冷冻胚胎移植的临床应用效果评价
2017-04-04马俊芳
马俊芳
(天津市中心妇产科医院,天津,300100)
冷冻胚胎移植的临床应用效果评价
马俊芳
(天津市中心妇产科医院,天津,300100)
体外受精-胚胎移植治疗不孕症的过程中,相比新鲜胚胎移植,冷冻胚胎移植(FET)移植成功率类似,但是异位妊娠发生率、围产期并发症发生率更低,新生儿结局较好。
辅助生殖技术;冷冻胚胎移植;新鲜胚胎移植
近年来随着胚胎冻存技术的不断提高,体外受精-胚胎移植(IVF-ET)治疗不孕症的过程中,冷冻胚胎移植(FET )的应用不断增多[1,2]。2006年欧洲数据显示[3],FET占全部辅助生殖(ART)周期的20%,在瑞典、德国及西班牙等国家,FET周期已经超过了新鲜胚胎移植周期,美国同期数据表明[4],FET周期占全部ART周期的16.0%。ART协会数据显示[5],2006~2012年FET周期数增加了82.5%,而新鲜周期仅增加了3.1%。最近研究结果也显示,相比新鲜胚胎移植,FET移植成功率类似,但异位妊娠发生率、围产期并发症发生率更低,新生儿结局较好。现综述如下。
1 移植成功率
美国疾控中心(CDC)统计了1997~2011年美国生殖医学中心新鲜胚胎移植和FET的成功率[6],结果显示在此时间段内,各个年龄组新鲜胚胎移植及FET成功率都得到了提高,例如在年龄<35岁组,新鲜周期的活产率由31%升高至40%,FET的活产率由21%升高至39%。FET周期的成功率并不低于新鲜移植。有学者认为,在目前比较新鲜胚胎移植与FET成功率的大多数研究中,较好的胚胎都是在新鲜胚胎移植周期进行移植,而在这些研究中,新鲜胚胎移植周期与FET的成功率并无差异[7]。有研究表明,在卵巢过度刺激综合征(OHSS)高风险患者中行全胚冻存后FET有更高的临床妊娠率[8]。考虑到行FET的多是质量相对不好的胚胎,如果用质量最好的胚胎行FET,可能成功率会更高。
最近一项包括三个随机对照实验(RCTs)、633名参与者的Meta分析比较了全胚冻存FET组及新鲜胚胎移植组的临床妊娠率(CPR)、持续妊娠率及流产率[9],发现全胚冻组CPR 、持续妊娠率较新鲜移植组高,两组流产率无统计学差异。三个RCTs得出了相似的结论,而且不论是卵裂期胚胎移植[10]还是囊胚移植[11,12],均不会对结论产生影响。但我们仍需严谨地解释上述结论。上述RCTs中研究对象相对年轻(年龄27~33岁),研究结果是否适用于年老者及预后不佳的患者尚需进一步研究。有研究认为,在年龄>35岁预后较差患者中也能得出相似的结论[13]。遗憾的是,上述三个RCTs均未报道有关围产期结局的数据。值得注意的是,在上述三个RCTs中,所有患者均采用激素替代周期解冻,有研究[14]表明,激素的干预可能会对子宫内膜容受性产生不利影响,从而影响成功率,由此我们可以推测,全胚冻后行自然周期FET成功率可能会更高。
2 异位妊娠发生率
IVF-ET是异位妊娠的危险因素之一,IVF-ET后异位妊娠的发病率为2%~5%[15],远高于自然妊娠的1%~2%[16],但体外受精(IVF)后异位妊娠高发生率的机制并不明确。有学者[17]认为,控制性超促排卵本身及之后增大的卵巢刺激腹膜以及取卵等都会加强子宫的收缩,从而导致异位妊娠的发生。既往研究表明,控制性超促排卵后内分泌环境的改变可能是新鲜周期异位妊娠发生率较高的原因[18]。目前,大量研究表明 FET较新鲜胚胎移植异位妊娠的发生率较低[19]。尤其是对于合并有其他高风险或不利条件的患者,例如OHSS高风险患者。在这类患者中应用全胚冻存FET,发生OHSS及异位妊娠的风险较低。目前尚无有效方法判断哪些患者具有异位妊娠的高风险,虽然有学者[20]的研究发现,输卵管因素不孕患者中异位妊娠发生率较高,但异位妊娠同样也可以发生于非输卵管因素不孕患者,因此将全胚冻FET常规应用于所有患者似乎是一个降低异位妊娠整体发生率的方法。
3 围产期并发症及新生儿结局
随着ART应用的普及,其安全性问题得到了广泛的关注。早在2004年有学者[21]就提出用新的度量标准,即BESST标准来衡量IVF结局,该指标强调了足月健康活产儿的出生这一不孕症夫妇的最终关注点。基于这一理论,目前的研究表明,FET对于IVF患者及新生儿来说都是一种更为安全的选择。
一项澳大利亚的研究以自然妊娠为对照组,研究了FET出生缺陷及新鲜移植出生缺陷发生率[22],结果发现,与自然妊娠相比,新鲜胚胎移植后出生缺陷发生率明显高,而FET组与自然妊娠组相比出生缺陷发生率无差异。来自澳大利亚的另一人口学研究发现[23],新鲜胚胎移植与自然妊娠相比,芽生出生缺陷发生率明显较高,而FET组与自然妊娠组相比无差异。
另外,一项Meta分析了FET组及新鲜胚胎移植组围产期并发症及新生儿结局[24],发现FET组早产、小于胎龄儿、低出生体重、产前出血的发生率较新鲜胚胎移植组低,FET组新生儿围产期死亡率也较低。最近,一项来自北欧国家的大样本队列研究印证了上述结论[25],然而,研究者发现FET组单胎妊娠出生儿大于胎龄儿及巨大儿发生率较新鲜胚胎移植组高,而且最近的一项研究表明,单纯母体因素并不能完全解释FET后巨大儿的高发生率[26]。
新鲜胚胎移植较差的围产期结局可能与早期胎盘形成不良有关。这可能与新鲜胚胎移植孕妇超生理剂量的E2水平相关。研究表明,E2水平与妊娠前3个月较低的妊娠相关血浆蛋白A(PAPP-A)水平有关。另外,有研究表明,升高的血清E2水平与小于胎龄儿及子痫前期的高发生率[27]有关。
就整体情况而言,FET妊娠结局较新鲜胚胎移植好。由于上述研究均为回顾性研究,质量较好的胚胎均在新鲜胚胎移植组进行移植,如果在新鲜胚胎移植周期行全胚冻FET,且选择质量最好的胚胎,则围产期结局可能会更好,但目前关于全胚冻存FET的围产期结局尚无研究。同时,FET后出生儿大于胎龄儿及巨大儿高发生率的机制也有待进一步研究, 出生儿大于胎龄儿与巨大儿后代的长期健康状况也需要进一步阐明。
虽然上述临床证据表明,胚冻存FET较新鲜胚胎移植预后较好,但就以下问题仍有争议。首先,冻存及冻融过程可能会对胚胎发育产生不利影响,冻存后胚胎的植入潜能与其解冻后质量密切有关,有研究表明,解冻后完整的胚胎较损伤的胚胎有更高的发育及植入潜能[28],但也有研究表明,只有少数卵裂球完整的胚胎仍能正常植入、妊娠,因此,仅靠形态学评估很难预测解冻后胚胎植入能力。解冻后培养是判断冻存后胚胎活性更为严格的标准,从而有效提高胚冻存FET成功率。有研究表明,双原核受精卵解冻后培养可有效避免移植严重冻存损伤胚胎,从而使植入率达到70%[29]。但解冻后培养可能使可移植胚胎数目减少,从而影响FET成功率。其次,有研究发现,解冻后囊胚纺锤体异常发生率较新鲜囊胚高,但研究者发现,虽然解冻后囊胚纺锤体异常发生率较高,但它们解冻后存活率并不受影响,这说明纺锤体异常本身并不会影响有丝分裂及胚胎的进一步发育。再次,有研究发现,解冻后胚胎与新鲜胚胎相比,基因表达有所不用[30],与相同发育阶段的新鲜胚胎相比,解冻组与凋亡/压力通道(BAX)、全能性通道(NANOG、SOX2、CDX2)有关的基因以及母系影响基因(ZAR1、E1F1AX、TSC2)等会发生改变。最后,全胚冻后行PET与新鲜胚胎移植相比,可能会增加患者的花费,这主要取决于各个中心对FET的收费、药费以及B超监测费用。另外,全胚冻存FET可能会延长患者的治疗时间。但如果考虑到FET可以显著降低OHSS的风险、异位妊娠风险及母儿并发症的风险,患者的整体花费可能反而低于新鲜移植。
[1] Evans J, Hannan NJ, Edgell TA, et al. Fresh versus frozen embryo transfer: backing clinicaldecisions with scientific and clinical evidence[J]. Hum Reprod Update, 2014,20(6):808-821.
[2] Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, et al. Twopregnancies following transfer of intact frozen-thawed embryos. Fertil Steril, 1984,42(2):293-296.
[3] De Mouzon J, Goossens V, Bhattacharya S, et al. European IVF monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE[J]. Hum Reprod, 2010,25(8):1851-1862.
[4] Shapiro BS, Daneshmand ST, Garner FC, et al. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer[J]. Fertil Steril, 2014,102(1):3-9.
[5] Dursun A, Sendag F, Terek MC, et al. Morphometric changes in the endometrium and serum leptin levels during the implantation period of the embryo in the rat in response to exogenous ovarian stimulation[J]. Fertil Steril, 2004, 82(Suppl 3):1121-1126.
[6] Sendag F, Akdogan A, Ozbilgin K, et al. Effect of ovarian stimulation with human menopausal gonadotropin and recombinant follicle stimulating hormone on the expression of integrins alpha3, beta1 in the rat endometrium during the implantation period[J]. Eur J Obstet Gynecol Reprod Biol, 2010, 150(1):57-60.
[7] Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptusand loss of pregnancy[J]. N Engl J Med, 1999, 340(23):1796-1799.
[8] Zapantis G, Szmyga MJ, Rybak EA, et al. Premature formation of nucleolar channel systems indicates advanced endometrial maturation following controlled ovarian hyperstimulation[J]. Hum Reprod, 2013, 28(12):3292-3300.
[9] Ubaldi F, Bourgain C, Tournaye H, et al. Endometrial evaluation by aspiration biopsy on the day of oocyte retrievalin the embryo transfer cycles in patients with serum progesterone rise during the follicular phase[J]. Fertil Steril, 1997, 67(3):521-526.
[10] Cha J, Sun X, Dey SK. Mechanisms of implantation:strategies for successful pregnancy[J]. Nat Med, 2012, 18(12):1754-1767.
[11] Liu Y, Lee KF, Ng EH, et al. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles[J]. Fertil Steril, 2008, 90(6):2152-2164.
[12] Horcajadas JA, Minguez P, Dopazo J, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications[J]. J Clin Endocrinol Metab, 2008,93(11):4500-4510.
[13] Li R, Qiao J, Wang L, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration[J]. Reprod Biol Endocrinol, 2011,6(9):29.
[14] Lee JY, Lee M, Lee SK.Role of endometrial immune cells in implantation[J]. Clin Exp Reprod Med, 2011,38(3):119-125.
[15] Mariee N, Li TC, Laird SM.Expression of leukaemia inhibitory factor andinterleukin 15 in endometrium of women with recurrent implantation failure after IVF;correlation with the number of endometrial natural killer cells[J]. Hum Reprod, 2012,27(7):1946-1954.
[16] Junovich G, Mayer Y, Azpiroz A, et al.Ovarian stimulation affects the levels of regulatory endometrial NK cells and angiogenic cytokine VEGF[J]. Am J Reprod Immunol, 2011,65(2):146-153.
[17] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders[J]. Fertil Steril, 2011,96(2):344-348.
[18] Griesinger G, Schultz L, Bauer T, et al.Ovarian hyperstimulation syndrome prevention by gonadotropin-releasing hormone agonist triggering of final oocyte maturation in a gonadotropin-releasing hormone antagonist protocol in combination with"freeze-all"strategy:a prospective multicentric study[J]. Fertil Steril, 2011, 95(6):2029-2033.
[19] Roque M,Lattes K, Serra S, et al.Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles:a systematic review and meta-analysis[J]. Fertil Steril, 2013,99(1):156-162.
[20] Aflatoonian A, Oskouian H, Ahmadi S, et al.Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles[J]. J Assist Reprod Genet, 2010,27(7):357-363.
[21] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders[J]. Fertil Steril, 2011,96(2):516-518.
[22] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen thawed embryo transfer in normal responders[J]. Fertil Steril, 2011,96(2):344-348.
[23] Schoolcraft WB, Katz-Jaffe MG.Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age[J]. Fertil Steril, 2013,100(3):615-619.
[24] Xiao Z, Zhou X, Xu W, et al.Natural cycle is superior to hormone replacement therapy cycle for vitrificated-preserved frozen-thawed embryo transfer[J]. Syst Biol Reprod Med, 2012,58(2):107-112.
[25] Shaw JL, Dey SK, Critchley HO, et al .Current knowledge of the aetiology of human tubal ectopic pregnancy[J]. Hum Reprod Update, 2010, 16(4):432-444.
[26] Farquhar CM.Ectopic pregnancy[J]. Lancet, 2005,366(9485):583-591.
[27] Decleer W, Osmanagaoglu K, Meganck G, et al. Slightly lower incidence of ectopic pregnancies in frozen embryo transfer cycles versus fresh in vitro fertilization-embryo transfer cycles: a retrospective cohort study[J]. Fertil Steril, 2014,101(1):162-165.
[28] Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance ofhuman fallopian tube cilia[J]. Hum Reprod Update, 2006,12(4):363-372.
[29] Huang B, Hu D, Qian K, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles[J]. Fertil Steril, 2014,102(5):1345-1349.
[30] Min JK,Breheny SA,MacLachlan V,et al.What is the most relevant standard ofsuccess in assisted reproduction?The singleton, term gestation, live birthrate per cycle initiated:the BESST endpoint for assisted reproduction[J]. Hum Reprod, 2004,19(1):3-7.
[31] Davies MJ, Moore VM, Willson KJ, et al. Reproductive technologies and the risk of birth defects[J]. N Engl J Med, 2012,366(19):1803-1813.
[32] Halliday JL, Ukoumunne OC, Baker HW, et al. Increased risk of blastogenesis birth defects, arising in the first 4 weeks of pregnancy, after assisted reproductive technologies[J]. Hum Reprod, 2010,25(1):59-65.
[33] Maheshwari A, Pandey S, Shetty A, et al. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis[J]. FertilSteril, 2012,98(2):368-377.
[34] Wennerholm UB, Henningsen AK, Romundstad LB, et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group[J]. Hum Reprod, 2013,28(9):2545-2553.
[35] Pinborg A, Henningsen AA, Loft A,et al. Largebaby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique[J]. Hum Reprod, 2014,29(3):618-627.
[36] Giorgetti C,Vanden Meerschaut F, De Roo C, et al. Multivariate analysis identifies the estradiol level at ovulation triggering as an independent predictor of the first trimester pregnancy-associated plasma protein-A level in IVF/ICSI pregnancies[J]. Hum Reprod, 2013,28(10):2636-2642.
[37] Griesinger G, Kolibianakis EM, Papanikolaou EG, et al. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles[J]. Fertil Steril, 2007,88:616-621.
[39] Imudia AN, Awonuga AO, Kaimal AJ, Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverseobstetric outcomes: a preliminary study[J]. Fertil Steril, 2013,99:168-173.
10.3969/j.issn.1002-266X.2017.35.034
R714.7
A
1002-266X(2017)35-0102-04
2017-03-22)