APP下载

生物质碳水化合物催化转化制2,5-呋喃二甲酸的研究进展

2017-01-20刘贤响苏胜培尹笃林

石油化工 2016年7期
关键词:二甲酸呋喃碳水化合物

刘贤响,徐 琼,苏胜培,尹笃林

(湖南师范大学 化学化工学院 石化新材料与资源精细利用国家地方联合工程实验室,湖南 长沙 410081)

生物质碳水化合物催化转化制2,5-呋喃二甲酸的研究进展

刘贤响,徐 琼,苏胜培,尹笃林

(湖南师范大学 化学化工学院 石化新材料与资源精细利用国家地方联合工程实验室,湖南 长沙 410081)

2,5-呋喃二甲酸(FDCA)是有望替代石化资源合成可降解高分子及助剂材料等的重要生物质基平台化合物。介绍了FDCA的用途,综述了以生物质碳水化合物为原料制备FDCA的方法,包括传统的合成方法、5-羟甲基糠醛催化氧化法以及以生物质糖类为原料制备的方法。开发高效催化反应体系是该领域亟待突破的重要瓶颈。对进一步开发从生物质碳水化合物催化转化成FDCA提出了一些建议和展望,为生物质催化精细转化领域创新提供参考。

生物质碳水化合物;5-羟甲基糠醛;2,5-呋喃二甲酸;塑化剂

化石资源巨量消耗所造成的环境污染、气候变暖和资源能源危机已日益成为各国学术界和产业界关注的焦点,寻找可持续发展的绿色能源成为全球的共同选择。将各种秸秆和果壳等在内的生物质资源转化为高附加值的燃料和精细化工原料是解决未来能源与环境问题的重要途径之一[1-3]。从生物质碳水化合物出发,采用化学或生物的方法可得到多种基础平台化学品如5-羟甲基糠醛(HMF)、2,5-呋喃二甲酸(FDCA)、2,5-二甲基呋喃、糠醛、1,3-丙二醇、乙醇、乙酰丙酸等。这些产品具有非常好的反应特性,可以衍生出数量众多的下游产品,有利于缓解化石资源短缺的危机。

聚酯工业是关系国计民生的重要产业,聚对苯二甲酸酯类(PET)是开发最早且量大面广的聚酯产品,但其主要原料对苯二甲酸(PTA)需先从化石资源获得对二甲苯,再催化氧化而成。FDCA作为生物质碳水化合物衍生物HMF的氧化产物,已被美国能源部推荐为具有重要价值的12个生物质基平台化合物之一。FDCA具有与PTA类似的芳环体系及合成聚酯所需的二酸结构,有望成为合成绿色可降解塑料及无毒塑化剂等重要生物基聚酯原料[4],由于其芳香性较苯环弱,还有望拓展合成易于降解的新材料体系。以FDCA为原料制成的新型聚2,5-呋喃二甲酸乙二醇酯类塑料的氧气隔绝率优于PET六倍以上,CO2和水的隔绝率均优于PET两倍以上,玻璃化温度比PET高11 ℃,熔融温度比PET 低40 ℃[5]。但传统的邻苯二甲酸二酯类塑化剂会干扰人体内分泌,危害人类生殖健康,在未来可能会被禁用。而以FDCA为原料生产的呋喃二甲酸二酯类塑化剂不仅无生殖毒性,而且塑化性能也优于邻苯二甲酸酯类。本课题组多年来一直从事生物质炭磺酸及生物质催化转化利用方面的研究[6-11]。国内目前对于FDCA的重要性的研究相对较少[12-14]。

本文介绍了FDCA的用途,综述了以生物质碳水化合物为原料制备FDCA的方法,对以HMF及葡萄糖和果糖等生物质碳水化合物为原料催化转化制FDCA的化学途径、方法和催化技术进行了重点归纳和总结,分析了不同催化体系的优缺点。

1 FDCA传统的合成方法

1.1 己糖衍生物脱水法

己糖衍生物脱水法主要是利用酸促进醛糖二酸进行三重脱水。1876年,专利[15]以粘酸为原料,氢溴酸为催化剂和溶剂首次合成了FDCA(见式(1))。该方法的反应条件较苛刻,如需要高浓度液体酸、反应温度必须超过120 ℃、反应时间超过20 h等,而且存在反应选择性非常低、副产物多和FDCA收率不到50%等缺点[16]。许多研究试图通过改变脱水剂性质和底物种类以改进该方法。

1951年,Kuhn等[17]将己糖衍生物(2Z,4Z)-2,5-二羟基-2,4-己二烯-1,6-二酸二乙酯在酸性条件下脱水得到2,5-呋喃二甲酸二乙酯,再将2,5-呋喃二甲酸二乙酯水解可得到FDCA(见式(2)),产物收率为95%。该方法首次实现了FDCA的高效制备。

1.2 呋喃衍生物氧化法

呋喃衍生物氧化法是利用各种无机氧化剂将2,5-二取代呋喃氧化的反应,大多报道均以糠醛为起始原料合成FDCA[18],原理见式(3)。该方法为:先用硝酸将糠醛氧化成2-糠酸,然后进行甲酯化反应,接着在第5位上发生氯甲基化反应得到 5-氯甲基-2-糠酸甲酯,再用硝酸氧化得到 2,5-呋喃二甲酸二甲酯,经碱性水解得到FDCA。该方法的缺点是步骤繁多,产物选择性较差,产物收率不到50%。

Lewkowski[19]以5-甲基糠醛为原料在1~5 MPa和110~150 ℃的条件下催化氧化得到了FDCA。使用的催化剂包括Ag2O,CuO,Al2O3,Cr2O3等,当以钴、锰和醋酸铵盐的混合物为催化剂时效果最好,反应原理见式(4)。其中,以Ag2O或Ag2O/Al2O3混合物为催化剂时,反应通过路径 a进行;以CuO-Ag2O-Cr2O3/Al2O3或 CuO-Ag2O/Al2O3为催化剂时,反应更倾向于路径b;以醋酸盐混合物为催化剂时,反应也倾向于路径b。

2 HMF催化氧化法

近年来的研究主要集中于由果糖衍生物HMF催化氧化制备FDCA。催化剂主要包括贵金属Au、Pt、Pd及负载型催化剂[20],所用载体主要包括活性炭、水滑石、金属氧化物和碳纳米管(CNT)等。其他一些如Ru,Mn,Co等金属或金属氧化物也有报道。除此以外,还有电催化法和生物催化法等。

2.1 贵金属催化剂

纳米Au在碳氢化合物选择性氧化反应中表现出较好的催化性能,是一类极具潜力的“绿色”选择性氧化催化剂,Au催化剂能高效催化HMF氧化成FDCA。Casanova等[21]研究发现,载体对Au催化剂活性有很大影响。采用Au/CeO2和Au/TiO2催化剂时,在O2压力1 MPa、n(HMF):n(Au)=150、NaOH浓度4 mol/L、反应时间8 h的条件下,FDCA收率大于99%;而采用Au/C和Au/Fe2O3催化剂时,相同反应条件下FDCA收率分别为44%和15%。Albonetti等[22]进一步研究发现,在优化的反应条件下,Au/CeO2催化剂的活性和产物选择性优于Au/ TiO2催化剂。Cai等[23]也证实了载体对Au催化剂的活性有很大影响,通过比较HY,CeO2,TiO2,Mg(OH)2,ZSM-5等不同载体时发现,HY载体性能最优,FDCA收率可达99%以上。Miao等[24]研究发现,在CeO2上掺杂Bi3+可提高活性并促进氢化物在载体表面转移,在相同反应条件下,使FDCA收率从39%提高至75%。除载体外,Gorbanev等[25]研究发现,碱的用量也影响Au的催化性能,如碱浓度太低(小于5 mol/L)会产生更多的中间产物5-羟甲基糠酸(HFCA)。Davis等[26]利用同位素跟踪技术研究了碱存在下Au催化HMF制FDCA的反应机理,他们认为HFCA为主要的中间产物。Gupta等[27]研究发现,使用水滑石负载Au催化剂时,不需加碱FDCA收率也可达到99%以上,但反应机理不同。在无碱或在酸性条件下,HMF氧化反应的中间产物主要为2,5-呋喃二甲醛(DFF)和5-甲酰基-2-呋喃甲酸(FFCA)。

Pt是最早用于催化氧化HMF制FDCA的贵金属。1983年,Verdeguer等[28]首次使用Pt/C催化剂,并发现添加Pb可使FDCA收率从81%提高至99%。Ait等[29-30]也证实添加Bi不但可提高Pt/C和Pt/ TiO2催化剂的活性,还可防止Pt浸出,从而提高催化剂的稳定性。Sahu等[31]研究发现,在相同条件下,Pt/γ-A12O3,Pt/ZrO2,Pt/C催化剂的FDCA的收率分别为96%,94%,89%;Pt/TiO2和Pt/CeO2催化剂的FDCA收率仅为2%和8%。当O2用量太少时,催化剂活性位点易被副产物覆盖;但O2用量过大又会使催化剂中毒。Siankevich等[32]在无碱条件下使用纳米Pt/聚维酮(PVP)催化剂,原料转化率为100%,FDCA选择性为94%,中间产物主要为DFF和FFCA,该结论与Ebitani等的研究结果一致。Zhou等[33]在无碱条件下用CNT负载纳米Pt催化剂催化氧化HMF也证明了该结论。Niu等[34]利用还原态石墨烯氧化物负载纳米Pt催化剂催化氧化HMF,FDCA收率仅为41%。Han等[35]用C包覆MgO,然后除去部分MgO,再负载Pt,得到一种新型催化剂Pt/C-O-Mg,该催化剂的HMF氧化反应的选择性和稳定性非常好,FDCA收率为97%,催化剂重复使用10次以上仍保持活性。

本课题组首次利用葡萄糖为稳定剂制备的一种纳米胶体Pd和Pd/C催化剂[36-37]的活性较高。Davis等[20]研究了Pd/C催化剂的性能。实验结果表明,在O2压力690 kPa、NaOH浓度2 mol/L、反应温度23 ℃、反应时间6 h的条件下,原料可完全转化,FDCA收率为71%。Siyo等[38]利用PVP负载的纳米Pd催化剂催化HMF氧化时发现,Pd的粒径影响催化活性,当粒径由1.8 nm增至2.0 nm时,FDCA收率从90%降至81%。Siyo等[39]研究不同载体的性能时发现,Pd/ZrO2/La2O3催化剂的性能最佳,FDCA收率为90%,且催化剂性能稳定。Zhang等[40-42]首次制备了系列新型磁性Pd催化剂(γ- Fe2O3@HAP-Pd,C-Fe3O4-Pd,Pd/C@ Fe3O4),FDCA的最高收率为93%,该类催化剂的优点是活性高且容易磁性分离,可回收利用。负载型贵金属催化剂催化HMF氧化制FDCA的性能比较见表1。

表1 负载型贵金属催化HMF氧化制FDCA的性能比较Table 1 Oxidation of HMF into FDCA over supported noble metal catalysts

也有研究者利用贵金属合金类催化剂催化HMF氧化制备FDCA并取得较好效果。Villa等[43]制备了活性炭(AC)负载的催化剂Au8-Pd2/AC,在3 MPa O2、2 mol/L NaOH的条件下,60 ℃反应2 h,原料转化率及FDCA收率均在99%以上,相比单一金属催化剂的效率更高,反应时间大幅缩短,反应温度也下降较多。Wan等[44]研发了一种CNT负载的Au-Pd纳米催化剂,在不加NaOH、空气压力1 MPa的条件下,100 ℃反应12 h,HMF可完全转化,FDCA收率为96%。这可能是因为,CNT表面的羰基和酚羟基促进了原料及中间产物吸附在催化剂表面发生催化氧化。

2.2 非贵金属催化剂

贵金属的催化活性虽然较高,但制备成本相对也较高,故考虑利用非贵金属催化剂。Gorbanev等[45-46]以TiO2,Al2O3,Fe3O4,CeO2,ZrO2,MgO,HT,MgAl2O4等为载体研究了Ru(OH)x负载型催化剂在水相中催化HMF转化为FDCA。研究结果表明,以碱性氧化物为载体时催化活性更高,固体碱能有效促进氧化反应进行。Ståhlberg等[47]研究发现,HMF在离子液体介质中催化氧化HMF为FDCA的收率仅为48%,且离子液体成本高,与产物分离困难。Yi等[48]研究发现,在无碱条件下,Ru/C催化剂的FDCA的收率为88%。专利[49-50]在Co和Mn类金属催化剂中引入Br,在有机酸为溶剂的条件下,FDCA收率最高为73%。Hansen等[51]利用CuCl/t-BuOOH催化体系催化氧化HMF,FDCA收率为50%。Saha等[52]研究了多孔聚合物负载的FeCl3催化剂,FDCA选择性为85%。Wang等[53-54]开发了磁性纳米催化剂Fe3O4-CoOx和Merrifield树脂负载的钴卟啉催化剂,实现了HMF的完全转化,FDCA选择性及收率最高可达 90%。非贵金属类催化剂虽成本较低,但催化活性还有待提高。

2.3 电催化法

1991年,Grabowski等[55]利用碱式氧化镍为正极材料首次研究了HMF的电催化氧化,FDCA收率为71%。此后有关HMF电催化氧化制FDCA的报道很少。直到2012年,Vuyyuru等[56]在pH=10的条件下使用Pt电极电催化氧化HMF,只发现了少量DFF,几乎未得到FDCA(收率不到1%)。他们认为,水的电解是主要竞争反应,限制了HMF氧化的法拉第效率。Chadderdon等[57]研究了碱性溶液下炭黑负载的贵金属催化剂的电催化氧化反应。他们发现,反应受电极电位和电催化剂影响,HMF上的醛基比羟基更易被氧化,中间产物主要为HFCA,如要进一步氧化羟基则需更高的电极电位。最近Cha等[58]利用四甲基哌啶氮氧化物为电催化剂通过抑制水电解,大幅提高了HMF的氧化效率,FDCA收率大于99%,反应机理见式(5)。

2.4 生物催化法

化学氧化反应通常在高温和高压下进行,而生物催化法通常可在相对温和的条件下进行。1997年,van Deurzen等[59]利用氯过氧化物酶(CPO)催化HMF氧化,H2O2为氧化剂,产物以DFF为主,选择性为60%~74%,主要副产物为5-羟基甲基-2-呋喃甲酸,也检测到少量FFCA,但未发现FDCA。Archer Daniels Midland公司[60]研究CPO对HMF的生物催化氧化作用时发现,FDCA收率为60%~75%,HFCA收率25%~40%。Koopman等[61]使用氧化还原酶将HMF氧化成FDCA的收率为97%。Dijkman等[62-63]研究了一个源于葡萄糖-甲醇-胆碱氧化还原酶家族的HMF氧化酶,该氧化酶有较高的催化活性。McKenna等[64]研究了合成FDCA的酶级联反应,利用半乳糖氧化酶和醛氧化酶通过一锅串联酶反应催化HMF氧化制FDCA,收率为74%,在温和条件下实现了HMF上羟基高转化率转化为羧酸。

3 以生物质糖类为原料制FDCA

目前,由生物质碳水化合物直接转化制备HMF已有较多研究,但直接制备FDCA的研究尚在起步阶段。采用单糖类(葡萄糖或果糖)为原料两步法制备FDCA的制备原理见式(6)。

单糖先脱水生成HMF,然后经氧化反应得到FDCA;二糖和多糖一般是先水解为单糖,然后再经异构化、酸催化脱水和氧化等反应生成FDCA。无论单糖还是多糖,想得到最终产物均需经历很多基元反应,而且在反应过程中还有许多副反应,因此由糖类制备FDCA的过程很复杂。Kroger等[65]首次以果糖为原料,在水和甲基异丁基酮的双相体系中实现了一步转化为FDCA,但反应7 d的收率仅为25%。Ribeiro等[66]使用盐酸酸化的SiO2气凝胶包覆乙酰丙酮钴为催化剂催化果糖一步转化为FDCA,果糖转化率为72%,FDCA选择性可达99%,但反应条件十分苛刻,需高温高压,且催化剂制备复杂。最近Wang等[53]也利用果糖制备了FDCA,首先用Fe3O4@SiO2-SO3H固体酸催化剂催化果糖脱水生成HMF,然后用纳米Fe3O4-CoOx催化剂催化氧化HMF为FDCA,最终收率为60%。上述两个反应为连续操作,两种催化剂均具有磁性,在反应过程中易于分离。如在反应中同时加入上述两种催化剂时,果糖转化率非常低,几乎得不到FDCA。Yi等[67-69]研究发现,采用三相体系时,果糖制备FDCA的收率为78%,葡萄糖制备FDCA的收率仅为50%。

4 结语

由同样是生物质衍生而来的平台化合物HMF催化氧化制FDCA的实验室研究已经相当成熟,使用的催化剂主要是贵金属、金属氧化物、金属盐或生物催化。但到目前为止,FDCA还未实现工业化生产。在氧化工艺及其机理、高效催化剂的开发与筛选、进一步提高FDCA的选择性和收率等方面仍需进行较深入研究。开发效果好、价格低廉的催化剂是人们关注的焦点。

由生物质碳水化合物出发直接制备FDCA是一个富有挑战性的课题,但具有十分重要的研究价值,已逐渐受到研究者的关注,对葡萄糖和果糖等单糖原料转化的研究也已获得了一些初步的成果。但对于多糖如纤维素等直接转化为FDCA的研究几乎没有。纤维素作为以葡萄糖为单元的非粮碳水化合物,如能一步转化为FDCA,在生物质能源和材料产业上必将产生巨大的价值。

[1]Bruijnincx P C A,Weckhuysen B M. Biomass conversion lignin up for break-down[J]. Nat Chem,2014,6(12):1035 -1036.

[2]Julis J,Leitner W. Synthesis of 1-octanol and 1,1-dioctyl ether from biomass-derived platform chemicals[J]. Angew Chem,Int Ed,2012,51(34):8615 - 8619.

[3]Luterbacher J S,Rand J M,Alonso D M,et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone[J]. Science,2014,343(6168):277 - 280.

[4]Wu Binshuang,Xu Yutao,Bu Zhiyang,et al. Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s:From synthesis using highly purifed 2,5-furandicarboxylic acid to thermo-mechanical properties[J]. Polymer,2014,55(16):3648 -3655.

[5]Zhu Jianhui,Cai Jiali,Xie Wenchun,et al. Poly (butylene 2,5-furan dicarboxylate),a biobased alternative to PBT:Synthesis,physical properties,and crystal structure[J]. Macromolecules,2013,46(3):796 - 804.

[6]刘贤响,丁慧,匡湘铭,等. 生物质炭磺酸催化异丁醛环化反应[J]. 湖南师范大学自然科学学报,2015,38(2):35 -39.

[7]Wu Youyu,Fu Zaihui,Yin Dulin,et al. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chem,2010,12(4):696 - 700.

[8]Zhang Chao,Fu Zaihui,Liu Yachun,et al. Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Green Chem,2012,14(7):1928 - 1934.

[9]Zhang Chao,Fu Zaihui,Dai Baohua,et al. Chlorocuprate ionic liquid functionalized biochar sulfonic acid as an efciently biomimetic catalyst for direct hydrolysis of bamboo under microwave irradiation[J]. Ind Eng Chem Res,2013,52(33):11537 - 11543.

[10]Zhang Chao,Fu Zaihui,Dai Baohua,et al. Biochar sulfonic acid immobilized chlorozincate ionic liquid: An efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Cellulose,2014,21(3):1227 - 1237.

[11]欧阳四余,徐琼,伏再辉,等. 生物质转化制5-羟甲基糠醛的酸催化研究新进展[J]. 化工进展,2014,33(5):1077 -1085,1107.

[12]Liu Xianxiang,Xiao Jiafu,Ding Hui,et al. Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+and Cu2+immobilized on amino functionalized SBA-15[J]. Chem Eng J,2016,283:1315 - 1321.

[13]Liu Xianxiang,Xu Qiong,Liu Junyi,et al. Hydrolysis of cellulose into reducing sugars in ionic liquids[J]. Fuel,2016,164:46 - 50.

[14]Liu Xianxiang,Ding Hui,Xu Qiong,et al. Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2,5-diformylfuran using sodium nitrite[J]. J Energy Chem,2016,25(1):117 - 121.

[15]Furanix Technologies B V. Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid:US8865921[P]. 2014-10-21.

[16]Cope A,Keller R. Notes-benzofuran from saccharic acid[J]. J Org Chem,1956,21(1):141.

[17]Kuhn R,Dury K. Ringschlüsse mitα,α′-dioxymuconsäure-estern[J]. Justus Liebigs Annalen der Chemie,1951,571(1):44 - 68.

[18]Gonis G,Amstutz E D. The preparation of furan-2,5-dicarboxylic acid1[J]. J Org Chem,1962,27(8):2946 - 2947.

[19]Lewkowski J. Synthesis,chemistry and applications of 5-hydroxymethyl-furfural and its derivatives[J]. Arkivoc,2001,2(1):17 - 54.

[20]Davis S E,Houk L R,Tamargo E C,et al. Oxidation of5-hydroxymethylfurfural over supported Pt,Pd and Au catalysts[J]. Catal Today,2011,160(1):55 - 60.

[21]Casanova O,Iborra S,Corma A. Biomass into chemicals:Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem,2009,2(12):1138 - 1144.

[22]Albonetti S,Lolli A,Morandi V,et al. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Aubased catalysts:Optimization of active phase and metal-support interaction[J]. Appl Catal B,2015,163:520 - 530.

[23]Cai Jiaying,Ma Hong,Zhang Junjie,et al. Gold nanoclusters confned in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions[J]. Chem Eur J,2013,19(42):14215 - 14223.

[24]Miao Zhenzhen,Zhang Yibo,Pan Xiqiang,et al. Superior catalytic performance of Ce1-xBixO2-δsolid solution and Au/ Ce1-xBixO2-δfor 5-hydroxymethylfurfural conversion in alkaline aqueous solution[J]. Catal Sci Technol,2015,5(2):1314 -1322.

[25]Gorbanev Y Y,Klitgaard S K,Woodley J M,et al. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature[J]. ChemSusChem,2009,2(7):672 - 675.

[26]Davis S E,Zope B N,Davis R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts[J]. Green Chem,2012,14(1):143 - 147.

[27]Gupta N K,Nishimura S,Takagaki A,et al. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chem,2011,13(4):824 - 827.

[28]Verdeguer P,Merat N,Gaset A. Oxydation catalytique of(hydroxymethyl)furan to 2,5-furandicarboxylic acid[J]. J Mol Catal,1993,85(3):327 - 344.

[29]Ait R H,Essayem N,Besson M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts:Influence of the base and effect of bismuth promotion[J]. Green Chem,2013,15(8):2240 -2251.

[30]Ait R H,Essayem N,Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2-and ZrO2-based supports[J]. ChemSus-Chem,2015,8(7):1206 - 1217.

[31]Sahu R,Dhepe P L. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts[J]. React Kinet Mechnism Catal,2014,112(1):173 - 187.

[32]Siankevich S,Savoglidis G,Fei Zhaofu,et al. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315:67 - 74.

[33]Zhou Chunmei,Deng Weiping,Wan Xiaoyue,et al. Functionalized carbon nanotubes for biomass conversion:The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst[J]. ChemCatChem,2015,7(18):2853 -2863.

[34]Niu Wenqi,Wang Ding,Yang Guohui,et al. Pt nanoparticles loaded on reduced graphene oxide as an efective catalyst for the direct oxidation of 5-hydroxymethylfurfural(HMF)to produce 2,5-furandicarboxylic acid(FDCA) under mild conditions[J]. Bull Chem Soc Jpn,2014,87(10):1124 -1129.

[35]Han Xuewang,Geng Liang,Guo Yong,et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chem,2016,18(6):1597 - 1604.

[36]Liu Xianxiang,Zhang Zehui,Yang Yongjun,et al. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon-supported nano-palladium under atmospheric pressure[J]. Chem Eng J,2015,263:290 - 298.

[37]Yang Yongjun,Liu Xianxiang,Yin Dulin,et al. A recyclable Pd colloidal catalyst for liquid phase hydrogenation ofα-pinene[J]. J Ind Eng Chem,2015,26:333 - 334.

[38]Siyo B,Schneider M,Pohl M M,et al. Synthesis,characterization,and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural(HMF)[J]. Catal Lett,2014,144(3):498 - 506.

[39]Siyo B,Schneider M,Radnik J,et al. Infuence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Appl Catal,A,2014,478:107 - 116.

[40]Zhang Zehui,Zhen Judun,Liu Bing,et al. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst[J]. Green Chem,2015,17(2):1308 - 1317.

[41]Liu Bing,Ren Yongsheng,Zhang Zehui. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions[J]. Green Chem,2015,17(3):1610 - 1617.

[42]Mei Nan,Liu Bing,Zheng Judun,et al. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water[J]. Catal Sci Technol,2015,5(6):3194 - 3202.

[43]Villa A,Schiavoni M,Campisi S,et al. Pd-modifed Au on carbon as an efective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid[J]. ChemSus-Chem,2013,6(4):609 - 612.

[44]Wan Xiaoyue,Zhou Chunmei,Chen Jiashu,et al. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles[J]. Acs Catal,2014,4(7):2175 - 2185.

[45]Gorbanev Y Y,Kegnaes S,Riisager A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports[J]. Catal lett,2011,141(12):1752 - 1760.

[46]Gorbanev Y Y,Kegnaes S,Riisager A. Efect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water[J]. Top Catal,2011,54(16/18):1318 - 1324.

[47]Ståhlberg T,Eyjólfsdóttir E,Gorbanev Y Y,et al. Aerobic oxidation of 5-(hydroxymethyl) furfural in ionic liquids with solid ruthenium hydroxide catalysts[J]. Catal lett,2012,142(9):1089 - 1097.

[48]Yi Guangshun,Teong Siewping,Zhang Yugen. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chem,2016,18(4):979 - 983.

[49]Canon Kabushiki Kaisha. Method of producing 2,5-furandicarboxylic acid:US20110092720[P]. 2011-04-21.

[50]Furanix Technologies B V. Method for the preparation of 2,5-furandicarboxylic acid and esters thereof:US8519167[P]. 2013-04-27.

[51]Hansen T S,Sádaba I,García-Suárez E J,et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions[J]. Appl Catal,A,2013,456:44 - 50.

[52]Saha B,Gupta D,Abu-Omar M M,et al. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efcient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid[J]. J Catal,2013,299:316 - 320.

[53]Wang Shuguo,Zhang Zehui,Liu Bing. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOxmagnetite nanocatalyst[J]. ACS Sustain Chem Eng,2015,3(3):406 - 412.

[54]Gao Langchang,Deng Kejian,Zheng Judun,et al. Efcient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by merrifeld resin supported cobalt porphyrin[J]. Chem Eng J,2015,270:444 - 449.

[55]Grabowski G,Lewkowski J,Skowroński R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode[J]. Electrochim Acta,1991,36(13):1995.

[56]Vuyyuru K R,Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today,2012,195(1):144 - 154.

[57]Chadderdon D J,Xin Le,Qi Ji,et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported au and pd bimetallic nanoparticles[J]. Green Chem,2014,16(8):3778 - 3786.

[58]Cha H G,Choi K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell[J]. Nat Chem,2015,7(4):328 - 333.

[59]van Deurzen M P J,van Rantwijk F,Sheldon R A. Chloroperoxidase-catalyzed oxidation of 5-(hydroxymethyl)furfural[J]. J Carbohydr Chem,1997,16(3):299 - 309.

[60]Archer Daniels Midland Company. Enzymatic oxidation of hydroxymethylfurfural:US8183020[P]. 2012-05-22.

[61]Koopman F,Wierckx N,de Winde J H,et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA,2,5-furandicarboxylic acid[J]. Bioresour Technol,2010,101(16):6291 - 6296.

[62]Dijkman W P,Groothuis D E,Fraaije M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid[J]. Angew Chem,Int Ed,2014,53(25):6515 - 6518.

[63]Dijkman W P,Binda C,Fraaije M W,et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase[J]. ACS Catal,2015,5(3):1833 - 1839.

[64]McKenna S M,Leimkühler S,Herter S,et al. Enzyme cascade reactions:Synthesis of furandicarboxylic acid(FDCA)and carboxylic acids using oxidases in tandem[J]. Green Chem,2015,17(6):3271 - 3275.

[65]Kroger M,Prusse U,Vorlop K D. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Top Catal,2000,13(3):237 - 242.

[66]Ribeiro M L,Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catal Commun,2003,4(2):83 - 86.

[67]Yi Guangshun,Teong Siewping,Zhang Yugen. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system[J]. ChemSusChem,2015,8(7):1151 -1155.

[68]Yi Guangshun,Teong Siewping,Li Xiukai,et al. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid[J]. Chem-SusChem,2014,7(8):2131 - 2135.

[69]Teong Siewping,Yi Guangshun,Cao Xueqin,et al. Polybenzylic ammonium chloride resins as solid catalysts for fructose dehydration[J]. ChemSusChem,2014,7(8):2120 - 2124.

(编辑 邓晓音)

Advances in catalytic conversion of biomass carbohydrates into 2,5-furandicarboxylic acid

Liu Xianxiang,Xu Qiong,Su Shengpei,Yin Dulin
(National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources,College of Chemistry and Chemical Engineering,Hunan Normal University,Changsha Hunan 410081,China)

2,5-Furandicarboxylic acid(FDCA),an important biomass-based platform compound,may be used as an alternative of petrochemical resources for the synthesis of biodegradable polymers and other additives. Its applications were introduced and the recent advances in the catalytic conversion of biomass carbohydrates to FDCA,including convention al synthetic methods,catalytic oxidation of 5-hydroxymethylfurfural and other methods using biomass sugars as starting materials,were summarized in this paper. An efficient catalytic system for the direct conversion of biomass carbohydrates to FDCA is an important basis for technological breakthroughs in the field. Some suggestions were proposed for further research and development of the catalytic conversion of biomass carbohydrates to FDCA.

biomass carbohydrates;5-hydroxymethylfurfural;2,5-furandicarboxylic acid;plasticizer

1000 - 8144(2016)07 - 0872 - 08

TQ 251.1

A

10.3969/j.issn.1000-8144.2016.07.018

2015 - 12 - 31;[修改稿日期]2016 - 03 - 22。

刘贤响(1985—),男,湖南省衡阳市人,博士生,实验师,电邮 lxx@hunnu.edu.cn。联系人:苏胜培,电话 0731 -88872576,电邮 sushengpei@gmail.com。

湖南省教育厅资助科研项目(13C562,15B134);国家留学基金资助项目(201506720018)。

猜你喜欢

二甲酸呋喃碳水化合物
说说碳水化合物
减肥不能吃碳水化合物?
低碳水化合物饮食有益于长期减肥
1-O-[3-(2-呋喃基)丙烯酰基]-β-D-吡喃果糖的合成及应用
聚萘二甲酸乙二醇酯工业丝的制备及性能研究
基于3,4-吡唑二甲酸为配体的两个过渡金属配合物的合成、结构及荧光性质
一个含呋喃环顺磁性碳硼烷衍生物的合成及其生成机理
基于2-丙基-4,5-咪唑二甲酸的锰(Ⅱ)和铜(Ⅰ)配合物的合成、晶体结构及性质研究
1-氢-1,2,3-三氮唑-4,5-二甲酸构筑的六核钴配合物:合成、晶体结构和磁性
土壤紧实胁迫对黄瓜碳水化合物代谢的影响