APP下载

课堂应随学习而变

2017-03-24沈红利

小学教学参考(数学) 2017年3期
关键词:预设与生成

沈红利

[摘 要]教师是学生学习活动的引领者和参与者。通过对两个教学片段的剖析,指出只有把舞台让给学生,把获取知识的机会还给学生,才能在教学预设的基础上灵活处理生成,才能培养学生的创造性思维。

[关键词]预设与生成;贴近学情;随学而动

[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)08-0045-01

关于教学预设与生成关系的话题,今天再度提出来,旨在探讨在小学数学教学中教师如何科学地把握课堂的去向,如何更好地贴近教学预设,如何激发学生的潜能,调动学生学习的积极性,让学生在课堂上活力四射。

【案例一】师:这里有2个完全一样的三角形,你能把它们拼成什么图形?

生:平行四边形,长方形,大三角形。

师:对于拼成的长方形,你发现了什么?

生1:它是由2个直角三角形拼成的,一个直角三角形的面积是长方形面积的一半,能够得出三角形的面积=底×高÷2。

师:从拼成的平行四边形中能得到这个结论吗?

生2:可以的,平行四边形的面积=底×高,所以一个三角形的面积=底×高÷2。

师:大家都很聪明,现在会计算三角形的面积了吗?

【案例二】师:我们已经知道长方形、正方形、平行四边形等面积的计算方法,你还想计算谁的面积呢?

生:梯形,圆形,三角形……

师:很好!今天我们就先研究三角形的面积。你打算怎样研究呢?

生1:把长方形沿对角线剪开,得到2个完全一样的三角形,所以三角形的面积等于长方形的面积的一半,长方形的长是三角形的底,长方形的宽是三角形的高,得出一个三角形的面积=底×高÷2。

生2:我们是把2个完全一样的锐角三角形拼在一起,发现能拼成一个平行四边形。平行四边形的面积=底×高,那么一个三角形的面积=底×高÷2。

【思考】

1.预设应贴近学情

教学预设是什么?是剧本,是脚本,是师生教学活动的基本框架。从上述两个案例中不难发现,这两份“剧本”的定位是不一样的,因此在推进“剧情”发展的过程中呈现的态势也大相径庭。

案例一中,教师给定学具,让学生在既定的框架中操作,这样的实践只能算是经过,而不是经历,更谈不上学生感知的积累和视野的拓展,学生很难获得深刻的感悟。案例二则给予学生很多的机会,学生既可以在剪纸中,也可在折纸中、拼图中获得知识。不一样的实践,会有不一样的感受,在这种学习情境中,学生的感知必定丰富。

从学情入手,从引导学生反思处着力,教学預设就会为有效学习助力,成为快乐学习的基本保障。

2.预设应关注探究

精心设计是教好数学的基本保证,精简设计是教学智慧的体现。因此,教学预设要更多地关注学生的探究活动,让学生在解读一个个数学现象中发现知识的真谛。

在案例二中,教师的放手体现了教学的智慧,教学预设不再是教学的紧箍咒,它加速了学生智慧火花的碰撞,有利于学生探索热情的再现。这种灵活多变的、富有弹性的教学掌控,让数学教学流淌着智慧的灵光,更为学生的自主学习、创造性学习提供了坚实的平台。

案例一的教学,从表面上看,学生能够动手实践了,在活动中也有发现了,但教师提供的实践素材是固定的,是单一的,这样一来,学生的选择是有限的,思维的空间也是狭窄的,学生被动执行操作指令的痕迹是明显的。这样的学习不是真正的自主学习和合作学习。

3.生成应充满灵气

学生是人,有自己的情感、思考和待人接物的态度。因此,教学应在预设的架构上进行适度、适宜、灵活的删减,使之更加符合课堂教学,贴近教学走向,让课堂充满和谐与灵动。

如案例二的后续还出现了这样的对话“我有一个新发现,把三角形的顶角部分剪下来后可得到梯形,再沿梯形的中位线剪开,也能拼成平行四边形!”“不对!你剪下的那部分放哪了呢?”……学生有直觉思维,它是一种灵感,也是一种创新。因此,给学生充分交流的机会,让争辩使学生的感知越加清晰,让交流使学生的思维得以碰撞。

学会倾听是教师的本能,如果教师只盯住教案的走向,那么学生精彩的争辩我们永远也看不到,也许学生的创新、求异思维也会湮灭。把学生看成人,一个鲜活的人,不仅是教学的本质体现,更是教学机智的再现。

正视课堂中的意外,是预设的体现,也是生成的智慧。善于利用好这些因素,一定会让学生的思维擦出绚丽的火花,更能打造一片宁静的学习天空,使学生自由的天性得以张扬。

(责编 童 夏)

猜你喜欢

预设与生成
数学课堂教学的预设和生成
高中政治综合探究课的实践与思考
初中科学课堂教学设计的预设与生成
高中物理探究式教学应注意的几个问题
基于“点”“线”“面”,纵深预设生成性学习
把握好写作教学中预设与生成的关系
由一个意外的变式引发的思考
捕捉“星火”,促其“燎原”