谷氨酰胺酶与肿瘤的关系研究进展
2017-01-13黎兵华丁义涛余德才
黎兵华,丁义涛,余德才
(南京大学医学院附属鼓楼医院肝胆外科,江苏南京210008)
·专家述评·
谷氨酰胺酶与肿瘤的关系研究进展
黎兵华,丁义涛,余德才
(南京大学医学院附属鼓楼医院肝胆外科,江苏南京210008)
0 引言
代谢重编程是肿瘤的重要标志[1],肿瘤通过代谢重编程以满足快速增殖的能量需求和物质合成需求.经典的肿瘤代谢重编程有两个特点,其一是葡萄糖的有氧酵解;其二是依赖谷氨酰胺回补三羧酸循环.谷氨酰胺不仅能作为碳源回补三羧酸循环,还可为蛋白质、氨基己糖和核苷酸等生物大分子的合成提供氮源,此外还是谷胱甘肽的前体之一,是机体对抗氧化应激维持氧化还原稳态的重要途径[2].谷氨酰胺酶(glutanimase,GLS)催化谷氨酰胺脱氨基生成谷氨酸的反应,是谷氨酰胺酵解的限速酶,把持着谷氨酰胺分解代谢的入口,机体对谷氨酰胺代谢的调控主要通过GLS实现.本文概述了GLS的基础和生理,GLS与肿瘤关系研究进展,并对GLS在肿瘤临床诊治过程中的应用作了展望.
1 GLS基础与生理
GLS分为GLS1和GLS2,它们由位于不同染色体上的两个独立基因编码.GLS1基因位于2号染色体,又称为肾型GLS(kidney-type glutaminase);GLS2基因位于12号染色体,又称为肝型GLS(liver-type glutaminase)[3].GLS1基因由19个外显子组成,GLS1前体mRNA经过组织特异性剪接产生三种剪接变异体KGA、GAC和GAM,GAM不具有催化活性[4],后文不再讨论.KGA的mRNA由1~14和16~19共18个外显子组成,GAC由1~15外显子组成.KGA和GAC的5’端序列完全相同,它们的差别存在于3’端[4].KGA和GAC亚型的选择性剪接受可变聚腺苷酸化(alternative polyadenylation,APA)调节子CFIm25的调控[5-6].GLS2基因由18个外显子组成.GLS2有较长的GAB和较短的LGA两种剪接变异体,前者包括GLS2基因的全长,后者只有2~18外显子[7].
GLS1和GLS2各亚型的分布具有组织特异性,不同的GLS亚型组织分布不同.KGA存在于除肝脏外的所有组织,在肾、脑、肠上皮、淋巴细胞含量丰富;GAC主要存在于心肌和胰腺组织中.GLS2一直被认为只在成人肝脏中表达,直到有研究在脑、胰腺和乳腺癌细胞等肝外组织发现LGA[8].有研究[9]报道在部分肿瘤细胞中,GLS1和GLS2可同时表达,且细胞增殖快时,GLS1的表达量增加,而GLS2似乎与细胞的静息状态有关.
GLS催化谷氨酰胺生成谷氨酸的反应,具有广泛的生理功能.KGA在肾脏和脑中表达量丰富,在肾脏中催化谷氨酰胺脱氨反应,维持肾脏酸碱平衡,在脑中合成神经递质——γ-氨基丁酸(γ-aminobutyric acid,GABA).GAC主要分布于线粒体,催化谷氨酰胺生成谷氨酸,后者再生成 α-KG,回补三羧酸循环[4].有研究[10]发现,GLS1还能催化谷氨酸盐生成GABA的反应,推测其可能具有两个活性位点.GLS2主要存在于成人肝脏,与尿素循环、糖异生和对抗抗氧化应激相关[11].肝脏同时表达GLS2和谷氨酰胺合成酶(glutamate synthetase,GS).正常情况下,人体没有谷氨酰胺和谷氨酸的净吸收,人体谷氨酰胺池中的谷氨酰胺主要来源于从头合成.谷氨酰胺合成酶的活性几乎不发生变化,对谷氨酰胺稳态的调控几乎都是通过调节GLS2来实现的.在糖尿病、高蛋白饮食和饥饿条件下,小鼠GLS2表达量上升[12].因此GLS2在维持体内谷氨酰胺稳态过程中发挥主要作用.
2 GLS与肿瘤代谢
2.1 肿瘤组织GLS的表达模式 研究GLS在肿瘤组织中的表达模式有助于理解其在肿瘤代谢中的功能.肿瘤细胞GLS1的表达量上调在肝癌[13]、小细胞肺癌[14]、结直肠癌[15]、甲状腺癌[16]和黑色素瘤[17]均有报道.我们前期的研究也发现在肝癌组织中GLS1表达量上调,而GLS2表达量下调,在肝癌进展过程中GLS2向GLS1表达转变[18].而有研究[19]发现在MYCN扩增的胶质母细胞瘤中具有截然相反的GLS表达模式,其GLS2表达量上调,而GLS1表达量下调.不同组织类型的肿瘤,甚至同一肿瘤的不同亚型,GLS的表达模式也不尽相同.研究[20]发现相比于其它分子亚型的乳腺癌,HER2型乳腺癌基质细胞GLS1表达量最高.GLS1不同亚型在肿瘤中的表达情况也不尽相同,目前的研究倾向于认为GAC是主要亚型,在神经胶质瘤中,GAC的表达量最高[21],非小细胞肺癌[14]和乳腺癌[22]中GLS1的GAC亚型发挥主要作用.以上研究充分体现了肿瘤组织中GLS表达模式的复杂性.
2.2 肿瘤细胞GLS的功能 Martin-Rufian等[23]比较了野生型和敲除GLS1的小鼠乳腺癌上皮细胞系的基因表达差异,发现四个基因表达量下调,这四个基因都是生长和增殖相关基因,提示GLS1与细胞增殖有关.在胶质瘤中敲除GLS1或者过表达GLS2具有相似的抗肿瘤增生效应,都会降低GSH依赖性的抗氧化应激能力[24].在胶质母细胞瘤细胞中,敲除GLS1能够降低肿瘤细胞的生存和增殖能力,同时加强GLS2过表达带来的抗增殖效应,证明GLS1具有“促癌效应”,而GLS2具有“抗癌效应”[25].新近研究[26]发现GLS2的C端可以直接与癌基因Rac1结合,抑制Rac1的激活,从而抑制肝癌的转移,GLS2这种效应不依赖于GLS的活性,提示GLS2不仅是一种酶,还是一个信号分子,可与其它蛋白相互作用,发挥蛋白调控的功能.该研究结果为GLS2的抑癌功能提供了直接证据支持.虽然也有报道使用GLS2特异性抑制剂抑制GLS2活性或用siRNA敲除GLS2均能抑制肿瘤细胞系的生长[27-28],提示GLS2可能具有促癌作用,但目前的研究倾向于认为GLS1与细胞增殖有关,发挥促癌作用,而GLS2与细胞的静息状态相关,发挥抗癌作用.在肿瘤细胞中抑制GLS1表达或过表达GLS2均可产生抗肿瘤效应.
3 GLS与肿瘤的临床过程
3.1 GLS与肿瘤的发生 Wang等[29]发现在乳腺癌和淋巴瘤两种细胞模型中,GLS1特异性抑制剂968可以阻止细胞发生致癌性转化,并进一步证实GLS1受促癌转录因子c-Jun调控,在体外证实了GLS1具有促癌效应[30].Xiang等[13]发现在MYC诱导的小鼠肝癌模型中,Gls1+/-小鼠肿瘤负荷明显小于Gls1+/+小鼠,敲除一个GLS1等位基因能够减少肝癌的发生.在用吗啉代敲减GLS1的细胞模型和异体移植肿瘤模型中敲减GLS1后,肿瘤的发生率明显降低.在Kras诱导的肿瘤模型中,敲除GLS1能够减少肿瘤的生长[31].这些研究从侧面证实GLS1可能与肿瘤发生存在关系,不过尚无研究证实过表达GLS1能直接导致肿瘤的发生.
3.2 GLS与肿瘤的进展和转移 研究[22]发现,在乳腺癌中GLS1的两种亚型KGA和GAC表达量都升高,且升高的水平和肿瘤的恶性程度相关.免疫组化结果显示,随着恶性程度的升高,乳腺叶状肿瘤中GLS1表达量升高[32].结直肠癌组织中的GLS1表达量显著上调,且GLS1的表达量和结直肠癌的TNM分期有关,T3/T4期表达量显著高于T1/T2期,远处转移的结直肠癌GLS1表达量高于非远处转移肿瘤[33].类似现象在口腔鳞状细胞癌中也有发现,相比正常口腔黏膜,口腔鳞状细胞癌GLS1高表达,且表达量随着肿瘤恶化程度的升高而升高[34].这些研究表明,在乳腺癌、结直肠癌和口腔鳞状上皮癌中,GLS1的表达量和肿瘤的进展呈正相关,GLS1的表达情况可能可以反映肿瘤的进展.
GLS与肿瘤的转移密切相关.敲除艾氏腹水肿瘤细胞(Ehrlich ascites tumor cell,EATC)中的KGA后,肿瘤对宿主的免疫逃避能力明显降低[35],且发生上皮间质表型转化(epithelial-mesenchymal transition,EMT)的非小细胞肺癌对GLS抑制剂更加敏感[36].Snail是EMT重要的转录因子,GLS2可以抑制Snail进而抑制肿瘤的转移[37-38].体外研究[26]证实,GLS1促进肝癌细胞的迁移和侵袭,而GLS2发挥相反的作用.上调GLS1是EMT的重要环节,靶向GLS1可以抑制肿瘤的转移[39].研究发现卵巢癌对谷氨酰胺依赖性与肿瘤的侵袭性密切相关,低侵袭性的卵巢癌多是谷氨酰胺非依赖性的,而高侵袭性的卵巢癌高度依赖谷氨酰胺.谷氨酰胺可通过激活STAT3促进卵巢癌的转移,使用siRNA敲除GLS1可以减少卵巢癌细胞向周围组织浸润[40].在恶性胶质瘤细胞中过表达GLS2,肿瘤细胞的生存能力、增殖能力和迁移能力都显著降低[41].因此,GLS1有助于肿瘤的进展和转移,而GLS2发挥相反的作用.
3.3 GLS与肿瘤的诊断和分型 Budczies等[42]发现肿瘤组织和正常组织中谷氨酸/谷氨酰胺比(glutamateto-glutamine ratio,GGR)有较大差异,正常乳腺细胞谷氨酸和谷氨酰胺呈正相关,乳腺癌组织中呈负相关,谷氨酸/谷氨酰胺比可能为乳腺癌提供了一种新的诊断方法[42].我们前期的研究发现GLS1可作为肝癌诊断的一个敏感而特异的指标[18].GLS2在恶性胶质瘤细胞中没有表达,而在正常细胞和脑转移癌中表达量都很高.因此,GLS2可作为原位检测恶性胶质瘤的一个标志[43].不同亚型的乳腺癌对谷氨酰胺的依赖性不一样[44],GLS表达情况也不同[45],谷氨酰胺依赖的肿瘤高表达GLS1.研究[46-47]发现在非小细胞肺癌中,丙酮酸羧化酶(pyruvate carboxylase,PC)可把丙酮酸转化为三羧酸循环的中间产物草酰乙酸(oxaloacetic acid,OAA),为三羧酸循环提供碳源.这些肿瘤中GLS1的表达不上调,提示GLS1可能是潜在的肿瘤代谢分型指标.还需要更多基础和临床研究发掘GLS在肿瘤临床诊断和分型中的应用价值.
3.4 GLS与肿瘤的治疗 GLS与肿瘤对化疗药物的耐药性有关.研究[48]发现,过表达GLS1会增加乳腺癌细胞对紫杉醇的耐药性.敲除GLS1可以增加肿瘤癌细胞对化疗药物的敏感性[49-50].有研究[51]用全基因组关联研究(genome wide association study,GWAS)的方法确定了一个包含GLS1在内的、由8个基因组成的基因标志,这个标志可用于预测肺癌和乳腺癌患者化疗的敏感性.GLS1特异性抑制剂968可以逆转NSCLC细胞系对吉非替尼和厄洛替尼的耐药性[52].过表达GLS2的胶质母细胞瘤细胞系下调DNA修复蛋白MGMT的表达,对烷化剂化疗更加敏感[53].因此,推测GLS1可以增加肿瘤细胞对化疗药物的耐药性,而GLS2可增加肿瘤对化疗药物的敏感性.
因为肿瘤细胞的生存依赖谷氨酰胺,剥夺谷氨酰胺为肿瘤的代谢治疗提供了新的策略.许多肿瘤中上调GLS1的表达,下调GLS2的表达.因此,GLS1是肿瘤代谢治疗的潜在靶点,研发GLS1特异性抑制剂是当前研究的热点[54].在肝癌[13]、乳腺癌[55]、白血病[56-57]、胶质瘤[58]、黑色素瘤[59]和慢性骨髓增生性肿瘤[60]中均发现敲除GLS1或使用GLS1抑制剂能抑制肿瘤细胞的生长.GLS1的构象抑制剂CB-839在三阴性乳腺癌(triple negative breast cancer,TNBC)的体外和体内模型都能够抑制谷氨酰胺的代谢,对TNBC具有治疗作用[55],在2014年初已进入Ⅰ期临床研究.
联合使用GLS1抑制剂和其它抗代谢药物取得了显著的抗肿瘤效果.研究发现联合GLS1抑制剂和mTOR抑制剂可以取得很好的治疗效果[61].联合使用己糖激酶2、GLS、脂肪酸合酶的特异性抑制剂,同时抑制肿瘤细胞的糖酵解、谷氨酰胺酵解和脂肪酸从头合成过程,能够发挥协同的抗肿瘤作用,显著抑制肿瘤的生长,并且这种三联治疗对正常细胞毒性很小,健康小鼠能够耐受[62].胰腺癌中,联合使用包含GLS1抑制剂BPTES的纳米颗粒和二甲双胍能够发挥较好的联用效果[63].肺癌中,GLS1抑制剂BPTES和5-FU能够发挥协同的抗肿瘤作用[64].肝癌中,GLS1抑制剂968能够增强双氢青蒿素介导的抗癌作用[65].卵巢癌肿瘤基质细胞可以利用乳酸、天冬氨酸等原料合成谷氨酰胺供肿瘤细胞使用.同时靶向肿瘤细胞的GLS1和肿瘤基质细胞的谷氨酰胺合成酶能取得很好的治疗效果[66].在多发性骨髓瘤中,联合使用GLS1抑制剂CB-839和蛋白酶体抑制剂可以取得很好的协同作用[67].可见GLS1抑制剂是一种很有前景的肿瘤代谢治疗药物,联合使用GLS1抑制剂和其它抗代谢药物能够取得更好的抗癌效果.有研究[19]报道在MYCN扩增的胶质母细胞瘤GLS2表达量上调,体外和体内的研究证实抑制GLS2可以抑制该类型肿瘤的生长.因目前尚无特异性靶向GLS2的药物,GLS2能否作为该类型肿瘤的治疗靶点还需进一步研究.
3.5 GLS与肿瘤的预后 高表达GLS1的肿瘤进展快,易转移.理论上推测,表达GLS1的肿瘤患者预后较差.有文献报道GLS1表达量是三阴性乳腺癌的独立预后因素[66].我们在肝癌中的研究为GLS与肿瘤预后关系提供了直接证据.研究[18]发现 GLS1和GLS2的表达量与肝癌患者的预后密切相关,GLS1水平高、GLS2水平低的患者预后最差.我们建立了GLS1/GLS2评分系统评估肝癌患者的预后,评估该评分系统预测肝癌患者预后的敏感性和特异性的回顾性和前瞻性多中心的临床研究正在进行中.
4 总结和展望
谷氨酰胺依赖是肿瘤细胞的重要代谢特点,GLS是谷氨酰胺最重要的代谢酶,研究GLS对理解肿瘤代谢重编程及研发抗肿瘤代谢的药物都具有特殊意义.目前研究发现GLS与肿瘤的发生、进展和转移存在联系,可能在部分肿瘤中具有临床诊断、分型和预后评估的价值.GLS1是肿瘤代谢治疗的潜在靶点,寻找GLS1的特异性抑制剂是肿瘤代谢的研究热点.GLS作为一种代谢酶,目前的相关性研究和功能研究初步表明GLS与肿瘤的发生发展有关,GLS1具有“促癌效应”,而GLS2具有“抗癌效应”.代谢酶具有非代谢功能已经在多个代谢酶中得到证实,已有研究证实GLS2可以发挥蛋白调控功能.GLS1是否具有非酶活功能是亟待研究的内容.这些研究将充实GLS1和肿瘤发生、进展和转移之间的关系.此外还需更多的工作研究GLS在肿瘤临床诊断、分型和预后评估的应用价值.
GLS相关研究还存在一系列难题,需要大量的基础和临床研究予以解决.不过GLS已为肿瘤研究提供了一条充满前景的道路,为肿瘤的代谢干预开辟了新途径.
[1]Hanahan D, Weinberg RA.Hallmarks of cancer: the next generation[J].Cell,2011,144(5):646-674.
[2]Hensley CT, Wasti AT, DeBerardinis RJ.Glutamine and cancer:cell biology, physiology, and clinical opportunities[J].J Clin Invest,2013,123(9):3678-3684.
[3]Aledo JC, Gómez-Fabre PM, Olalla L, et al.Identification of two human glutaminase loci and tissue-specific expression of the two related genes[J].Mamm Genome,2000,11(12):1107-1110.
[4]Elgadi KM, Meguid RA, Qian M, et al.Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing[J].Physiol Genomics,1999,1(2):51-62.
[5]Masamha CP, Xia Z, Peart N, et al.CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function[J].RNA,2016,22(6):830-838.
[6]Redis RS, Vela LE, Lu W, et al.Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2[J].Mol Cell,2016,61(4):520-534.
[7]Martín-Rufián M, Tosina M, Campos-Sandoval JA, et al.Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism[J].PLoS One,2012,7(6):e38380.
[8]Gómez-Fabre PM, Aledo JC, Del Castillo-Olivares A, et al.Molecular cloning,sequencing and expression studies of the human breast cancer cell glutaminase[J].Biochem J,2000,345 Pt 2:365-375.
[9]Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ, et al.Co-expression of glutaminase K and L isoenzymes in human tumour cells[J].Biochem J,2005,386(Pt 3):535-542.
[10]Nanga RP,DeBrosse C,Singh A, et al.Glutaminase catalyzes reaction of glutamate to GABA[J].Biochem Biophys Res Commun,2014,448(4):361-364.
[11]Hu W, Zhang C, Wu R, et al.Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function[J].Proc Natl Acad Sci U S A,2010,107(16):7455-7460.
[12]Watford M,Chellaraj V,Ismat A,et al.Hepatic glutamine metabolism[J].Nutrition,2002,18(4):301-303.
[13]Xiang Y, Stine ZE, Xia J, et al.Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis[J].J Clin Invest,2015,125(6):2293-2306.
[14]van den Heuvel AP, Jing J, Wooster RF, et al.Analysis of glutamine dependency in non-small cell lung cancer:GLS1 splice variant GAC is essential for cancer cell growth[J].Cancer Biol Ther,2012,13(12):1185-1194.
[15]Turner A, McGivan JD.Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas[J].Biochem J,2003,370(Pt 2):403-408.
[16]Kim HM, Lee YK, Koo JS.Expression of glutamine metabolism-related proteins in thyroid cancer[J].Oncotarget,2016,7(33):53628-53641.
[17]Zacharias DP,Lima MM,Souza AL Jr,et al.Human cutaneous melanoma expresses a significant phosphate-dependent glutaminase activity:a comparison with the surrounding skin of the same patient[J].Cell Biochem Funct,2003,21(1):81-84.
[18]Yu D,Shi X, Meng G,et al.Kidney-type glutaminase(GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma[J].Oncotarget,2015,6(10):7619-7631.
[19]Xiao D, Ren P,Su H,et al.Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2[J].Oncotarget,2015, 6(38):40655-40666.
[20]Kim S, Kim DH,Jung WH, et al.Expression of glutamine metabolismrelated proteins according to molecular subtype of breast cancer[J].Endocr Relat Cancer,2013,20(3):339-348.
[21]Szeliga M,Matyja E,Obara M,et al.Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors[J].Neurochem Res,2008,33(5):808-813.
[22]Cassago A, Ferreira AP, Ferreira IM, et al.Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism[J].Proc Natl Acad Sci U S A,2012,109(4):1092-1097.
[23]Martin-Rufian M,Segura JA,Lobo C, et al.Identification of genes downregulated in tumor cells expressing antisense glutaminase mRNA by differential display[J].Cancer Biol Ther,2006,5(1):54-58.
[24]Martin-Rufian M, Nascimento-Gomes R, Higuero A, et al.Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells[J].J Mol Med (Berl),2014,92(3):277-290.
[25]Szeliga M, Bogacińska-Karas'M, Różycka A, et al.Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells[J].Tumour Biol,2014,35(3):1855-1862.
[26]Zhang C, Liu J, Zhao Y, et al.Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis[J].Elife,2016,5:e10727.
[27]Lee YZ, Yang CW, Chang HY, et al.Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells[ J].Oncotarget, 2014,5(15):6087-6101.
[28]Xu P, Oosterveer MH, Stein S, et al.LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer[J].Genes Dev,2016,30(11):1255-1260.
[29]Wang JB, Erickson JW, Fuji R, et al.Targeting mitochondrial glutaminase activity inhibits oncogenic transformation[J].Cancer Cell,2010,18(3):207-219.
[30]Lukey MJ, Greene KS, Erickson JW, et al.The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy[J].Nat Commun,2016,7:11321.
[31]Weinberg F, Hamanaka R, Wheaton WW, et al.Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity[J].Proc Natl Acad Sci U S A,2010,107(19):8788-8793.
[32]Kim S, Jung WH, Koo JS.The expression of glutamine-metabolismrelated proteins in breast phyllodes tumors[J].Tumour Biol,2013,34(5):2683-2689.
[33]Huang F, Zhang Q, Ma H, et al.Expression of glutaminase is upregulated in colorectal cancer and of clinical significance[J].Int J Clin Exp Pathol,2014,7(3):1093-1100.
[34]Cetindis M, Biegner T, Munz A, et al.Glutaminolysis and carcinogenesis of oral squamous cell carcinoma[J].Eur Arch Otorhinolaryngol,2016,273(2):495-503.
[35]Segura JA,Ruiz-Bellido MA,Arenas M,et al.Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system[J].Int J Cancer,2001,91(3):379-384.
[36]Ulanet DB, Couto K, Jha A, et al.Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition[J].PLoS One,2014,9(12):e115144.
[37]Haraguchi M, Indo HP, Iwasaki Y, et al.Snail modulates cell metabolism in MDCK cells[J].Biochem Biophys Res Commun,2013,432(4):618-625.
[38]Kuo TC, Chen CK, Hua KT, et al.Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells[J].Cancer Lett,2016,383(2):282-294.
[39]Lee SY,Jeon HM,Ju MK,et al.Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch[J].Oncotarget,2016,7(7):7925-7939.
[40]Yang L, Moss T, Mangala LS, et al.Metabolic shifts toward glutamine regulate tumor growth,invasion and bioenergetics in ovarian cancer[J].Mol Syst Biol,2014,10:728.
[41]Szeliga M,Obara-Michlewska M,Matyja E, et al.Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells[J].Glia,2009,57(9):1014-1023.
[42]Budczies J, Pfitzner BM, Györffy B, et al.Glutamate enrichment as new diagnostic opportunity in breast cancer[J].Int J Cancer,2015,136(7):1619-1628.
[43]Szeliga M,Sidoryk M,Matyja E,et al.Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas[J].Neurosci Lett,2005,374(3):171-173.
[44]Budczies J, Brockmöller SF, Müller BM, et al.Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer:alterations in glutamine and beta-alanine metabolism[J].J Proteomics,2013,94:279-288.
[45]Kung HN, Marks JR, Chi JT.Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia[J].PLoS Genet,2011,7(8):e1002229.
[46]Sellers K,Fox MP,Bousamra M,et al.Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation[J].J Clin Invest,2015,125(2):687-698.
[47]Cheng T, Sudderth J, Yang C, et al.Pyruvate carboxylase is required for glutamine-independent growth of tumor cells[J].Proc Natl Acad Sci U S A,2011,108(21):8674-8679.
[48]Fu A, Yu Z, Song Y, et al.Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol[J].Mol Med Rep,2015,11(6):4727-4733.
[49]Alonso FJ, Segura JA, Lora J, et al.Sensitisation of Ehrlich ascitic tumour cells to methotrexate by inhibiting glutaminase[J].Anticancer Res,2005,25(5):3315-3320.
[50]Lu WQ, Hu YY, Lin XP, et al.Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells[J].Oncotarget,2017.
[51]Hsu YC, Chen HY, Yuan S, et al.Genome-wide analysis of threeway interplay among gene expression,cancer cell invasion and anticancer compound sensitivity[J].BMC Med,2013,11:106.
[52]Xie C, Jin J, Bao X, et al.Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer[J].Oncotarget,2016,7(1):610-621.
[53]Szeliga M,Zgrzywa A,Obara-Michlewska M,et al.Transfection of a human glioblastoma cell line with liver-type glutaminase(LGA)down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents[J].J Neurochem,2012,123(3):428-436.
[54]McDermott LA, Iyer P, Vernetti L, et al.Design and evaluation of novel glutaminase inhibitors[J].Bioorg Med Chem,2016,24(8):1819-1839.
[55]Gross MI, Demo SD, Dennison JB, et al.Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[ J].Mol Cancer Ther,2014,13(4):890-901.
[56]Emadi A, Jun SA, Tsukamoto T, et al.Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations[J].Exp Hematol,2014,42(4):247-251.
[57]Jacque N, Ronchetti AM, Larrue C, et al.Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition[J].Blood,2015,126(11):1346-1356.
[58]Seltzer MJ, Bennett BD, Joshi AD, et al.Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1[J].Cancer Res,2010,70(22):8981-8987.
[59]Hernandez-Davies JE, Tran TQ, Reid MA, et al.Vemurafenib resistance reprograms melanoma cells towards glutamine dependence[J].J TranslMed,2015,13:210.
[60]Zhan H,Ciano K,Dong K,et al.Targeting glutamine metabolism in myeloproliferative neoplasms[J].Blood Cells Mol Dis, 2015,55(3):241-247.
[61]Tanaka K, Sasayama T, Irino Y, et al.Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J].J Clin Invest,2015,125(4):1591-1602.
[62]Cervantes-Madrid D, Dueñas-González A.Antitumor effects of a drug combination targeting glycolysis,glutaminolysis and de novo synthesis of fatty acids[J].Oncol Rep,2015,34(3):1533-1542.
[63]Elgogary A,Xu Q,Poore B,et al.Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer[J].Proc Natl Acad Sci U S A,2016,113(36):E5328-E5336.
[64]Lee JS, Kang JH, Lee SH, et al.Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC[J].Biochem Biophys Res Commun,2016,477(3):374-382.
[65]Wang D,Meng G,Zheng M,et al.The glutaminase-1 inhibitor 968 enhances dihydroartemisinin-mediated antitumor efficacy in hepatocellular carcinoma cells[J].PloS One,2016,11(11):e0166423.
[66]Kim JY, Heo SH, Choi SK, et al.Glutaminase expression is a poor prognostic factorin node-positive triple-negative breastcancer patients with a high level of tumor-infiltrating lymphocytes[J].Virchows Arch,2017,470(4):381-389.
[67]Thompson RM, Dytfeld D, Reyes L, et al.Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells[J].Oncotarget,2017.
Research progress on relationship between glutaminase and tumor
LI Bing-Hua,DING Yi-Tao,YU De-Cai
Department of Hepatobiliary Surgery,Drum Tower Hospital,Medical School of Nanjing University,Nanjing 210008,China
Glutamine addiction is one of the metabolic hallmarks of tumor cells.Glutaminase(GLS)catalyzes the first step of glutaminolysis by converting glutamine to glutamate and ammonia.There are two isozymes of GLS,a kidney-type glutaminase(GLS1)and a liver-type glutaminase(GLS2).GLS1 is upregulated in most tumor tissues,while GLS2 is downregulated.GLS1 functions as a tumor-promotor,while GLS2 acts as a tumor-suppressor.GLS plays an important role in the development and progression of multiple tumors.GLS is of much clinical significance in the diagnosis and prognosis evaluation of tumor.GLS1 is a potentially important target for cancer metabolic therapeutics,and the specific inhibitors of GLS1 are promising to become the novel anti-cancer drugs.This review summarized the progress of the basic and clinical research of GLS,and focused on the evaluation of the potential value of glutaminase in the clinical diagnosis and treatment.
glutaminase;tumor metabolism;glutamine;metabolism therapy
谷氨酰胺依赖是肿瘤细胞的重要代谢特点,谷氨酰胺酶(GLS)催化谷氨酰胺生成谷氨酸的反应,是谷氨酰胺酵解的第一个代谢酶.GLS可分为肾型谷氨酰胺酶(GLS1)和肝型谷氨酰胺酶(GLS2).大多数肿瘤中GLS1高表达,GLS2低表达.GLS1具有“促癌效应”,而GLS2具有“抗癌效应”.GLS在多种肿瘤的发生发展过程中起重要作用.GLS对肿瘤的诊断、进展及预后评估均具有十分重要的意义.GLS1是肿瘤代谢治疗的潜在靶点,其特异性抑制剂有望成为新型的抗肿瘤代谢药物.本文综述了GLS的基础和临床研究进展,并着重阐述了GLS在临床诊疗中的应用价值.
谷氨酰胺酶;肿瘤代谢;谷氨酰胺;代谢治疗
R73
A
2095-6894(2017)12-01-06
2017-04-26;接受日期:2017-05-10
国家自然科学基金(81372455,81372294);江苏省十三五强卫工程重点人才
黎兵华.博士.E-mail:lbhnju@163.com
余德才.博士,副教授,博士生导师.研究方向:肝癌、肿瘤代谢.E-mail:dryudecai@qq.com