical Chemistry,2011,412(15-16):1297-1305.

[5] 叶娟,王群,付溪,等.原代大鼠肝细胞分离及培养鉴定[J].中华实用儿科临床杂志,2012,27(7):531-533.

[6] 杨友生,瞿祥春,胡松,等.三种大鼠肝细胞分离及原代培养方法的比较[J].中华实验外科杂志,2016,33(3):656-658.

[7] 张义冉,王玲玲,王家晶,等.原代大鼠肝细胞分离培养方法改良[J].中国兽医学报,2013,33(2):292-295.

[8] Chapnik N,Rozenblit-Susan S,Genzer Y,et al. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes [J]. International Journal of Biochemistry & Cell Biology,2016,77(Pt A):35-40.

[9] 梁秀彬,乔中东,尹镭,等.内毒素体外诱导大鼠肝细胞凋亡[J].中华肝脏病杂志,1999,7(2):72-73.

[10] Leuner K,Kurz C,Guidetti G,et al. Improved Mitochon?鄄drial Function in Brain Aging and Alzheimer Disease-the New Mechanism of Action of the Old Metabolic Enhancer Piracetam [J]. Frontiers in Neuroscience,2010,4(4):1-11.

[11] Satapati S,Kucejova B,Duarte JA,et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver [J]. Journal of Clinical Investigation,2015,125(12):4447-4462.

[12] Wada J,Nakatsuka A. Mitochondrial Dynamics and Mitoc?鄄hondrial Dysfunction in Diabetes [J]. Acta Medica Okayama,2016,70(3):151-158.

[13] Cani PD,Bibiloni R,Knauf C,et al. Changes in gut mic?鄄robiota control metabolic endotoxemia-induced inflam?鄄mation in high-fat diet-induced obesity and diabetes in mice [J]. Diabetes,2008,57(6):1470-1481.

[14] Zhou X,Han D,Xu R,et al. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet [J]. Plos One,2014, 9(12):1-22.

[15] Bonnard C,Durand A,Peyrol S,et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J]. Journal of Clinical Investigation,2008,118(2):789-800.

[16] Rolo AP,Teodoro JS,Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis [J]. Free Radical Biology & Medicine,2012,52(1):59-69.

[17] Park CB,Larsson NG. Mitochondrial DNA mutations in disease and aging [J]. Journal of Cell Biology,2011,193(5):809-818.

[18] Rains JL,Jain SK. Oxidative stress,insulin signaling and diabetes [J]. Free Radical Biology & Medicine,2011,50(5):567-575.

[19] Maiese K,Morhan SD,Zhao ZC. Oxidative Stress Biology and Cell Injury During Type 1 and Type 2 Diabetes Mellitus [J]. Current Neurovascular Research,2007,4(1):63-71.

[20] Chan CB,Saleh MC,Koshkin V,et al. Uncoupling protein 2 and islet function [J]. Diabetes,2004,53 (2):S136-142.

(收稿日期:2016-12-12 本文編辑:程 铭)

猜你喜欢

胰岛素抵抗氧化应激
基于炎症-氧化应激角度探讨中药对新型冠状病毒肺炎的干预作用
血清脂联素、胰岛素抵抗与代谢综合征的相关性研究
妊娠期糖尿病与肿瘤坏死因子—α启动子基因多态性相关性的研究
胰岛素抵抗与非胰岛素抵抗多囊卵巢综合征的临床治疗分析
说说“胰岛素抵抗”那些事
氧化应激与糖尿病视网膜病变
mTOR在运动干预高脂膳食大鼠胰岛素抵抗形成中的作用及机制研究
尿酸对人肝细胞功能及氧化应激的影响
乙肝病毒S蛋白对人精子氧化应激的影响
氧化应激与结直肠癌的关系