计算机专业选修课混合教学模式的设计与实践
2017-03-12余文森石贵民郭磊刘长勇
余文森+石贵民+郭磊+刘长勇
(武夷学院 数学与计算机学院,福建 武夷山 354300)
摘要:针对当前应用型本科高校计算机专业选修课教学中存在的问题,文章结合在线教学和课堂教学两者的优势,设计一个在线教学平台支持下的混合教学模式。混合教学模式分为课前在线学习与提问互动、课堂面对面教学、课后在线测试与学术沙龙三个阶段。该模式已经在数字图像处理等课程教学中进行了探索性实践,取得了较好的效果。
关键词:计算机专业选修课教学;在线教学平台;在线教学;课堂教学;混合教学模式
中图分类号:G633.67 文献标志码:A 文章编号:1674-9324(2016)52-0268-05
中国高等教育已经进入大众化阶段,高等教育大众化以及2008年以来的全球金融危机给大学生就业带来严峻形势。对于国内各类院校普遍开设的计算机专业来说,这种状况尤为严重,一方面,每年有大量的计算机专业毕业生,特别是普通院校的毕业生,找不到合适的专业岗位,另一方面,也有很多IT企业找不到符合企业需要的人才。根据我们对国内100多家IT企业和300多名本校计算机专业毕业生的问卷调查,大部分IT企业需要专业基础扎实、工程实践能力强、具有一定创新能力的应用型创新人才。信息技术发展日新月异,计算机专业的应用型创新人才应该具备对新知识和新技术的敏感性,拥有積极探索新知识和新技术的敬业精神、突出的创新思维和创新能力,因此,在人才培养上,应该注重学生学习能力和应用创新能力的培养[1]。
应用型创新人才的培养是应用型本科高校的主要任务。目前,国内应用型本科高校在专业课程设置上分为专业必修课和专业选修课。专业选修课是专业教学计划中的重要组成部分,在人才培养中承担着扩展专业视野,培养创新性思维及工程应用能力的功能[2]。因此,专业选修课在计算机专业应用型创新人才的培养上有着不可忽视的作用。然而目前,大多数应用型本科高校的计算机专业选修课并没有发挥相应的教学功能。主要原因在于目前计算机选修课教学仍然采用传统教学模式,以教师讲授知识为主,学生处于被动接受知识的地位,忽视了学生的认识主体作用,不利于学生学习和应用创新能力的培养。互联网以及多媒体技术的发展引发出许多丰富多彩的网络化在线教学模式,近年来,慕课(MOOC)、翻转课堂、微课等在线教学模式受到越来越多教育工作者的关注[3-9],这些新模式从根本上改变了教学中师生的地位和关系,在学生学习和应用创新能力的培养上表现出较大的优势。然而,在线教学模式也存在学习者身份难以认证、教学监控难度较大、课程实验尚未有效解决等缺陷。因此,国内外一些学者纷纷提出在线教学与传统教学相结合的混合教学模式[9-11]。笔者所在学校正处于向应用型转型发展阶段,近几年来,笔者所在的团队针对计算机专业应用型创新人才的培养问题进行了一系列的探索。基于多年数字化学习技术的研究成果,团队与企业合作研发了“潜能在线”教学平台。在该平台的支持下,我们设计了一个在线教学与传统课堂教学相结合的混合教学模式,并在数字图像处理等课程中进行探索性实践。
一、应用型本科高校计算机专业选修课教学中存在的问题
据我们了解,目前,国内应用型本科高校的计算机专业选修课教学,普遍存在以下几个方面的问题:教学内容多而课时少,教学内容相对滞后,课堂教学满堂灌输,考核机制不完善等问题。
1.教学内容多而课时少。自从20世纪八九十年代,国内高校陆续开展学分制教学改革,课程分为必修课与选修课,在人才培养中取得了许多经验与收获[12]。但同时,也逐渐形成一个认识上的误区:必修课重要,而选修课相对次要。因存在上述认识误区,各高校在专业人才培养方案的设置上,专业必修课学分学时较多,而选修课学分学时较少。比如,笔者所在高校的计算机科学与技术专业,专业必修课一般设置为3—4个学分,课时为48—72学时,而专业选修课一般只有2个学分,课时为42学时,其中理论学时28,实验学时14。但是,选修课的教学内容并没有减少多少,比如,笔者所担任的数字图像处理课,大纲规定的内容偏多,包括绪论及图像处理系统、图像变换、图像增强、图像编码、图像复原、图像重建、数学形态学原理等内容。采用传统教师主讲的教学模式,教师根本无法在规定的学时数内完成大纲要求的内容。
2.教学内容相对滞后。目前,在应用型本科高校,计算机专业选修课的教学内容一般以教材为主,以教师的科研及学科前沿为辅。由于课时少,任课教师只能依照教材,讲授大纲要求的内容,没有多余的时间讲授自己的研究成果和学科前沿。然而目前,多数教材内容陈旧,跟不上最新发展形势,造成教学内容相对滞后,学生缺乏兴趣。大多数计算机专业选修课没有发挥其应有的教学功能。
3.课堂教学满堂灌输。计算机学科发展的时间相对较短,学科教学理论还不完善。学科教师往往学习数理学科的教学观念和教学模式,采用以教师讲授为主的“灌输式”教学方法。这种教学方法以教师为主体,学生只能被动接受教师的教学方法和教学内容,因而缺乏主动学习和探索求知的欲望。少数学习积极的同学可能会被动地接受教师讲授的内容,多数同学则可能会因缺乏好奇心和求知欲而失去学习的兴趣。比如,数字图像处理是集光学、数学、计算机科学、物理学等学科的一门综合性边缘学科[13]。它涉及数学、物理、信号处理和计算机科学等多学科知识,理论性强、内容抽象、算法较多,学生理解起来有一定难度。任课教师必须采用灵活多样的教学方法以及准备一些丰富有趣的教学内容,激发学生自主学习和探索求知的欲望,让学生对该门课程产生浓厚的学习兴趣,才能顺利地开展后续的课程教学。
4.考核机制不完善,缺乏对学习和应用创新能力的考核。目前,多数高校的计算机专业选修课考核方式主要有以下几种:试卷考核、论文考核、作业考核、实践考核等。试卷考试答案标准固定,学生靠死记硬背就可以通过,成绩不能反映学生的学习和应用创新能力。论文或作业考核可以在一定程度上反映学生的学习和应用创新能力,但容易出现抄袭现象,成绩不能真实反映学生的实际能力。实践考核能够在一定程度上反映学生学习和应用创新能力,然而,因没有形成科学标准的实践考核办法以及评价机制,很多实践考核流于形式,最终成绩也不能真实反映学生的实际能力。因此,需要完善考核机制,把学生的整个学习过程纳入考核范围,使成绩能够在一定程度上真实反映学生的学习和应用创新能力。
二、“潜能在线”教学平台支持下的混合教学模式设计
为解决当前计算机专业选修课教学中存在的上述问题,加强学生学习和应用创新能力的培养,笔者所在的团队吸纳了慕课(MOOC)、翻转课堂、微课等在线教学模式的优点,利用“潜能在线”教学平台,设计了一个适合应用型本科高校计算机专业选修课教学的混合教学模式。该混合教学模式转变了师生的角色,教师从知识的传授者转变为学生学习的引导者、推动者和指导者。学生从知识的被动接受者转变为学习的主体、学习过程的中心。模式包括课前在线学习与提问互动、课堂面对面教学、课后在线测试与学术沙龙三个阶段。
1.课前在线学习与提问互动。该阶段是为克服传统教学模式“教师满堂灌输,学生被动接受知识”的缺陷而设计的,采用当前在线教学模式的先进教学理念,教师通过网络提供学习任务和学习资源,引导并推动学生自主学习、协作学习,以达到培养学生学习能力的目的。具体来说,课前教师利用“潜能在线”平台中的在线导学模块创建导学卡,通过导学卡发布学习任务以及学习资源。学习任务包括学习内容、重点难点、要求完成的作业等,学习资源包括电子教材、教学PPT、授课微视频以及网上可以利用的资源等。学生根据导学卡在线上自主学习,同时,利用“潜能在线”平台中的提问互动模块提出问题,通过问题与教师以及其他同学进行互动交流。
2.课堂面对面教学。该阶段是利用传统面对面课堂“易于组织实施、互动便捷、效果直接显著”等优势,通过汇报、展示、讨论、教师重难点解析和总结等形式多样的教学活动,加深学生对知识点的理解和掌握。课堂面对面教学主要由学习汇报、课堂讨论、重难点解析以及课堂总结四个部分组成。学习汇报由学生汇报在线学习以及作业完成的情况;课堂讨论就重难点及热点问题展开讨论,教师参与指导;重难点解析由教师讲解,进一步强调本节课的教学重点及难点。课堂总结由教师对本节课教学过程、在线学习情况、学习表现、学习成果进行点评及总结。
3.课后在线测试及学术沙龙。该阶段通过在线测试以及应用性课题,检查学生学习知识的成效以及应用知识的能力,以达到培养学生应用创新能力的目的。具体过程如下,教师利用“潜能在线”平台中的虚拟考场,将纸质考卷通过扫描,或者将电子文档考卷制作成电子考卷上传到平台。学生登入虚拟考场,完成课后在线测试。另外,教师可以根据教学进度,布置一些应用性的课题,让学生课后去完成,然后通过“潜能在线”平台中的公共聊天室,定期组织在线学术沙龙。
三、混合教学模式在数字图像处理课教学中的探索性实践
基于团队设计的混合教学模式,我们在数字图像处理等课程中进行探索性实践。下面就数字图像处理课程的实践情况做一下介绍。团队根据课程大纲的要求,设计了七个专题,并给出了每一专题各教学活动的学时安排表,如表1所示,其中,第一个专题因为是第一次上课,采用传统教学模式,以教师讲授为主,其他专题采用混合教学模式。此外,每个专题两个实验学时根本不够,所以实验由学生利用课余时间完成,实验课上主要是汇报实验情况以及展示实验结果。
1.前期准备。利用“潜能在线”平台进行混合教学,需要完成一些前期准备工作。首先需要在平台中创建数字图像处理课程,把教材扫描到平台制作成电子教材,并建立知识点的目录体系结构。其次,教师学生登入平台,选择已创建的数字图像处理课程。最后,对学生进行“潜能在线”教学平台的使用培训。
2.教学实施。在数字图像处理课程的实施过程中,针对每个专题,我们设计了11个教学活动,利用“潜能在线”教学平台,分14个步骤展开,具体过程如图1所示,它展示了教师、学生在“潜能在线”教学平台和课堂的整个互动过程。
(1)在线导学。在传统教学模式下,教师在課堂上面对全班学生授课,因此,课前备课,必须依据全班大多数人的情况,准备授课内容和安排教学进度。准备的内容和安排的进度无法满足学生个性化的需求。在混合教学模式下,教师的角色转变了,作为学生学习的引导者,只需准备学习内容和相关的学习资源,通过网络提供给学生,引导学生自主学习。因此,我们设计了“在线导学”教学活动,教师可以根据不同层次的学生情况,准备学习内容和学习资源,以满足学生个性化的需求,并通过我们团队开发的在线导学模块,把学习内容和学习资源发布出去。学习内容按知识点组织,教师根据知识点制作教学PPT、授课微视频(10分钟左右)等教学资源,收集相关的网站、论坛、图书、论文等可利用的资源,布置相关的作业和练习。然后,把这些资源按知识点制作成导学卡,通过在线导学模块提供给学生。表2列出了我们在数字图像处理课程实施过程中,每一专题的知识点。
(2)在线自主学习。传统教学模式以教师为主体,向学生单向传授知识,忽视了学生个体的学习能动性,也忽视了学生应用创新能力的挖掘,不利于计算机应用型创新人才的培养。因此,我们设计了“在线自主学习”教学活动,让学生成为学习的主体。学生可以根据自身已有的基础,选择合适的内容,安排合理的进度,在轻松的氛围中学习。这种方式锻炼了学生的自主学习能力,也培养了学生的探索求知欲。
(3)提问互动。在传统教学模式下,课堂上教师满堂灌输,课后师生见面不易,师生之间、生生之间互动交流极少。为此,我们设计了“提问互动”教学活动,通过提问互动模块,学生随时可以与教师以及同学进行互动交流。互动的主要形式包括提出问题,回答问题,评价问题回答的情况等。通过这一教学活动培养学生协作学习和提问质疑的能力。同时,提问互动数据也是期末学生学习能力考核的依据。
(4)在线解答。在传统教学模式下,由于课时的限制,教师很少有时间让学生提问,因而,也就很少解答学生的问题。在混合教学模式下,学生可以随时通过提问互动模块提出问题。因此,我们设计了“在线解答”教学活动,教师通过提问互动模块或公共聊天室,采用文字、语音或微视频等多种方式,解答学生提出的问题。
(5)在线作业。在传统教学模式下,学生课堂听课,课后完成作业。两者之间有一定的时间差,如果课堂上有些知识点没听懂或课堂上听懂课后忘记了,完成作业就有一定的困难。为此,我们设计了“在线作业”教学活动,学生完成自主学习后,可以立即在线完成作业。如果哪些知识点没听懂,可以重复听授课微视频。此外,学生在线提交作业后,教师可以及时对作业进行批改和点评,其他同学也可通过网络平台对该同学作业进行点评,形成师生之间、生生之间的互动交流。学生完成作业的情况、作业的质量以及相互的点评数据,也是期末学生学习能力考核的依据。
(6)学习汇报。混合教学模式以学生为主体,学生通过在线自主学习获得知识,教师是学习过程的引导者、推动者。因此,我们设计了“学习汇报”教学活动,学生在课堂上汇报在线学习的情况、展示完成的作业。学生通过这一活动锻炼了协作学习能力以及表达能力。教师通过这一活动了解学生学习的情况,发现其中的问题,为后面的重难点解析和课堂总结做准备。因为选修学生人数比较多,有39人,所以我们把全班划分10个学习小组,每个小组派一名学生汇报。学习汇报的情况作为期末学生学习能力、应用创新能力考核的一个依据。
(7)课堂讨论。在传统教学模式下,学生通过课堂听课学习知识,因课时有限,教师没有时间组织课堂讨论。在混合教学模式下,学生在课外通过在线平台学习知识,教师有充足的时间开展形式多样的教学活动。因此,我们设计了“课堂讨论”教学活动,教师根据学生学习的情况、专题重难点知识以及热点问题,选择合适的论题,组织课堂讨论。学生按照教师的安排,课前认真准备论题,在课堂上参与讨论。表2列出了我们在数字图像处理课程实施过程中,每一专题选择的课堂讨论论题。该教学活动的目的是培养学生协作学习、应用创新能力以及表达的能力。学生课堂讨论上的表现作为期末学生学习能力、应用创新能力考核的依据。
(8)重难点解析。在混合教学模式下,教师作为学生学习的引导者和指导者,要引导学生了解本专题的重点难点,并辅助学生掌握重点难点。因此,我们设计了“重难点解析”教学活动,教师根据提问互动、学习汇报以及课堂讨论等阶段了解的情况,对本专题中的重点难点以及学生普遍存在的问题进行解惑答疑。
(9)课堂总结。在混合教学模式下,教师在学生学习过程中起辅助作用。在每个专题学习结束时,需要教师进行总结。因此,我们设计了“课堂总结”教学活动,对本专题的教学过程进行总结、对学生在线学习情况、学习表现、学习成果进行点评。
(10)在线测试。在混合教学模式下,各种教学活动由教师统一安排,学生自主完成。因此,我们设计“在线测试”教学活动,利用在线教学平台的虚拟考场,教师事先提供在线测试的内容,学生课后自主完成在线测试。该教学活动的目的是让学生检测自主学习的成效,发现存在的问题,并进行补缺补漏。在线测试的成绩作为期末学生学习能力考核的依据。
(11)学术沙龙。传统教学模式重视知识的传授,而忽视应用创新能力的培养。因此,我们设计了“学术沙龙”教学活动,教师根据学生学习的情况,选择合适的应用性课题,通过在线教学平台的公共聊天室,组织在线学术沙龙。学生根据所学的知识,完成教师布置的应用性课题,参加在线学术沙龙,交流课题完成的情况、遇到的问题以及解决办法等。表2列出了我们在数字图像处理课程实施过程中,每一专题选择的应用性课题,这些应用性课题都来自我们团队在研的饮用水源水质生物在线监测项目。该教学活动的目的是培养学生的科学素养和应用创新能力。
3.学习评价。传统教学模式主要依据出勤、作业、实验以及期末考核等情况,評定学生学习成绩。这种评价方式不能全面的反映学生真实的学习情况,也不能反映学生学习能力和应用创新能力。采用混合教学模式以后,可以利用在线教学平台提供的统计功能,对学生参与提问互动、学术沙龙等活动以及完成作业与在线测试的情况进行统计。同时,教师还可以记录课堂上学生参与学习汇报、作业展示、课堂讨论等活动情况。这些数据较全面地反映了学生整个学习过程,同时也在一定程度上反映了学生学习和应用创新能力。因此,我们把这些数据与传统课堂的考勤、平时实验和期末考核等数据组合在一起,综合评定学生的学习成绩。具体来说,期末成绩评定分成两大块:平时成绩和期末考核成绩,平时占70%,期末考核占30%。平时成绩又包括考勤、线上活动表现、课堂活动表现、实验等四个方面,其中,考勤占10%,线上活动表现占20%,课堂活动表现占20%,实验占20%。线上活动表现主要考核学生参与提问互动、学术沙龙以及完成作业与在线测试的情况,课堂活动表现主要考核学生参与学习汇报、作业展示以及课堂讨论的情况。
4.实施效果。混合教学模式的实施激发了学生的好奇心与求知欲,增强了学生自主学习、协作学习、应用创新等方面的能力,教学效果显著。教学效果可以从以下几个方面的统计数据中展现。整个学期学生在提问互动模块中提出的问题数为113,其中,有一定质量的问题数为47,参与提问互动交流的学生人次数为486,参与学术沙龙的学生人次数为203;在课堂讨论上发言的学生人次数为78。以上统计数据表明,各项教学活动的参与度还是比较高的,也从侧面反映了学生学习兴趣的提高。从学生参与互动交流、课堂讨论以及学术沙龙的情况看,学生自主学习、协作学习以及应用创新能力比之前采用传统教学模式的班级有较大的提高,之前的教学中,自主学习和协作学习能力的训练较少,更谈不上应用创新能力的训练。从学生的学习汇报情况看,采用混合教学模式后学生自主学习的能力也得到明显的加强。
四、结束语
专业选修课的教学问题广泛存在于各类高等院校中,如何上好专业选修课,关系到学生知识面的拓展、学生学习能力及应用创新能力的培养、学生综合素质的提高,因此,应该受到足够的重视。本文提出的混合教学模式,还有待进一步的实践验证,希望与同行们一起不断摸索,找到更理想的解决办法。
参考文献:
[1]何丽,华斌,刘军.计算机应用创新型人才培养的实践教学改革研究[J].计算机教育,2014,(2):5-9.
[2]卫绍元,佟绍成,吕义.高校专业选修课改革的探索与实践[J].黑龙江教育,2012,(2):52-43.
[3]蒋翀,费洪晓.面向MOOC的新型教学模式探索[J].计算机教育,2014,(9):17-20.
[4]伍民友,过敏意.论MOOC及未来教育趋势[J].计算机教育,2013,(20):5-8.
[5]王莉莉,陈德运,唐远新.计算机程序设计课程翻转课堂的探索与实践[J].计算机教育,2015,(16):53-62.
[6]高丽萍,刘亚,彭敦陆,等.翻转教学在算法设计与分析中的应用研究[J].计算机时代,2014,(11):59-61.
[7]吕晓,崔良中,郭晖,等.计算机语言与软件课程微课教学模式的应用和实践[J].课程教育研究,2015,(28):54.
[8]吴文峻,吕卫锋.大数据时代的大规模开放在线教育[J].计算机教育,2013,(20):9-10.
[9]张其亮,王爱春.基于“翻转课堂”的新型混合式教学模式研究[J].现代教育技术,2014,24(4):27-32.
[10]蒋翀,费洪晓.基于MOOC的混合教学模式设计与应用研究[J].高等理科教育,2015,(3):120-125.
[11]齐红,符祝芹.Blackboard平台支持下的大学英语混合教学模式的实证研究[J].西安外国语大学学报,2007,15(3):84-87.
[12]余霞,夏菁.关于高校本科专业选修课的若干思考[J].中国电力教育,2012,(32):72-73.
[13]贾永红.数字图像处理(第二版)[M].武汉:武汉大学出版社,2010.