外源激素与内生真菌互作对醉马草低温胁迫下种子萌发的影响
2016-12-22李秀璋陈振江郭长辉李春杰
柳 莉,李秀璋,陈振江,郭长辉,吕 卉,李春杰
(兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,甘肃 兰州 730020)
外源激素与内生真菌互作对醉马草低温胁迫下种子萌发的影响
柳 莉,李秀璋,陈振江,郭长辉,吕 卉,李春杰
(兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,甘肃 兰州 730020)
低温是限制种子萌发的一个关键因子,而外源激素和内生真菌分别通过外部介导和内部调控的途径来提高低温环境下种子的萌发能力.本研究以感染内生真菌(E+)和未感染内生真菌(E-)醉马草(Achnatherum inebrians)种子为材料,利用不同浓度的水杨酸(SA)或脱落酸(ABA)溶液浸泡种子,测定10℃条件下醉马草种子的发芽率、发芽指数、胚芽长、胚根长和幼苗含水量,探讨外源激素与内生真菌互作对醉马草种子低温条件下萌发的影响.结果发现,SA 或ABA处理能促进醉马草E+、E-种子的萌发;高浓度SA或ABA处理下则表现出抑制作用,其中高浓度(0.2 mmol/ L)ABA对种子发芽抑制作用显著(P<0.05);SA与内生真菌互作对种子发芽率、发芽指数和胚根长有显著(P<0.05)促进作用;ABA与内生真菌互作对种子发芽指数、胚芽长、胚根长和幼苗含水量有显著(P<0.05)的促进作用.表明一定浓度范围的SA或ABA与内生真菌互作,能够促进醉马草种子在低温胁迫条件下的萌发力.
醉马草;内生真菌;低温;外源激素;种子发芽
醉马草(Achnatherum inebrians)是一种多年生草本植物,能产生剧毒物质,家畜误食会引起中毒症状,主要分布在我国的新疆、青海、甘肃等西北地区[1].能与禾草共生各取所需,但这种寄生关系又不会影响宿主植物的生长,也不会造成宿主外部损伤的一大类真菌统称为禾草内生真菌[2],这类内生真菌主要包括有性态Epichloë属及其无性态Neotyohodium属内生真菌,根据最新国际真菌命名规则,现统一称为Epichloë内生真菌[3].大量研究表明[4-9],内生真菌的存在能显著提高醉马草的生物及非生物胁迫,如提高醉马草的抗虫、抗病、耐旱、耐盐碱、耐寒、耐重金属毒害、耐涝等抗逆性,其中,也有学者报道过内生真菌能够提高宿主植物种子萌发和生长,主要集中在多年生黑麦草(Lolium perenne)[10]、高羊茅 (Festuca arundinacea)[11]、多花黑麦草(Lolium multiflorum)[12]、中华羊茅(Festuca sinensis)[13]和野大麦(Hordeum brevisubulatum)[14].有关在低温胁迫下内生真菌提高禾草种子萌发的报道较少,国内陈娜[9]2008年报道了内生真菌的存在能够提高醉马草种子低温萌发能力.
种子发芽与否与内源激素的平衡有关[15].研究发现,环境因素如盐胁迫、酸胁迫、温度和光照等能够影响种子内源激素的平衡进而影响种子的萌发[16-17].脱落酸(ABA)是植物体内一种重要的内源激素,ABA含量的高低对种子萌发有重要的作用,种子解除休眠的重要诱导因子之一就是ABA[18].水杨酸(SA)是植物的一种内生性的生长调节剂,在植物体内能够完成一系列的新陈代谢变化和生理响应,从而影响植物的生长和发育[19].研究表明,外源水杨酸能提高植物的非生物抗性,如重金属胁迫[20-23]、盐胁迫[24-29]、高温胁迫[30-32]、低温胁迫[33-39]、紫外辐射胁迫[40-43]和水分胁迫[35,44-47].而有关低温条件下内生真菌和激素互作对种子萌发的影响尚未见报道.
本文以E+、E-醉马草种子为供试材料,研究在低温(10℃)条件下,用不同浓度外源激素浸泡种子24h后,醉马草种子发芽率及其他发芽指标的变化,旨在探索在低温胁迫下内生真菌和激素互作对醉马草种子萌发的影响,为醉马草在低温条件下的萌发提供理论基础.
1 材料方法
1.1 材料
醉马草E+、E-种子均采集于兰州大学榆中校区田间实验田(E104°08′,N35°56′,H1514 m).ABA由上海中秦化学试剂有限公司提供,SA由天津光复精细化工研究所提供.
1.2 方法
1)种带内生真菌检测将收集的E+、E-醉马草种子,参照李春杰[48]的方法进行检测,验证种子携带内生真菌情况.
2)浸种处理将E+、E-醉马草种子分别浸在不同浓度的ABA和SA中24h,以无菌水为对照(CK),浸种后用无菌水冲洗3次.ABA的浓度分别为0.05mmol/L(ABA1)、0.1 mmol/L(ABA2)、0.15 mmol/L(ABA3)和0.2 mmol/L(ABA4);SA的浓度分别为 0.5 mmol/L(SA1)、1.0 mmol/L(SA2)、1.5 mmol/L(SA3)、2.0 mmol/L(SA4).
3)发芽试验参照卫东等[49]的方法,采用纸上(TP)发芽法发芽,在10℃培养箱中黑暗发芽,发芽过程一直保持滤纸湿润;将浸泡过的种子放于灭过菌的培养皿(直径9cm)上,每皿50粒,每处理设4个重复.每天统计发芽数,发芽结束后计算发芽率(GR)、发芽指数(GI),测量胚芽长、胚根长(每皿随机选取5粒进行测量,取平均值),幼苗含水量:
注:GT-T时间内的醉马草种子发芽总数,DT-相应的发芽天数.
4)数据处理与作图所有数据均采用Microsof Excle 2013录入并作图,采用SPSS17.0对CK及不同浓度SA和ABA处理下发芽率(GR)、发芽指数(GI)、胚芽长(SL)、胚根长(RL)和幼苗含水量(WC)分别进行双因素方差分析(ANOVA),对不同处理下各发芽指标进行单因素方差分析.
2 结果与分析
2.1 不同浓度外源激素处理对E+、E-发芽率的影响
一定浓度的SA或ABA处理对醉马草E+、E-种子萌发有不同程度的影响(图1).
SA处理下,随着浓度的增大,醉马草种子的发芽率呈先上升后降低的趋势.其中,1.0 mmol/L和1.5mmol/L处理下,种子发芽率显著(P<0.05)高于其他处理,且二者之间差异显著(P<0.05).在此5种处理下,E+种子发芽率显著(P<0.05)高于E-(图1a).
ABA处理下,随着浓度的增大,醉马草E-种子的发芽率呈先升后降的趋势.其中,在0.1 mmol/L时种子发芽率达到最大;随着浓度的继续增大,ABA对种子发芽率表现出一定程度的抑制作用.在0.2 mmol/L时,E-的发芽率显著(P<0.05)低于CK;而不同浓度的处理对E+种子发芽率的影响不显著(P>0.05).除0.1 mmol/L处理下E+、E-发芽率差异不显著(P>0.05)外,其余均达到显著水平(P<0.05)(图1b).
图1 不同浓度外源激素对醉马草种子发芽率的影响注:不同字母表示各处理间发芽指标差异显著(P<0.05),下同Fig.1 Effects of exogenous hormone concentrations on germination rate of drunken horse grassNote:Different letters indicate significant(P<0.05)difference of the germination vitality among different treatments,the same below
2.2 不同浓度外源激素处理对E+、E-发芽指数的影响
一定浓度的SA或ABA处理对醉马草E+、E-种子发芽指数有不同程度的影响(图2).
SA处理下,随着浓度的增大,种子发芽指数呈先升高后降低的趋势.其中,1.0 mmol/L和1.5 mmol/L处理下,种子发芽指数显著(P<0.05)高于其他处理,且二者之间差异显著(P<0.05).在此5种处理下,E+种子发芽指数均显著(P<0.05)高于E-(图2a).
ABA处理下,随着浓度的增大,种子发芽指数呈先升后降的趋势.其中,0.1 mmol/L处理下,种子发芽指数显著(P<0.05)高于其他处理,0.15 mmol/L 和0.2 mmol/L处理下,种子发芽指数显著(P<0.05)低于其他处理.在这5种处理下,E+种子发芽指数均显著(P<0.05)高于E-(图2b).
图2 不同浓度外源激素对醉马草种子发芽指数的影响Fig.2 Effects of exogenous hormone concentrations on germination index of drunken horse grass
内生真菌单独作用,对醉马草种子的发芽率、发芽指数、幼苗含水量、胚芽长及胚根长均有显著性(P <0.05)的影响;不同浓度的SA和ABA单独作用也对上述指标有显著性(P<0.05)影响;SA和内生真菌互作对醉马草种子幼苗含水量和胚芽长无显著(P>0.05)影响;ABA和内生真菌互作对醉马草种子发芽率无显著(P>0.05)作用,但对其他各发芽指标均有显著(P<0.05)影响(表1).
表1 内生真菌(E)与SA浓度(C)、ABA浓度(C)对醉马草种子10℃条件下的发芽率、发芽指数、幼苗含水量、胚芽长和胚根长的影响的双因素分析结果Table 1 Results of two-way ANOVA for the effects of endophyte(E),SA concentrations(C)and ABA concentrations(C) on germination rate,germination index,water content of seedling,shoot length and root length ofA.inebrians seed at 10℃
2.3 不同浓度外源激素处理对E+、E-胚芽长的影响
一定浓度的SA或ABA处理对醉马草E+、E-种子胚芽长有不同程度的影响(图3).
SA处理下,随着浓度的增大,种子胚芽长呈先升高后降低的趋势.其中,1.0 mmol/L和1.5 mmol/L处理下,种子胚芽长显著(P<0.05)高于其他处理,且二者之间差异不显著(P>0.05).在这5种处理下,E+种子胚芽长均显著(P<0.05)高于E-(图3a).
ABA处理下,随着浓度的增大,种子胚芽长呈先升后降的趋势.其中,0.05 mmol/L和0.1 mmol/L处理下,种子胚芽长显著(P<0.05)高于其他处理,且二者之间差异不显著(P>0.05).0.2 mmol/L处理下,种子胚芽长显著(P<0.05)低于其他处理.在这5种处理下,E+种子胚芽长均显著(P<0.05)高于E-(图3b).
图3 不同浓度外源激素对醉马草种子胚芽长的影响Fig.3 Effects of exogenous hormone concentrations on shoot length of drunken horse grass
2.4 不同浓度外源激素处理对E+、E-胚根长的影响
一定浓度的SA或ABA处理对醉马草E+、E-种子胚根长有不同程度的影响(图4).
SA处理下,随着浓度的增大,种子胚根长呈先升高后降低的趋势.其中,1.0 mmol/L和1.5 mmol/L处理下,种子胚根长显著(P<0.05)高于其他处理,且二者之间差异不显著(P>0.05).在此5种处理下,E+种子胚根长均显著(P<0.05)高于E-(图4a).
ABA处理下,随着浓度的增大,种子胚根长呈逐渐降低趋势.其中,0.15 mmol/L和0.2 mmol/L处理下,种子胚根长显著(P<0.05)低于其他处理,且二者之间差异显著(P<0.05).0.05 mmol/L处理下,E+种子胚根长与CK差异不显著(P>0.05).在此5种处理下,E+种子胚根长均显著(P<0.05)高于E-(图4b).
图4 不同浓度外源激素对醉马草胚根长的影响Fig.4 Effects of exogenous hormone concentrations on radical length of drunken horse grass
2.5 不同浓度外源激素处理对E+、E-幼苗含水量的影响
一定浓度的SA或ABA处理对醉马草E+、E-种子幼苗含水量有不同程度的影响(图5).
SA处理下,随着浓度的增大,种子幼苗含水量呈先升高后降低的趋势.其中,1.0 mmol/L和 1.5 mmol/L处理下,种子幼苗含水量显著(P<0.05)高于其他处理,且二者之间差异不显著(P>0.05).在此5种处理下,E+种子幼苗含水量均显著(P<0.05)高于E-(图5a).
ABA处理下,随着浓度的增大,种子幼苗含水量呈先升后降的趋势.其中,0.05 mmol/L和0.1 mmol/ L处理下,种子幼苗含水量显著(P<0.05)高于其他处理,且二者之间差异不显著(P>0.05).0.2 mmol/L处理下,种子幼苗含水量显著(P<0.05)低于其他处理.在此5种处理下,E+种子幼苗含水量均显著(P<0.05)高于E-(图5b).
图5 不同浓度外源激素对醉马草幼苗含水量的影响Fig.5 Effects of exogenous hormone concentrations on water content of seedlings of drunken horse grass
3 讨论
种子萌发和幼苗生长是植物建群的关键阶段,种子的萌发除了与种子自身的遗传因素有关外,还受外界环境,如温度、水分、光照、渗透胁迫等的影响[50-53].本研究中,SA浓度增大,醉马草种子的发芽率和发芽指数均呈现先上升后下降的趋势,除了0.5 mmol/L 和2 mmol/L的SA处理下的发芽率和发芽指数与对照无显著性差异外,其他浓度下的发芽率和发芽指数均大于对照,并且在1.5 mmol/L时的发芽率和发芽指数最大,表明1.5 mmol/L是促进醉马草种子低温萌发的最适浓度.不过物种不同,低温胁迫下SA促进种子萌发的最适浓度也不同,17℃胁迫下提高黑麦草种子萌发的最适 SA浓度为 1.5 mmol/L[54].0.5 mmol/L的SA能够提高水稻种子的发芽率[55].研究表明,低浓度ABA促进种子萌发,高浓度ABA抑制种子的萌发[56-58].本研究中发现,无论是低浓度的ABA还是高浓度的ABA对醉马草E+种子的发芽率都没有起到显著性的促进作用,但是低浓度的ABA对醉马草E+、E-种子的发芽指数均有促进作用.原因一方面可能是E+醉马草本身含有生物碱,生物碱的存在抑制了低浓度的ABA对醉马草种子萌发的促进作用,也有可能是因为内生真菌和外源ABA互作对醉马草种子内源ABA含量有影响,因为内源ABA越低越利于种子打破休眠[59],但是具体原因还需进一步验证.而发芽指数是一个反映种子发芽快慢的指标,低浓度的ABA对E+、E-种子发芽指数均有促进作用,说明种子在初期发芽过程中低浓度ABA促进作用明显,这与前人研究结果一致[60-61].
低温胁迫对植物萌发的影响,除了发芽率和发芽指数外,还有胚芽长、胚根长和幼苗含水量.本研究中,随着ABA浓度的升高,醉马草E+种子的胚芽长、胚根长和幼苗含水量均呈现先上升后下降的趋势,与发芽率一样,1.5 mmol/L的SA对这3个指标的影响最明显.说明适宜浓度的SA对植物种子在逆境下的萌发有促进作用,王玉萍等[62]对盐胁迫下SA对花椰菜(Brassica oleracea)种子的萌发中得到了相似的结果.张凤银等[63]在研究低温胁迫下SA对藜豆(Stizolobium capitaum)种子萌发中也得到了同样的结果.对E-种子而言,胚芽长和幼苗含水量也是随着SA浓度的增大呈现先升高后降低的趋势.值得一提的是,不同浓度SA处理下E-种子的胚根长随着SA浓度的升高逐渐降低,除了2.0 mmol/L时,其他浓度SA处理下的E+胚根长都大于(P<0.05)E-.原因可能是较低浓度的SA对未携带内生真菌的醉马草种子胚根的生长更适宜.不同浓度的ABA对醉马草E+、E-种子的胚芽长、胚根长和幼苗含水量的影响均表现为低浓度促进,高浓度抑制,这与前人的研究结果一致[60-61].
众多研究表明,Epichloë内生真菌能够提高禾草种子逆境条件下的萌发[13,64-65].本研究中,10℃条件下,未经激素处理的醉马草E+种子的发芽率为49.5%,显著高于(P<0.05)E-的28%,说明内生真菌的存在能够促进种子低温条件下的萌发,这与陈娜[9]10℃条件下醉马草种子萌发的结果一致.宋梅玲[14]对野大麦种子的发芽试验也表明,内生真菌显著提高了10℃,15℃低温胁迫和30℃高温胁迫下的野大麦种子发芽率、发芽指数等.
[1]LU H,WANG S S,ZHOU Q W,et al.Damage and control of major poisonous plants in the western grasslands of China-a review[J].The Rangeland Journal,2013,34(4):329-339.
[2]SIEGEL M,LATCH G,JOHNSON M.Fungal endophytes of grasses [J].Annual Review of Phytopathology,1987,25(1):293-315.
[3]LEUCHTMANN A,BACON C W,SCHARDL C L,et al.Nomenclatural realignment of Neotyphodium species with genus Epichloë[J].Mycologia,2014,106(2):202-215.
[4]BACON C W,RICHARDSON M,WHITE J F.Modification and uses of endophyte-enhanced turfgrasses:a role for molecular technology[J]. Crop Science,1997,37(5):1415-1425.
[5]LI C J,ZHANG X X,LI F,et al.Disease and pests resistance of endophyte infected and non-infected drunken horse grass[C]//Popay A,Thom E R.Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses.New Zealand Grassland Association,Dunedin,2007:111-114.
[6]MOY M,BELANGER F,DUNCAN R,et al.Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes[J].Symbiosis,2000,28(4):291-302.
[7]WEST C P,GWINN K D.Role of Acremonium in drought,pest,and disease tolerances of grasses[C]//Proceedings of the Second International Symposium on Acremonium/Grass Interactions,Agresearch,Palmerston North,New Zealand,1993:131-140.
[8]ZHANG X X,LI C J,NAN Z B.Effects of cadmium stress on seed germination and seedling growth ofElymus dahuricus infected with the Neotyphodium endophyte[J].Science China Life Sciences,2012,55(9): 793-799.
[9]陈娜.醉马草遗传多样性及内生真菌对其抗寒性影响[D]:兰州:兰州大学,2008.
[10]CLAY K.Effects of fungal endophytes on the seed and seedling biology ofLolium perenne and Festuca arundinacea[J].Oecologia,1987,73 (3):358-362.
[11]RAHMAN M,SAIGA S.Endophytic fungi(Neotyphodiumcoenophialum)affect the growth and mineral uptake,transport and efficiency ratios in tall fescue(Festuca arundinacea)[J].Plant and Soil,2005,272 (1-2):163-171.
[12]GUNDEL P,MASEDA P,VILA-AIUB M,et al.Effects of Neotyphodium fungi on Loliummultiflorum seed germination in relation to water availability[J].Annals of Botany,2006,97(4):571-577.
[13]彭清青,李春杰,宋梅玲,等.不同酸碱条件下内生真菌对三种禾草种子萌发的影响[J].草业学报,2011,20(5):72-78.
[14]宋梅玲,李春杰,彭清青,等.温度和水分胁迫下内生真菌对野大麦种子发芽的影响[J].草地学报,2010,18(6):833-837.
[15]MIRANSARI M,SMITH D.Plant hormones and seed germination[J]. Environmental and Experimental Botany,2014,99(110-121.
[16]ALBORESI A,GESTIN C,LEYDECKER M T,et al.Nitrate,a signal relieving seed dormancy in Arabidopsis[J].Plant,Cell&Environment,2005,28(4):500-512.
[17]ALI-RAVHEDI S,BOUINOT D,WAGNER M H,et al.Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds:studies with the Cape Verde Islands ecotype,the dormant model of Arabidopsis thaliana[J].Planta,2004,219(3):479-488.
[18]BRADY S M,MCCOURT P.Hormone cross-talk in seed dormancy [J].Journal of Plant Growth Regulation,2003,22(1):25-31.
[19]HAYAT Q,HAYAT S,IRFAN M,et al.Effect of exogenous salicylic acid under changing environment:a review[J].Environmental and Experimental Botany,2010,68(1):14-25.
[20]MISHRA A,CHOUDHURI M.Effects of salicylic acid on heavy metalinduced membrane deterioration mediated by lipoxygenase in rice[J]. Biologia Plantarum,1999,42(3):409-415.
[21]METWALLY A,FINKEMEIER I,GEORGI M,et al.Salicylic acid alleviates the cadmium toxicity in barley seedlings[J].Plant Physiology,2003,132(1):272-281.
[22]PÁL M,SZALAI G,HORVÁTH E,et al.Effect of salicylic acid during heavy metal stress[J].Acta Biologica Szegediensis,2002,46(3-4): 119-120.
[23]YANG Z M,WANG J,WANG S H,et al.Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L [J].Planta,2003,217(1):168-174.
[24]SAKHABUTDINOVA A,FATKHUTDIOVA D,SHAKIROVA F.Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination[J].Applied Biochemistry and Microbiology,2004,40(5):501-505.
[25]SHAKIROVA F M,SAKHABUTDINOVA A R,BEZRUKOVA M V,et al.Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity[J].Plant Science,2003,164(3):317-322.
[26]EL-TAYEB M.Response of barley grains to the interactive e.ect of salinity and salicylic acid[J].Plant Growth Regulation,2005,45(3): 215-224.
[27]BORSANI O,VALPUESTA V,BOTELLA M A.Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J].Plant Physiology,2001,126(3): 1024-1030.
[28]KAYDAN D,YAGMUR M,OKUT N.Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat(Triticum aestivum L.)[J].Tarim Bilimleri Dergisi,2007,13(2):114-119.
[29]YUSUF M,HASAN S A,ALI B,et al.Effect of Salicylic Acid on Salinity‐induced Changes in Brassica juncea[J].Journal of Integrative Plant Biology,2008,50(9):1096-1102.
[30]LARKINDALE J,HUANG B.Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid,abscisic acid,calcium,hydrogen peroxide,and ethylene[J].Journal of Plant Physiology,2004,161(4):405-413.
[31]HE Y,LIU Y,CAO W,et al.Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J].Crop Science,2005,45(3):988-995.
[32]CHAKRABORTY U,TONGDEN C E.Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L[J].Current Science,2005,89(2):384.
[33]SZALAI G,TARI I,JANDA T,et al.Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling[J].Biologia Plantarum,2000,43(4):637-640.
[34]TASGÍN E,ATÍCÍ Ö,NALBANTOGLU B.Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves[J].Plant Growth Regulation,2003,41(3):231-236.
[35]SENARATNA T,TOUCHELL D,BUNN E,et al.Acetyl salicylic acid (Aspirin)and salicylic acid induce multiple stress tolerance in bean and tomato plants[J].Plant Growth Regulation,2000,30(2):157-161.
[36]JANDA T,SZALAI G,TARI I,et al.Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize(Zea mays L.)plants[J].Planta,1999,208(2):175-180.
[37]JANDA T,SZALAI G,ANTUNOVICS Z,et al.Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants[J].Maydica,2000,45(1):29-33.
[38]KANG G,WANG Z,SUN G.Participation of H2O2in enhancement of cold chilling by salicylic acid in banana seedlings[J].Acta Botanica Sinica,2003,45(5):567-573.
[39]RAJASEKARAN L R,CLAUDE A S,CALDWELL D.Stand establishment in processing carrots-Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures[J].Canadian Journal of Plant Science,2002,82(2):443-450.
[40]YALPANI N,ENYEDI A J,LEÓN J,et al.Ultraviolet light and ozone stimulate accumulation of salicylic acid,pathogenesis-related proteins and virus resistance in tobacco[J].Planta,1994,193(3):372-376.
[41]SHARMA Y K,LEON J,RASKIN I,et al.Ozone-induced responses in Arabidopsis thaliana:the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance[J].Proceedings of the National Academy of Sciences,1996,93(10):5099-5104.
[42]RAO M V,DAVIS K R.Ozone‐induced cell death occurs via two distinct mechanisms in Arabidopsis:the role of salicylic acid[J].The Plant Journal,1999,17(6):603-614.
[43]ERVIN E H,ZHANG X,FIKE J H.Ultraviolet-B radiation damage onKentucky Bluegrass II:Hormone supplement effects[J].HortScience,2004,39(6):1471-1474.
[44]HAAT S,HASAN S A,FARIDUDDIN Q,et al.Growth of tomato(Lycopersicon esculentum)in response to salicylic acid under water stress [J].Journal of Plant Interactions,2008,3(4):297-304.
[45]HAMADA A.Effects of exogenously added ascorbic acid,thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants[J].Photosynthesis:Mechanisms and Effects,1998,4: 2581-2584.
[46]HAMADA A.Salicylic acid versus salinity-drought-induced stress on wheat seedlings[J].Rostlinna Vyroba,2001,47:444-450.
[47]ABREU M E,MUNNÉ-BOSCH S.Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials:a case study in field-grown Salvia officinalis L.plants[J].Environmental andExperimental Botany,2008,64(2):105-112.
[48]李春杰,南志标,刘勇.醉马草内生真菌检测方法的研究[J].中国食用菌,2008,27(suppl.):16-19.
[49]卫东,王彦荣.芨芨草种子发芽检验方法的研究[J].草业科学,1998,15(4):29-32.
[50]BEWLEY J D.Seed germination and dormancy[J].Plant Cell,1997a,9(7):1055-1066.
[51]LOPEZ M L,MONGRAND S,CHUA N H.A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor inArabidopsis[J].Proceedings of the National Academy of Sciences,2001,98(8):4782-4787.
[52]LOPEZ M L,MONGRAND S,MCLACHLIN D T,et al.ABI5 acts downstream of ABI3 to execute an ABA‐dependent growth arrest during germination[J].The Plant Journal,2002,32(3):317-328.
[53]PENFIELD S,GRAHAM S,GRAHAM I.Storage reserve mobilization in germinating oilseeds:Arabidopsis as a model system[J].Biochemical Society Transactions,2005,33(2):380-383.
[54]张凤银,张萍,彭琳.外源水杨酸对低温胁迫下黑麦草种子萌发的影响[J].安徽农业科学,2011,39(35):21614-21615.
[55]张蕊,吕俊,米青山,等.低温下外源水杨酸对水稻幼苗抗氧化酶系的影响[J].西南农业大学学报,2006,28(1):29-32.
[56]丁君辉,李耀国,童建华.脱落酸对水稻种子萌发的影响[J].作物研究,2012,26(4):328-330.
[57]王熹,陶龙兴,黄效林,等.外源ABA抑制水稻种子发芽的生理机制[J].作物学报,2004,30(12):1250-1253.
[58]黄益洪,汤日圣,叶晓青,等.脱落酸(ABA)对白粒小麦种子萌发及幼苗生长的影响[J].麦类作物学报,2009,29(3):503-507.
[59]GUAN C M,WANG X C,FENG J,et al.Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive 5 protein in Arabidopsis[J]. Plant Physiology,2014,164(3):1515-1526.
[60]黄杏,陈明辉,杨丽涛,等.低温胁迫下外源ABA对甘蔗幼苗抗寒性及内源激素的影响[J].华中农业大学学报,2013,32(4):6-11.
[61]张笑,赵纯钦,黄静,等.外源脱落酸,水杨酸对小麦种子萌发及生理特性的影响[J].应用与环境生物学报,2014,20(001):139-143.
[62]王玉萍,董雯,张鑫,等.水杨酸对盐胁迫下花椰菜种子萌发及幼苗生理特性的影响[J].草业学报,2012,21(1):213-219.
[63]张凤银,雷刚,张萍,等.水杨酸对低温胁迫下藜豆种子萌发和幼苗生理特性的影响[J].西北农林科技大学学报(自然科学版),2012,40(4):205-209.
[64]李飞.内生真菌对禾草类植物抗旱性的影响[J].草业科学,2006,23(3):57-62.
[65]任安芝,高玉葆,李侠.内生真菌感染对黑麦草若干抗旱生理特征的影响[J].应用与环境生物学报,2002,8(5):535-539.
(责任编辑:李建忠,付强,张阳,罗敏;英文编辑:周序林,郑玉才)
Effects of interaction between exogenous hormones and Epichloë on germination of drunken horse grass(Achnatherum inebrians)under low temperature stress
LIU Li,LI Xiu-zhang,CHEN Zhen-jiang,GUO Chang-hui,Lv Hui,LI Chun-jie
(State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730020,P.R.C.)
Temperature is a crucial abiotic factor impacting the germination of plant seeds.However,accumulating evidences suggest exogenous hormones and endophyte as important regulators to alleviate the damage of seed germination and seedling growth in low temperature environment.In this study,endophyte-infected(E+)and endophyte-free(E-)seeds of A.inebrians were tested under cold stress.Under 10℃,seed germination,seedling growth,embryo length,radical length and seeding moisture content of E+and E-A.inebrians were examined when salicylic acid(SA)or abscisic acid(ABA)were applied,to explore the effects of endophytic fungi and exogenous hormones interaction on the germination of A.inebrians at low temperature.The results showed that SA or ABA treatment could promote the germination of E+and E-A.inebrians,however,higher concentrations of SA or ABA showed inhibition(P<0.05),and the highest concentrations of ABA showed the strongest(P<0.05)inhibition.The interactions between SA and Epichloë endophyte had significant(P<0.05)effects on germination rate,germination index and root length.The interactions between ABA and Epichloë endophyte had significant(P<0.05)effects on germination index,seedling water content,shoot and root lengths.In conclusion,the interactions between a certain concentrations of SA or ABA and Epichloë endophyte could promote the germination of A.inebrians under cold stress.
drunken horse grass(Achnatherum inebrians);Epichloë;low temperature;exogenous hormone;seed germination
Q948;S812
A
2095-4271(2016)04-0373-10
10.11920/xnmdzk.2016.04.003
2016-05-13
柳莉(1987-),女,汉族,甘肃白银市人,硕士研究生,研究方向:禾草内生真菌共生体研究.E-mail:lliu13@lzu.edu.cn
李春杰(1968-),男,甘肃镇原人,教授,博士,研究方向:禾草内生真菌共生体研究.E-mail:chunjie@lzu.edu.cn
国家973计划课题(2014CB138702);国家自然科学基金项目(31372366);教育部创新团队发展计划项目(IRT13019)