APP下载

硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能*

2017-02-01余其俊林秋旺李方贤韦江雄张同生胡捷

关键词:硅酸钙芯材韧性

余其俊 林秋旺 李方贤 韦江雄 张同生 胡捷

(1.华南理工大学 材料科学与工程学院, 广东 广州 510640;2.广东省建筑材料低碳技术工程技术研究中心, 广东 广州 510640)

泡沫混凝土作为轻质微孔混凝土,它的多孔性质使其具有成本低、防火、保温隔热、隔声、抗震等性能[1],国内外学者就泡沫混凝土的性能已做了较多的研究[2- 6],但强度仍是泡沫混凝土亟待解决的问题之一[7].泡沫混凝土的缺陷在于本身胶凝材料用量大,缺少砂石等骨料,气孔率大,使得单一的泡沫混凝土产品存在着收缩大、强度低等性能缺陷,难以适应市场需求.

为了提高泡沫混凝土的强度,将泡沫混凝土和硅酸钙板或者其他面板组合形成三明治复合墙板是一种较为有效的方法.一方面能够充分发挥泡沫混凝土保温隔热的优势,另一方面又能使泡沫混凝土和硅酸钙板发生协同效应,形成优势互补,提升复合墙板的整体力学性能[8]. Mydin等[9]以0.4 mm和0.8 mm的波纹钢为面板、以泡沫混凝土为芯材进行研究,研究表明不同边界条件下的轴心抗压破坏形式、最大荷载和应力-应变响应都有较大的不同,且相对泡沫混凝土本身,复合后形成的复合板性能有大幅度提高.Flores- Johnson等[10]以泡沫混凝土和纤维增强泡沫混凝土作为芯材,波纹钢作为面板,研究得出纤维的加入显著提高了泡沫混凝土的抗压强度、拉伸模量和极限应变,避免了泡沫混凝土的脆性破坏;Dey等[11]以粘接的耐碱玻璃纤维网格布为面层,以泡沫混凝土为芯材,研究了静态和低速动态加载方式下的复合板的弯曲刚度、强度和能量吸收能力,研究表明纤维的掺入显著提高了其力学性能且能阻止裂缝的扩展.

文中采用无机防火的硅酸钙板和泡沫混凝土制备复合墙板,在此基础上重点研究了聚丙烯纤维掺量、泡沫混凝土容重对该体系的影响,得到不同条件下受压过程的应力-应变全曲线,提出了该体系受压下的应力-应变曲线方程,分析了复合墙板受压下的薄弱区.

1 原材料和实验方法

1.1 原材料

硅酸盐水泥,珠江水泥厂PO 42.5R;HTQ- 1型复合发泡剂,河南华泰新材开发有限公司产品;硅酸钙板,广东松本绿色新材股份有限公司产品,厚度为5 mm;聚丙烯纤维,深圳维特耐工程材料有限公司产品,长度为19 mm、直径22 μm.硅酸盐水泥和硅酸钙板的物理性能如表1、2所示.

表1 水泥的基本性能Table 1 Fundamental properties of the cement

表2 硅酸钙板的物理性能Table 2 Physical properties of calcium silicate board

1.2 泡沫混凝土及其复合墙板的制备

1.2.1 泡沫混凝土的制备

将发泡剂与水按质量比1∶30混合,将混合好的发泡剂水溶液用发泡机制备成密度约为60 kg/m3的泡沫,参照李应权等[12]的泡沫混凝土配合比设计方法进行配制,在搅拌锅内先将水泥和聚丙烯纤维和水预混均匀,再加入泡沫充分搅拌,制成新拌浆体,水灰比为0.5,富余系数取1.05,聚丙烯纤维掺量分别为1.0、1.5、2.0、2.5 kg/m3.由前期实验[8]可知,泡沫混凝土容重过低将会出现粉化、收缩过大等一系列缺陷,最终导致复合墙板开裂、力学性能和热工性能劣化,因此本研究选取的泡沫混凝土容重分别为400、500和600 kg/m3.

1.2.2 复合墙板的制备

以硅酸钙板饰面为外表面,粗糙面为内表面,在模具中将硅酸钙板固定后,往两硅酸钙板中浇筑不同纤维含量和容重的泡沫混凝土,形成硅酸钙板-纤维泡沫混凝土-硅酸钙板的三明治组合形式.复合墙板的制备如图1所示.

图1 泡沫混凝土复合墙板的制备示意图

Fig.1 Schematic diagram of preparation of foamed concrete sandwich panel

试验共制作24组泡沫混凝土和复合墙板.根据GB/T 23451—2009《建筑用轻质隔墙条板》,每组制备试件尺寸为100 mm×100 mm×100 mm的立方体泡沫混凝土和复合墙板各3个,试件成型1 d后拆模,标准养护28 d后进行抗压试验.

1.3 泡沫混凝土复合墙板受压性能实验方法

采用三思纵横生产的UTM5105电子万能试验机,系统的加载头带有力传感器,可直接量测施加的压力的大小和位移的变化.试验采用力控制方式,加载速率为0.1 MPa/s.试验同时观察试件破坏的全过程,记录裂缝出现、界面的破坏、硅酸钙板的飞离等试验现象.

以抗压强度、受压韧性指数和应力-应变全曲线来评价泡沫混凝土复合墙板的受压性能.受压韧性指数[13]定义为:试样从稳定荷载至3倍峰值应变所得的荷载-变形曲线下的面积与试样从稳定荷载至峰值应变所得的荷载-变形曲线下的面积的比值,其示意图如图2所示.

2 实验结果与分析

2.1 硅酸钙板-纤维增强泡沫混凝土复合墙板的破坏形式

泡沫混凝土复合墙板试件在受压实验过程中,随着荷载逐渐增加,主要经历了以下几个过程:在加载初期,应力-应变关系接近直线关系;随后在硅酸钙板和芯材的界面之间出现裂缝,同时复合墙板芯材表面出现较多的微裂纹;达到最大承载力后,主裂纹不断扩大,直至复合墙板彻底破坏.芯材容重为600 kg/m3的不同纤维含量的复合墙板受压破坏形式如图3所示.不同芯材容重的复合樯板受压破坏形式如图4所示.

图2 受压韧性指数示意图Fig.2 Sketch of compression toughness index

图3 不同纤维含量的泡沫混凝土复合墙板破坏形式

Fig.3 Failure mechanism of foamed concrete sandwich panels with different fiber content

图4 不同容重的泡沫混凝土复合墙板破坏形式

Fig.4 Failure mechanism of foamed concrete sandwich panels with different density

从图3中可以看出,容重为600 kg/m3的泡沫混凝土复合墙板破坏后的硅酸钙板均与芯材脱离,且随着纤维掺量的增大,破坏后芯材的可见的大裂纹明显地减小,说明纤维能够很好地阻止裂缝的扩展和延伸.

由图4可以看出,芯材容重为400 kg/m3时的复合墙板破坏后的硅酸钙板和芯材仍然粘结在一起,硅酸钙板不折断.容重为500 kg/m3时,出现硅酸钙板中间折断的现象,但硅酸钙板和芯材仍然粘结在一起,从表观上反映了泡沫混凝土和硅酸钙板之间的粘结力有所增强.容重为600 kg/m3时,在试件达到最大荷载时出现了硅酸钙板和芯材飞离的现象.可见泡沫混凝土的容重对复合墙板的破坏形式影响较大,随着芯材容重的增大,复合板逐渐从单一破坏转变为整体破坏,复合效应增强.

2.2 硅酸钙板-纤维增强泡沫混凝土复合墙板受压荷载下的力学性能

2.2.1 纤维掺量对复合墙板受压力学性能的影响

纤维掺量对泡沫混凝土及复合墙板抗压强度和受压韧性指数的影响如图5所示.

图5 纤维掺量对泡沫混凝土及复合墙板抗压强度和受压韧性指数的影响

Fig.5 Influences of fiber content on compressive strength and compressive toughness index of foamed concrete sandwich panel

从图5中可以看出,泡沫混凝土复合墙板的抗压强度比泡沫混凝土的抗压强度高出约25%,受压韧性指数提高约8.8%,说明将泡沫混凝土制备成复合墙板能有效改善泡沫混凝土强度较低、脆性较大的缺陷.除此之外,聚丙烯纤维的掺量对复合墙板的抗压强度和受压韧性指数有较显著的影响.在无纤维掺入的情况下,泡沫混凝土和泡沫混凝土复合墙板的抗压强度均较低,随着聚丙烯纤维掺量的增加,泡沫混凝土和泡沫混凝土复合墙板的抗压强度均增大,且前期增大幅度较大.当纤维掺量为2.0 kg/m3时,比无纤维掺入的复合墙板的抗压强度提升了76.08%,受压韧性指数提高了30.03%.但当纤维掺入量过大时,泡沫混凝土复合墙板的抗压强度反而有所降低,受压韧性指数也出现了类似的情况.GB/T 23451—2009《建筑用轻质隔墙条板》中对隔墙条板的抗压强度要求是至少大于3.5 MPa,可见容重为600 kg/m3的泡沫混凝土复合墙板掺入纤维后可较好的满足国家标准,其中聚丙烯纤维掺量为1.5~2.0 kg/m3时,可使泡沫混凝土复合墙板的抗压强度和韧性指数保持在较高的水平.

为初步解释当纤维含量为2.5 kg/m3时的复合墙板强度有所降低的情况,通过试验对比了纤维掺量为1.0 kg/m3和2.5 kg/m3的泡沫混凝土复合墙板孔结构的扫描电镜图像,如图6所示.从图中可以看出,若纤维掺入过多,会使泡沫混凝土的孔结构遭到破坏,孔结构变得不完整,而孔结构和泡沫混凝土的强度有着密切的关系[7].因此后续试验研究中纤维掺量均取1.0~2.0 kg/m3.

图6 泡沫混凝土复合墙板的SEM图Fig.6 SEM images of foamed concrete sandwich panels

2.2.2 泡沫混凝土容重对复合墙板受压力学性能的影响

聚丙烯纤维掺量为2.0 kg/m3,容重为400、500和600 kg/m3的芯材对复合墙板的抗压强度和受压韧性指数的影响如图7所示.

图7 泡沫混凝土容重对复合墙板抗压强度和受压韧性指数的影响

Fig.7 Influences of density on the compressive strength and compressive toughness index of foamed concrete sandwich panel

从图7中可以看出,复合墙板的抗压强度随容重的增大而大幅提高,容重为400 kg/m3时,复合墙板的抗压强度仅为2.98 MPa,而容重为600 kg/m3时,抗压强度达到5.67 MPa,增长了90.27%.泡沫混凝土复合墙板受压韧性指数随容重的增加略有增大,但增幅较小.按照GB/T 23451—2009 《建筑用轻质隔墙条板》中对隔墙条板的抗压强度的规定,可以看出在聚丙烯纤维掺量为2.0 kg/m3时,泡沫混凝土容重达到500 kg/m3以上的复合墙板均能满足要求.

2.3 硅酸钙板-纤维增强泡沫混凝土复合墙板受压应力-应变全曲线分析

2.3.1 硅酸钙板-纤维增强泡沫混凝土复合墙板受压应力-应变曲线特点

硅酸钙板-纤维增强泡沫混凝土复合墙板典型的实测应力-应变全曲线如图8所示,结合其受压破坏特征,其应力-应变曲线可以分为4个不同的区域,其特点如下:1)OA段,弹性变形阶段,泡沫混凝土复合墙板的应力增长较快而应变增长较为缓慢,特征点A为弹性极限点,此时对应着硅酸钙板和泡沫混凝土界面出现裂缝;A点处的应力约为峰值应力的80%~90%.2)AB段,应力硬化阶段,随着应力进一步增大,应力-应变曲线的斜率略有减小,由于硅酸钙板和芯材出现裂缝后,硅酸钙板逐渐受到弯曲应力,芯材裂缝不断增多,直至荷载峰值点B点结束,B点对应的应力和应变分别为峰值应力和峰值应变.3)BC段,应变软化阶段,峰值应力过后,应力-应变全曲线进入下降阶段,此阶段应变增加的同时,应力降低幅度较大,下降幅度可达50%左右,这主要是硅酸钙板折断和芯材主裂纹不断扩大的综合结果.4)C点过后,应变逐渐增大,应力降低放缓,泡沫混凝土复合墙板试件彻底破坏.

图8 实测应力-应变全曲线Fig.8 Measured stress-strain curve

2.3.2 纤维掺量对泡沫混凝土复合墙板受压应力-应变全曲线的影响

纤维含量对容重为600 kg/m3的泡沫混凝土复合墙板的受压应力-应变全曲线和峰值应变的影响如图9所示.

从图中可以看出,随着纤维含量的增加,峰值应力增加,弹性极限点和峰值应变均呈现出“后滞”的现象,且复合墙板后期承载能力提升,纤维掺量为2.0 kg/m3的复合墙板的后期承载力约是不掺纤维的复合墙板的后期承载力的3倍.纤维掺量对应力-应变全曲线的峰值应变影响较大,纤维含量为2.0 kg/m3时的峰值应变为22.35×10-3,比无纤维掺入时的峰值应变增大了92.51%.

图9 不同纤维掺量的复合墙板应力-应变曲线和峰值应变

Fig.9 Stress-strain curves and peak strain of foamed concrete sandwich panel with different fiber content

2.3.3 泡沫混凝土容重对复合墙板受压应力-应变全曲线的影响

泡沫混凝土容重对纤维掺量均为2.0 kg/m3的复合墙板应力-应变全曲线和峰值应变的影响如图10所示.

从图10中可以看出,泡沫混凝土不同芯材容重的复合墙板应力-应变全曲线的形状相似,具有统一的形状和特征.复合墙板的后期承载力都较高,均为峰值应力的50%~60%,应力-应变全曲线峰值应变保持在较高的水平,均达到21×10-3以上,且相差不大,随容重的变化有少量的提升.

2.3.4 泡沫混凝土复合墙板应力-应变全曲线方程

应力-应变全曲线作为图形化的本构关系,是研究结构或构件受力性能的主要依据,为此本试验提出了泡沫混凝土复合墙板受压应力-应变全曲线方程并确定其参数,建立相应的数学模型.

将试件的应力应变-全曲线采用无量纲坐标表示,即X=ε/ε0,Y=σ/σ0,其中ε0为峰值应变,σ0为峰值应力.绘制峰值坐标为(1,1)的标准曲线,如图11所示.

图10 不同容重的复合墙板应力-应变全曲线和峰值应变

Fig.10 Stress-strain curve and peak strain of foamed concrete sandwich panel with different density

图11 不同纤维掺量的复合墙板受压应力-应变曲线的标准曲线

Fig.11 Standard curve of stress-strain cure of foamed concrete sandwich panel with different fiber content

不同纤维含量的复合墙板受压应力-应变标准曲线由于上升阶段和下降阶段相差悬殊,因此这两段曲线分别采用不同的方程进行拟合.本试验上升阶段参考过镇海等[14]建议的混凝土应力-应变全曲线方程,采用三次多项式,下降段采用有理分式,如下所示:

(1)

式中,a1、a2、a3控制曲线上升段,k1、k2为形状系数,k1控制曲线下降段的坡度,k2控制曲线下降段的下降度的凹凸程度[15].由于标准曲线的上升段具有类似的形状,因此对其进行统一的拟合,其结果如式(2)所示.

Y=0.11X+2.35X2+1.46X3, 0≤X≤1

(2)

下降段采用最小二乘法拟合,分别得到参数k1、k2的取值,其结果如表3所示.

表3 标准曲线下降段k值Table 3 k values of standard curve decline period

由于采用上述下降段公式对无纤维的复合墙板拟合的结果和实验数据偏差较大,因此本试验采用式(3)进行拟合,拟合结果如式(4)所示.

(3)

(4)

将拟合结果和实际实验曲线对比如图12所示.从图中可以看出,拟合的结果较好,能够充分吻合原实验数据的应力-应变情况.本试验提出的方程为复合墙板受压时的应力-应变全曲线方程,反映了复合墙板受压条件下的材料基本力学性能.

2.4 硅酸钙板-纤维增强泡沫混凝土受压条件下的薄弱区分析

泡沫混凝土复合墙板的受压破坏现象如图13所示.复合墙板受压至一定程度后将先后出现界面裂缝、硅酸钙板与泡沫混凝土相剥离、硅酸钙板的断裂、纤维的搭接等现象, 硅酸钙板和泡沫混凝土之间的界面是复合墙板的薄弱区.当硅酸钙板与泡沫混凝土间出现剥离破坏时,硅酸钙板承受压力而弯曲直至折断,在此过程中,硅酸钙板成为主要的承载体,芯材中的主裂纹扩张会得到减缓,由于硅酸钙板的强度较高,因而使得复合墙板的残余强度增加,复合墙板达到极限荷载时的极限应变有所增大.改善复合墙板的薄弱区是提高复合墙板受压性能的重要途径.

图12 不同纤维掺量的复合墙板的实验曲线和拟合曲线对比

Fig.12 Experimental curve vs fitting curve of foamed concrete sandwich panel with different fiber content

图13 泡沫混凝土复合墙板的薄弱区Fig.13 Weak zones of foamed concrete sandwich panel

4 结论

(1)复合墙板的破坏形式随纤维掺量和芯材容重的不同而不同.聚丙烯纤维的掺入,能够充分阻止裂缝的扩展.不同容重的复合墙板,破坏后硅酸钙板和芯材的粘结情况不同.

(2)芯材纤维掺量为0~2.0 kg/m3时,泡沫混凝土和复合墙板的抗压强度和受压韧性指数均随纤维掺量的增加而增大,复合墙板的抗压强度和受压韧性指数较泡沫混凝土的分别高出25%和8.8%;纤维掺量为2.0 kg/m3的复合墙板的抗压强度和受压韧性指数比无纤维复合墙板的分别提升了76.08%和30.03%;容重对复合墙板的抗压强度影响较大,对受压韧性指数影响较小.

(3)复合墙板的应力-应变全曲线可分为弹性应变阶段、应力硬化阶段、应变软化阶段和破坏阶段等4个阶段,根据应力-应变曲线的形状特征,分别采用多项式和有理分式拟合曲线的上升阶段和下降阶段,拟合曲线和试验数据吻合得较好.

(4)将泡沫混凝土制备成复合墙板后,其力学性能大幅度提升,受压时的界面裂缝和分层现象是复合墙板的薄弱区,改善复合墙板的薄弱区是提高复合墙板受压性能的重要途径.

[1] AMRAN Y H M,FARZADNIA N,ALI A A A.Properties and applications of foamed concrete:a review [J].Construction and Building Materials,2015,101(1):990- 1005.

[2] 周顺鄂,卢忠远,严云.泡沫混凝土导热系数模型研究 [J].材料导报,2009,23(3):69- 73.

ZHOU Shun-e,LU Zhong-yuan,YAN Yun.Study on thermal conductivity model of foamed concrete [J].Cailiao Daobao,2009,23(3):69- 73.

[3] 陈兵,刘睫.纤维增强泡沫混凝土性能试验研究 [J].建筑材料学报,2010,13(3):286- 290.

CHEN Bing,LIU Jie.Experimental research on properties of foamed concrete reinforced with polypropylene fibers [J].Journal of Building Material,2010,13(3):286- 290.

[4] CHINDAPRASIRT P,RATTANASAK U.Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash [J].Materials & Design,2011,32(2):723- 727.

[5] JIANG J,LU Z,NIU Y,et al.Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement [J].Materials & Design,2016,92:949- 959.

[6] KEARSLEY E P,WAINWRIGHT P J.The effect of high fly ash content on the compressive strength of foamed concrete [J].Cement and Concrete Research,2001,31(1):105- 112.

[7] 方永浩,王锐,庞二波,等.水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系 [J].硅酸盐学报,2010,38(4):621- 626.

FANG Yong-hao,WANG Rui,PANG Er-bo,et al.Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete [J].Journal of the Chinese Ceramic Society,2010,38(4):621- 626

[8] 陈镇杉.泡沫混凝土复合板制备中的关键问题研究 [D].广州:华南理工大学,2015.

[9] MYDIN M,WANG Y C.Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression [J].Thin-walled Structures,2011,49(1):66- 76.

[10] FLORES-JOHNSON E A,LI Q M.Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces [J].Composite Structures,2012,94(5):1555- 1563.

[11] DEY V,ZANI G,COLOMBO M,et al.Flexural impact response of textile-reinforced aerated concrete sandwich panels [J].Materials & Design,2015,86:187- 197.

[12] 李应权,朱立德,李菊丽,等.泡沫混凝土配合比的设计 [J].徐州工程学院学报(自然科学版),2011(2):1- 5.

LI Ying-quan,ZHU Li-de,LI Ju-li,et al.Study on mix ratio design of foamed concrete [J].Journal of Xuzhou Engineering Institute (Natural Science Edition),2011(2):1- 5.

[13] 黄政宇,谭彬.活性粉末钢纤维混凝土受压应力-应变全曲线的研究 [J].三峡大学学报 (自然科学版),2007,29(5):415- 420.

HUANG Zheng-yu,TAN Bin.Research on stress-strain curves of reactive powder concrete with steel-fiber under uniaxial compression [J].Journal of China Three Gorges University(Natural Science Edition),2007,29(5):415- 420.

[14] 过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究 [J].建筑结构学报,1982,3(1):1- 12.

GOU Zhen-hai,ZHANG Xiu-qin,ZHANG Da-cheng,et al.Experimental investigation of the complete stress-strain curve of concrete [J].Journal of Building Structures,1982,3(1):1- 12.

[15] 史庆轩,王南,田园,等.高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究 [J].建筑结构学报,2013,34(4):144- 151.

SHI Qing-xuan,WANG Nan,TIAN Yuan,et al.Study on stress-strain relationship of high-strength concrete confined with high-strength stirrups under axial compression [J].Journal of Building Structures,2013,34(4):144- 151.

猜你喜欢

硅酸钙芯材韧性
强化粮食供应链韧性
风电叶片轻木芯材加工工艺试验研究
风电叶片轻木芯材含水率超标处理方法研究
硅酸钙与钠及钠蒸气的相容性研究
风力发电叶片壳体芯材轮廓绘制方法研究
房地产市场韧性犹存
韧性,让成长更美好
保温芯材对轻质复合夹心墙板当量导热系数影响的模拟研究
笑中带泪的韧性成长
不同硅酸钙板导热系数探讨