皮肤病中蛋白激酶D1研究进展
2017-01-13刘保国张海芳
顾 静 刘保国 周 萌 张海芳
·综述·
皮肤病中蛋白激酶D1研究进展
顾 静1刘保国2周 萌1张海芳3
蛋白激酶D1是一种在体内多个重要器官广泛表达的钙离子/钙调蛋白依赖性的丝氨酸/苏氨酸蛋白激酶,参与多种重要的生理和病理活动,在许多肿瘤组织中表达异常。PKD1促进角质形成细胞增殖,抑制其分化,对表皮伤口愈合及肿瘤的形成具有促进作用,与UVB、ROS等影响皮肤疾病发生发展的重要因素之间都有密切联系。因此PKD1可能成为治疗某些皮肤病甚至皮肤肿瘤更有效的分子靶点。
蛋白激酶D1; 角质形成细胞; 皮肤疾病
蛋白激酶D(protein kinase D,PKD)是一种钙离子/钙调蛋白依赖性的丝氨酸/苏氨酸蛋白激酶。首先由1994年Rozengurt等[1]发现,曾被认为是蛋白激酶C(PKC)家族成员(protein kinase mu,PKCμ)之一[2],由于其激酶结构域与钙离子/钙调蛋白依赖性激酶(Ca2+/calmodulin-dependent kinase,CAMK)家族的同源性高于PKC家族,具有PKC激酶家族成员所没有的疏水端和一个特异性的底物同源结构域(pleckstrin-homology domain,PH),故现已归为CAMK激酶家族[3]。目前已确定三个PKD亚型,分别为PKD1(PKCμ)、PKD2和PKD3(PKCυ),三者在结构上存在相似之处,能被相同的刺激因子激活但却有着不同的功能,因为他们具有不同的表达水平和组织特异性,且彼此之间存在着复杂的相互作用[4]。早期文献中PKD仅指PKD1,目前关注最多的也是PKD1,已证明其参与人体多种生理和病理活动,与皮肤疾病的关系也越来越多的引起学者们的兴趣[5,6]。
1 PKD1概述
1.1 PKD1在细胞内分布在静息状态下的细胞中,大部分PKD1定位于细胞质,少部分存在于高尔基体和细胞核,在一些特异细胞中还可分布在线粒体或分泌颗粒中。PKD1活化后可移位至不同的细胞结构中,Ser744/748位点的磷酸化可能参与PKD1在细胞中分布位置的调节。其富含锌指结构和底物同源区的N段结构域使其激酶活性处于很低的状态,在受到佛波酯、G蛋白偶联受体激动剂、生长因子等刺激后立即活化,并被募集到细胞膜、细胞核或高尔基体等位置[7,8]。
1.2 PKD1在组织内的表达PKD1基因(又称PRKD1)位于人染色体14qll位置,在体内多个重要器官如脑、心脏、肺中广泛表达,在多种肿瘤中表达异常,与肿瘤的发生及侵袭转移密切相关[9-11],如在前列腺癌、乳腺癌、非小细胞肺癌、胃癌和结直肠癌中PKD1显著下调[11-14],而高表达的PKD1在胰腺癌、皮肤基底细胞癌及黑素瘤的发生和转移中起重要作用[15-17]。
1.3 PKD1参与调控细胞功能和多条细胞内信号传导通路,其中与皮肤病关系较密切的主要有:① 氧化应激条件下PKD1活化,通过NF-κB途径帮助表皮角质形成细胞存活。表皮角质形成细胞受到氧化应激损伤后,会引起线粒体上PKD1活化,从而激活 PKD1-IKK-NF-κB信号通路。NF-κB转录因子将诱导超氧化物歧化酶2(superoxide dismutase2,SOD2)基因的表达,继而保护细胞避免凋亡[18]。② PKD1通过磷酸化组蛋白去乙酰化酶HDAC,影响HDAC对基因表达的调控作用进而调节有丝分裂信号。在以皮肤色素沉着、脱失、掌跖角化及癌变为特征的砷中毒病变中可能发挥一定的作用[19,20]。③ PKD1通过 RINI (—种竞争性Ras效应蛋白)诱导ERK通路的持续激活,诱导原癌基因c-Fos的聚集促进细胞DNA合成,调节细胞的有丝分裂[21]。
1.4 PKD1与皮肤病相关的主要激活途径:① 通过催化域上的两个磷酸化位点Ser744/748激活,即PKC(磷脂酶C)依赖性PLC-PKC-PKD1途径[22]。通过PKC使PKD1分子的Ser744位点磷酸化及Ser748位点自身磷酸化,从而突破PH结构域的抑制而使PKD1处于稳定的活化状态。其后常常伴随Ser916位点的磷酸化,标志着PKD1的完全活化,有研究表明皮肤黑素瘤细胞中PKD1便是以此途径活化[17,23]。② 通过Tyr463位点磷酸化激活,在氧化应激等条件下酪氨酸激酶的活性增强,活化的Src作用于PKD1分子的PH结构域,使Tyr463位点发生磷酸化,结合目前的研究我们考虑PKD1在皮肤非黑素瘤中可能是通过该途径活化的[24]。
2 PKD1与某些皮肤病的相关性
2.1 PKD1与角质形成细胞 角质形成细胞是表皮组织最重要的功能细胞,其增殖和分化失衡可致皮肤防御功能损伤及多种皮肤疾病发生。PKD1信号通路对维持表皮平衡具有至关重要的作用[25]。通过RNA干扰技术降低PKD1的表达到原有水平的20%,足以阻止角质形成细胞的增殖和逆转分化[26]。Choudhary等研究证实PKD1的缺失可导致各种分化标记及相关mRNA表达显著增加[27]。Rashel等发现PKD1表达的多少并不影响表皮组织的正常发育和稳态,然而有趣的是在表皮损伤的情况下,PKD1的缺失可致伤口周围的角质形成细胞增殖和迁移明显较正常组减缓,出现伤口再上皮化延迟[28]。近期他们又提出不同的PKD亚型在人角质形成细胞中具有不同的作用,PKD2缺失增加角质形成细胞的增殖潜能,PKD3缺失却可导致增殖能力缺陷使得克隆形成及组织再生能力减少,而PKD1对角质形成细胞的作用可能相对较弱[29]。这和美国佐治亚医学研究所及我们前期所得实验结果相悖,PKD1在人表皮组织的真实表达情况及其与皮肤病的关系有待进一步研究。
2.2 PKD1参与皮肤肿瘤形成 早在2005年Ristich 等利用免疫组化证实了PKD1在正常皮肤,银屑病和基底细胞癌中的表达,而初步推测其在增殖性皮肤病如银屑病和皮肤肿瘤中可能发挥作用[16]。Rashel等选用PKD1基因敲除的小鼠和正常小鼠对比进行二阶法化学诱癌实验,结果显示PKD1敲除组小鼠成瘤率及肿瘤恶性程度都明显低于正常对照组。说明PKD1的缺失可抑制肿瘤形成,进而推测PKD1在皮肤肿瘤的形成过程中发挥重要作用[28,30]。Chiou等研究证实在皮肤肿瘤干细胞标记CD34阳性的细胞系和皮肤肿瘤中通过抑制PKD1相关的信号通路可有效预防皮肤肿瘤发生[31]。Kempkes等在黑素瘤细胞下调PKD1的表达结果发现肿瘤细胞增殖明显下降,他们认为PKD1相关通路的失活可能有助于抑制黑素瘤细胞的增殖及对肿瘤微环境的维护[32]。随着对PKD1与皮肤肿瘤发生发展关系认识的逐渐深入,越来越多的证据显示PKD1有望成为皮肤肿瘤治疗的新靶点。
2.3 PKD1与紫外线 紫外线与皮肤健康状况及某些皮肤病变的发生关系极为密切,皮肤中的角质形成细胞是UV照射的重要靶点。慢性UV辐射可导致皮肤组织中复杂的细胞内事件和分子反应,最终可导致皮肤衰老甚至恶性肿瘤的形成。研究发现UVB的致癌作用较UVA更强,并可以促使ROS的产生[33,34]。UVB杀伤角质形成细胞造成其凋亡的过程中同时激活细胞内的PKD1(这种PKD1的活化形式可能是通过丝氨酸家族中的酪氨酸激酶实现的),活化的PKD1有益于减少遭受低水平UVB损伤细胞的过度凋亡(低水平UVB照射引起的微小DNA损伤可以修复)[24]。如果PKD1有助于已经遭受了紫外线引起的DNA损伤细胞的存活,这些角质形成细胞的DNA突变可能继续扩散,甚至形成皮肤肿瘤。
2.4 PKD1与活性氧簇(reactive oxygen species,ROS)是生物体内细胞在有氧代谢过程中产生的含氧及氧代谢产物的一类具有高生物活性的物质,ROS的产生及氧化还原状态的调节是皮肤肿瘤细胞中常见的生化反应,低水平的ROS参与肿瘤细胞的生长,ROS水平增高到一定程度转而抑制肿瘤的发展,多数化疗药物也是通过抑制肿瘤细胞的抗氧化防御体系来诱导细胞凋亡[35]。Zhang等相关研究揭示PKD1参与线粒体去极化,是调节活性氧产生阈值的关键因素,PKD1出现在肿瘤生长的特定阶段,在细胞老化及营养缺乏方面发挥重要功能[36]。UVB诱导角质形成细胞凋亡依赖于细胞的氧化还原状态。长期反复的UV刺激带来的慢性损伤可能导致细胞修复功能受损从而产生光老化、光致癌。因此对PKD1与角质形成细胞氧化应激反应的研究对明确UV对皮肤损害的机理具有非常重要的意义。而目前运用于多种皮肤病的光动力疗法中,光敏剂进入组织及细胞被特定波长的光照射后吸收能量转为激发态,随后与底物作用产生单线态氧及ROS作为细胞毒性物质启动对肿瘤细胞的直接及间接杀伤[37]。在这个过程中PKD1是否发挥作用,发挥怎样的作用,值得我们进一步探究。
3 展望
PKD1在皮肤病中发挥的具体作用目前尚无定论,但多数研究者认为PKD1促进角质形成细胞的增殖,抑制其分化,且与佛波酯、UVB、ROS等影响皮肤疾病的重要因素间存在密切的联系,可能在某些皮肤病甚至皮肤肿瘤的形成中发挥重要的作用。然而PKD1能否成为增殖性皮肤病或皮肤肿瘤治疗中的新靶点,尚需更深入的探究。
[1] Valverde AM, Sinnett-Smith J, Van Lint J, et al. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain[J]. Proc Natl Acad Sci USA,1994,91(18):8572-8576.
[2] Johannes FJ, Prestle J, Eis S, et al. PKCu is a novel, atypical member of the protein kinase C family[J]. J Biol Chem,1994,269(8):6140-6148.
[3] Rykx A, De Kimpe L, Mikhalap S, et al. Protein kinase D: a family affair[J]. FEBS Lett,2003,546(1):81-86.
[4] Fu Y, Rubin CS. Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology[J]. EMBO Rep,2011,12(8):785-796.
[5] Ellwanger K, Hausser A. Physiological functions of protein kinase D in vivo[J]. IUBMB Life,2013,65(2):98-107.
[6] Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease[J]. Physiology (Bethesda),2011,26(1):23-33.
[7] Van Lint JV, Sinnett-Smith J, Rozengurt E. Expression and characterization of PKD, a phorbol ester and diacylglycerol-stimulated serine protein kinase[J]. J Biol Chem,1995,270(3):1455-1461.
[8] Zugaza JL, Waldron RT, Sinnett-Smith J, et al. Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway[J]. J Biol Chem,1997,272(38):23952-23960.
[9] Li G, Wang Y. Protein kinase D: a new player among the signaling proteins that regulate functions in the nervous system[J]. Neurosci Bull,2014,30(3):497-504.
[10] Eiseler T, Köhler C, Nimmagadda SC, et al. Protein kinase D1 mediates anchorage-dependent and -independent growth of tumor cells via the zinc finger transcription factor Snail1[J]. J Biol Chem,2012,287(39):32367-32380.
[11] Tandon M, Salamoun JM, Carder EJ, et al. SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest[J]. PLoS One,2015,10(3):e0119346.
[12] Karam M, Legay C, Auclair C, et al. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway[J]. Exp Cell Res,2012,318(5):558-569.
[13] Wei N, Chu E, Wipf P, et al. Protein kinase d as a potential chemotherapeutic target for colorectal cancer[J]. Mol Cancer Ther,2014,13(5):1130-1141.
[14] Sundram V, Ganju A, Hughes JE, et al. Protein kinase D1 attenuates tumorigenesis in colon cancer by modulating β-catenin/T cell factor activity[J]. Oncotarget,2014,5(16):6867-6884.
[15] Liou GY, Storz P. Protein kinase D enzymes: novel kinase targets in pancreatic cancer[J]. Expert Rev Gastroenterol Hepatol,2015,9(9):1143-1146.
[16] Ristich VL, Bowman PH, Dodd ME, et al. Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis[J]. Br J Dermatol,2006,154(4):586-593.
[17] Kempkes C, Rattenholl A, Buddenkotte J, et al. Proteinase-activated receptors 1 and 2 regulate invasive behavior of human melanoma cells via activation of protein kinase D1[J]. J Invest Dermatol,2012,132(2):375-384.
[18] Storz P, Toker A. Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway[J]. EMBO J,2003,22(1):109-120.
[19] Gray SG, Teh BT. Histone acetylation/deacetylation and cancer: an "open" and "shut" case[J]. Curr Mol Med,2001,1(4):401-429.
[20] 潘雪莉,张爱华,黄晓欣.HDAC1在燃煤污染型砷中毒患者血液及皮肤组织中的转录及表达[J].环境与职业医学,2010,5:270-274.
[21] Wang P, Han L, Shen H, et al. Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation[J]. Proc Natl Acad Sci USA,2014,111(21):7683-7688.
[22] Waldron RT, Rey O, Iglesias T, et al. Activation loop Ser744 and Ser748 in protein kinase D are transphosphorylated in vivo[J]. J Biol Chem,2001,276(35):32606-32615.
[23] Jensen DD, Zhao P, Jimenez-Vargas NN, et al. Protein kinase D and Gβγ subunits mediate agonist-evoked translocation of protease-activated receptor-2 from the golgi apparatus to the plasma membrane[J]. J Biol Chem,2016,291(21):11285-11299.
[24] Arun SN, Kaddour-Djebbar I, Shapiro BA, et al. Ultraviolet B irradiation and activation of protein kinase D in primary mouse epidermal keratinocytes[J]. Oncogene,2011,30(13):1586-1596.
[25] Bollag WB, Dodd ME, Shapiro BA. Protein kinase D and keratinocyte proliferation[J]. Drug News Perspect,2004,17(2):117-126.
[26] Rennecke J, Rehberger PA, Fürstenberger G, et al. Protein-kinase-Cmu expression correlates with enhanced keratinocyte proliferation in normal and neoplastic mouse epidermis and in cell culture[J]. Int J Cancer,1999,80(1):98-103.
[27] Choudhary V, Olala LO, Kaddour-Djebbar I, et al. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes[J]. J Dermatol Sci,2014,76(3):186-195.
[28] Rashel M, Alston N, Ghazizadeh S. Protein kinase D1 has a key role in wound healing and skin carcinogenesis[J]. J Invest Dermatol,2014,134(4):902-909.
[29] Ryvkin V, Rashel M, Gaddapara T, et al. Opposing growth regulatory roles of protein kinase D isoforms in human keratinocytes[J]. J Biol Chem,2015,290(17):11199-11208.
[30] Nakajima J, Nakae D, Yasukawa K. Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and skin tumour promotion in mice[J]. J Pharm Pharmacol,2013,65(8):1223-1230.
[31] Chiou YS, Sang S, Cheng KH, et al. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34+ skin stem cells and skin tumors[J]. Carcinogenesis,2013,34(6):1315-1322.
[32] Kempkes C, Rattenholl A, Buddenkotte J, et al. Proteinase-activated receptors 1 and 2 regulate invasive behavior of human melanoma cells via activation of protein kinase D1[J]. J Invest Dermatol,2012,132(2):375-384.
[33] Marrot L, Meunier JR. Skin DNA photodamage and its biological consequences[J]. J Am Acad Dermatol,2008,58(5 Suppl 2):S139-148.
[34] Rünger TM. How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses[J]. J Invest Dermato,2007,127(9):2103-2105.
[35] Yang Y, Karakhanova S, Hartwig W, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy[J]. J Cell Physiol,2016,231(12):2570-2581.
[36] Zhang T, Sell P, Braun U, et al. PKD1 protein is involved in reactive oxygen species-mediated mitochondrial depolarization in cooperation with protein kinase Cδ (PKCδ)[J]. J Biol Chem,2015,290(16):10472-10485.
[37] Soares HT, Campos JR, Gomes-da-Silva LC, et al. Pro-oxidant and antioxidant effects in photodynamic therapy: cells recognize that not all exogenous ROS are alike[J]. Chembiochem,2016,17(9):836-842.
(收稿:2016-07-01 修回:2016-07-08)
Update of protein kinase D1 in dermatosis
GUJing1,LIUBaoguo2,ZHOUMeng1,ZHANGHaifang3.
1.InstituteofPostgraduateDepartmentofChengdeMedicalCollege,Chengde067000,China; 2.DepartmentofDermatology,theoffiliatedHospitalofHebeiEngineeringUniversity,Handan056000,China;3.HandanCommandCenterofEmergencyRessue,Handan056000,China
LIUBaoguo,E-mail:lbg66@163.com
Protein kinase D1 (PKD1) is one calcium-dependent serine/threonine kinases extensively expressed in multiple important organs and it is involved in multiple physiological processes and various pathological conditions and abnormally expressed in tumor tissues. PKD1 promotes the proliferation and inhibits the differentiation of the keratinocytes, which play an important role in wound healing and tumor development. There is a close correlation between PKD1 and ultraviolet B, ROS, in terms of the development of skin diseases. Therefore, PKD1 may be a more effective target in the treatment of some dermatoses.
protein kinase D1; keratinocytes; dermatosis
河北省2016年度科技支撑计划项目(编号:16277724D) 河北省政府资助临床医学优秀人才培养项目(编号:361037)
1承德医学院研究生学院,承德,067000 2河北工程大学附属医院皮肤科,邯郸,056000 3邯郸市紧急救援指挥中心,河北邯郸,056000
刘保国,E-mail:lbg66@163.com