APP下载

面肌痉挛患者微血管减压术中侧方扩散反应监测对疗效的预测作用

2017-04-05焦风张磊赵春维刘波王栋梁梁冶矢刘献增

山东医药 2017年15期
关键词:面肌面神经微血管

焦风,张磊,赵春维,刘波,王栋梁,梁冶矢,刘献增

(1北京大学人民医院,北京100044;2乌鲁木齐市友谊医院)

面肌痉挛患者微血管减压术中侧方扩散反应监测对疗效的预测作用

焦风1,张磊2,赵春维1,刘波1,王栋梁1,梁冶矢1,刘献增1

(1北京大学人民医院,北京100044;2乌鲁木齐市友谊医院)

目的 分析面肌痉挛患者微血管减压术(MVD)中侧方扩散反应(LSR)监测对疗效的预测作用。方法 面肌痉挛患者45例,均行MVD术治疗,分别于术中微血管减压前后进行LSR监测。分别于术后第1、7天及术后3个月采用自我评价量表评估手术效果。分析减压后LSR变化与疗效的关系。结果 40例减压后LSR即刻消失(LSR消失组);5例LSR未即刻消失(LSR未消失组),其中1例下降86%、2例下降幅度不足50%、1例无变化、1例因持续自发放电未引出LSR。术后第1天,LSR消失组治愈31例、好转9例,LSR未消失组治愈1例、好转1例、无效3例;术后第7天,LSR消失组治愈35例、好转5例,LSR未消失组治愈1例、好转2例、无效2例;术后3个月,LSR消失组治愈39例、好转1例,LSR未消失组治愈1例、好转2例、无效2例。随访3~88个月,LSR消失组全部治愈,LSR未消失组好转3例、无效2例。术后各观察时点LSR消失组治愈和好转比例均高于LSR未消失组,减压后LSR是否消失与疗效存在相关性(P均<0.05)。结论 面肌痉挛患者MVD术中LSR监测结果与疗效有关,减压后LSR消失者治愈及好转率较高。

面肌痉挛;微血管减压术;侧方扩散反应

面肌痉挛是以一侧面神经支配肌肉不自主阵发性抽动为主要症状的疾病。目前认为面肌痉挛是由面神经出根区受血管压迫导致的[1]。微血管减压术(MVD)是惟一能够治愈面肌痉挛的方法[2]。侧方扩散反应(LSR)为面肌痉挛患者特征性的电生理表现,表现为在痉挛侧刺激面神经一个分支,可在其他分支支配的肌肉中记录到诱发肌电图。在面神经MVD术中应用LSR监测有助于正确判断责任血管以保证减压充分,但学界对LSR监测结果能否作为治疗效果的预测因素仍存在争议[3~5]。为此,本研究分析了面肌痉挛患者MVD术中LSR监测结果对手术疗效预测价值,现报告如下。

1 资料与方法

1.1 临床资料 2009年5月~2016年7月北京大学人民医院收治的面肌痉挛患者45例,男13例、女32例,年龄28~81岁,病程6个月~20年,左侧27例、右侧28例。所有患者均通过3.0 T MRI扫描除外肿瘤及血管畸形等继发原因并采用3D-FIETSTA序列预测面神经出根区有无压迫、预测责任血管[6]。所有患者均采用MVD术治疗。患者取健侧卧位,头向健侧旋转10°、下垂15°,使乳突根部位于最高点;枕下乙状窦后纵形切口,气钻颅骨钻孔后扩大骨窗直径约1.5 cm;显微镜下释放脑脊液,仔细分离蛛网膜并轻轻牵拉小脑绒球,显露面神经出根区;判断责任血管,小脑前下动脉(AICA)20例、小脑后下动脉(PICA)9例、椎动脉(VA)3例、AICA+PICA 4例、VA+AICA 2例、VA+PICA 6例、静脉1例,之后充分解剖责任血管与面神经的粘连,以Teflon棉垫开;术中根据LSR监测结果确定减压是否充分,必要时探查蛛网膜下腔的面神经全长。

1.2 LSR监测方法 于术中微血管减压前后进行LSR监测。监测LSR时,应用去极化型肌松药进行麻醉插管后不再应用肌松类药物,以异丙酚和芬太尼维持麻醉[7]。监测设备为CADWELL 32通道术中神经电生理监测仪。记录电极位置包括患侧面神经支配的额肌、眼轮匝肌、口轮匝肌、颏肌及三叉神经支配的咬肌,有一支插入肌腹并与另一支距离0.5 cm。刺激电极位于面神经分支的颞支,阴极位于患侧耳屏与外眦连线中点、阳极位于距阴极1 cm处。地线位于FPz点(根据国际10-20系统电极定位)。刺激颞支,额肌及眼轮匝肌有肌电图表现为直接刺激反应;观察患侧口轮匝肌及颏肌有无肌电图反应。初始刺激强度从5 mA开始,逐渐增加至20 mA,若仍未引出LSR则认为其消失;若初始刺激强度未引出LSR,但随着刺激强度增加、LSR重现,则认为LSR未消失,需重新探查面神经全程以保证充分减压[8]。

1.3 疗效评估方法 分别于术后第1、7天及术后3个月评估手术效果。患者以自我评价量表描述面肌痉挛症状改善的程度,改善100%为治愈,改善50%~90%为好转,0~50%无效。

1.4 统计学方法 采用SPSS16.0软件进行统计学分析。计数资料以频数表示,组间比较采用Fisher确切概率法。P<0.05为差异有统计学意义。

2 结果

40例减压后LSR即刻消失(LSR消失组);5例LSR未即刻消失(LSR未消失组),1例下降86%、2例下降幅度不足50%、1例无变化、1例因持续自发放电未引出LSR。术后第1天,LSR消失组治愈31例、好转9例,LSR未消失组治愈1例、好转1例、无效3例;术后第7天,LSR消失组治愈35例、好转5例,LSR未消失组治愈1例、好转2例、无效2例;术后3个月,LSR消失组治愈39例、好转1例,LSR未消失组治愈1例、好转2例、无效2例。随访3~88个月,LSR消失组全部治愈,LSR未消失组好转3例、无效2例。术后各观察时点LSR消失组治愈和好转比例均高于LSR未消失组,减压后LSR是否消失与疗效存在相关性(P均<0.05)。

3 讨论

面肌痉挛发病机制有两种学说:外周性学说认为面神经出脑干区覆盖的中枢性髓鞘受损,导致暴露的神经轴突互相接触,进而引发神经纤维之间跨突触传递的异位冲动;中枢性学说则认为各种原因引起面神经运动核兴奋性异常增高,进而导致面肌痉挛[9]。目前MVD已成为治疗面肌痉挛的最有效方法。术中准确找到责任血管并将面神经根出根区与责任血管充分垫开是手术成功的关键。LSR为面肌痉挛患者特征性的电生理表现[10]。

在临床实践中我们发现,当将责任血管从面神经根出根区分离开后,多数病例(40例)LSR即刻消失,部分病例反应幅度明显降低。究其原因我们考虑在解除血管对神经的压迫后,运动神经元的兴奋性随之降低并逐渐恢复正常。LSR可反映面神经传导通路的兴奋性,排除干扰后,LSR消失表明兴奋性恢复正常[11~13]。通过本组病例研究我们体会,术中应用LSR监测对正确判断责任血管和保证减压效果有很大帮助。部分病例在初步判定责任血管并减压后,LSR并未消失,其主要原因为术中对责任血管判断不正确或遗漏、对神经减压不充分、垫入Teflon棉位置不正确、远端血管压迫等。本组3例患者存在上述情况,经过调整显微镜角度重新探查发现另有其他压迫血管[14]。另外,有些责任血管游离不彻底,致使垫入的Telfon棉与面神经仍有紧密接触,调整垫棉后LSR消失。因此,通过术中LSR监测,可保障充分游离责任血管,并将Telfon棉垫入责任血管与脑干之间以改变责任血管的行程,完全解除其对面神经的压迫。

有研究表明MVD术中LSR消失或幅度较减压前明显下降预示着比较乐观的手术效果,极有可能完全缓解或大部分缓解面肌痉挛症状。本研究结果显示,术后第1、7天及术后术后3个月LSR消失组治愈和好转比例均高于LSR未消失组,且随访3~88个月也得到相同结果,认为减压后LSR是否消失与疗效存在相关性。这表明在充分减压后面神经核的兴奋性逐渐降至正常,进而面肌痉挛症状缓解。影响MVD术后缓解率的因素多种多样且比较复杂,术者经验也是影响手术效果的重要因素。LSR监测可帮助准确判断责任血管及减压是否充分,这对于经验不足的年轻神经外科医生或刚刚开展此类手术的神经外科单位有重要参考价值。LSR监测不但能减少寻找责任血管的时间,减少不必要的过分牵拉,起到保护面神经、听神经功能的作用;而且能够帮助判断减压是否充分,尤其是有多根责任血管时,可防止发生遗漏[15,16]。

由于术中LSR消失与否和术后疗效之间存在明显相关,因此,根据LSR监测结果制定不同的减压策略,尽可能减少责任血管遗漏,做到对面神经进行充分减压,有助于提高术后疗效。

[1] Kameyama S, Masuda H, Shirozu H, et al. Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm[J]. Clin Neurophysiol, 2016,127(5):2240-2245.

[2] Sun H, Li ST, Zhong J, et al. The strategy of microvascular decompression for hemifacial spasm: how to decide the endpoint of an MVD surgery[J]. Acta Neurochir(Wien), 2014,156(6):1155-1159.

[3] von Eckardstein K, Harper C, Castner M, et al. The significance of intraoperative electromyographic "lateral spread" in predicting outcome of microvascualr decompression for hemifacial spasm[J]. J Neurol Surg B Skull Base, 2014,75(3):198-203.

[4] Tobishima H, Hatayama T, Ohkuma H. Relation between the persistence of an abnormal muscle response and the long-term clinical course after microvascular decompression for hemifacial spasm[J]. Neurol Med Chir(Tokyo), 2014,54(6):474-482.

[5] Hirono S, Yamakami L, Sato M, et al. Continuous intraoperative monitoring of abnormal muscle response in microvascular decompression for hemifacial spasm; a real-time navigator for complete relief[J]. Neurosurg Rev, 2014,37(2):311-320.

[6] Jia JM, Guo H, Huo WJ, et al. Preoperative evaluation of patients with hemifacial spasm by three-dimensional time-of-flight (3D-TOF) and three dimensional constructive interference in steady state (3D-CISS) sequence[J]. Clin Neuroradiol, 2016,26(4):431-438.

[7] Wilkinson MF, Chowdhury T, Mutch WA, et al. Is hemifacial spasm a phenomenon of the central nervous system?-The role of desflurane on the lateral spread response[J]. Clin Neurophysiol, 2015,126(7):1354-1359.

[8] Jia G, Zhang L, Ren H, et al. What range of stimulus intensities should we apply to elicit abnormal muscle response in microvascular decompression for hemifacial spasm[J]. Acta Neurochir(Wien), 2017,159(2):251-257.

[9] Wilkinson MF, Chowdhury T, Mutch WA, et al. Analysis of facial motor evoked potentials for assessing a central mechanism in hemifacial spasm[J]. J Neurosurg, 2017,126(2):379-385.

[10] Fukuda M, Takao T, Hiraishi T, et al. Free-running EMG monitoring during microvascular decompression for hemifacial spasm[J]. Acta Neurochir(Wien), 2015,157(9):1505-1512.

[11] EI Damaty A, Rosenstengel C, Matthes M, et al. The value of lateral spread response monitoring in predicting the clinical outcome after microvascular decompression in hemifacial spasm: a prospective study on 100 patients[J]. Neurosurg Rev, 2016,39(3):455-466.

[12] Lee SH, Park BJ, Shin HS, et al. Prognostic ability of intraoperative electromyographic monitoring during microvascular decompression for hemifacial spasm to predict lateral spread response outcome[J]. J Neurosurg, 2016,126(2):391-396.

[13] Li S, Feng B, Xie C, et al. Good surgical outcomes of hemifacial spasm patients with obvious facial nerve indentation and color change[J]. World Neurosurg, 2016,92:218-222.

[14] Ishikawa M, Tanaka Y, Watanabe E. Microvascular decompression under neuroendoscopic view in hemifacial spasm: rostral-type compression and perforator-type compression[J]. Acta Neurochir(Wien), 2015,157(2):329-332.

[15] Kim HJ, Park YS, Ryu JS, et al. Intraoperative facial electromyography and brainstem auditory evoked potential findings in microvascular decompression for hemifacial spasm: correlation with postoperative delayed facial palsy[J]. Stereotact Funct Neurosurg, 2012,90(4):260-265.

[16] Thirumala PD, Wang X, Shah A, et al. Clinical impact of residual lateral spread response after adequate microvascular decompression for hemifacial spasm: A retrospective analysis[J]. Br J Neurosurg, 2015,29(6):818-822.

Prognostic value of intraoperative lateral spread response monitoring during microvascular decompression in patients with hemifacial spasm

JIAOFeng1,ZHANGLei,ZHAOChunwei,LIUBo,WANGDongliang,LIANGYeshi,LIUXianzeng

(1People'sHospitalofPekingUniversity,Beijing100044,China)

Objective To investigate the prognostic value of intraoperative lateral spread response (LSR) monitoring in the treatment of hemifacial spasm (HFS) by microvascular decompression (MVD). Methods Forty-five patients with primary HFS treated by MVD. During operations, we performed LSR monitoring before and after MVD respectively. All patients were assessed after operation on day 1 and 7, and at 3 month after surgery by self-assessment scale. We analyzed the relationship between the change of LSR and prognosis. Results In 40 patients, the LSR disappeared immediately after decompression (LSR disappeared group). In the remaining 5 patients, the LSR did not vanish immediately after decompression (LSR non vanishing group), one patient's LSR decreased 86%, 2 patients' LSR decreased above 50%, 1 patient had no change, and in 1 patient, LSR was not detected from the start. On day 1 after operation, in the LSR disappeared group, HFS was relieved totally in 31 patients, 9 patients described improvement; in the LSR non vanishing group, 1 patient totally relieved, 1 patient improved, and 3 patients failed. On day 7, in the LSR disappeared group, HFS was relieved totally in 35 patients, 5 patients described improvement; in the LSR non vanishing group, 1 patient totally relieved, 2 patient improved, and 2 patients failed. After 3 month, in the LSR disappeared group, HFS was relieved totally in 39 patients, 1 patients described improvement; in the LSR non vanishing group, 3 patient improved, and 2 patients failed. After 3-month to 88-month follow-up, in the LSR disappeared group, all the 40 patients cured, in the LSR non vanishing group, 3 patients improved and 2 patients failed. At all the postoperative observing time, the proportion of cure and improvement of the LSR disappeared group was higher than that of the LSR non vanishing group. Statistical analysis found a significant correlation between the relief of LSR and clinical outcome (allP<0.05). Conclusion LSR monitoring of HFS patients in MVD is correlated with the curative effect, and the rate of cure and improvement is higher in patients with disappeared LSR after decompression.

hemifacial spasm; microvascular decompression; lateral spread response

10.3969/j.issn.1002-266X.2017.15.021

R745.1

B

1002-266X(2017)15-0071-03

2016-12-08)

猜你喜欢

面肌面神经微血管
浮针治疗面神经麻痹的研究进展
乙型肝炎病毒与肝细胞癌微血管侵犯的相关性
针刺治疗原发性面肌痉挛的研究进展
面肌痉挛如何护理
蒙西医结合治疗周围性面神经麻痹的疗效观察
面神经麻痹80例的护理干预体会
根管治疗意外治愈面肌痉挛1例
神经肌肉电刺激治疗特发性面神经麻痹
IMP3在不同宫颈组织中的表达及其与微血管密度的相关性
上皮性卵巢癌组织中miR-126、EGFL7的表达与微血管密度的检测