APP下载

白细胞介素-17在骨代谢与炎症性骨疾病中的作用

2016-12-22杨学辉

遵义医科大学学报 2016年5期
关键词:炎症性骨细胞成骨细胞

杨学辉

(美国缅因医学研究中心研究所 分子医学部,斯卡伯勒 缅因 04074,美国)



专家论坛

白细胞介素-17在骨代谢与炎症性骨疾病中的作用

杨学辉

(美国缅因医学研究中心研究所 分子医学部,斯卡伯勒 缅因 04074,美国)

骨稳态取决于破骨细胞的溶骨活性与成骨细胞的成骨作用之间的相对平衡。在慢性炎症情况下,如风湿性关节炎、牙周炎、银屑病等,由于炎性因子的作用致使破骨细胞溶骨作用相对增强打破骨代谢平衡,导致骨溶解丢失。白细胞介素-17 (IL-17)是近年来发现的新型细胞因子家族,参与机体多种免疫防御。研究发现,IL-17可影响成骨细胞和破骨细胞的增殖与分化,对骨代谢有着重要调节作用。深入了解IL-17在骨代谢中的生物学作用有助于探寻治疗炎症性骨疾病的有效方案,本文就IL-17对正常骨代谢调节及病理情况下与骨疾病发生发展的关系作一综述。

白细胞介素-17( IL-17); IL-17受体(IL-17R);RANKL;破骨细胞;成骨细胞;炎症性骨疾病

白细胞介素17(IL-17)是近年发现的一种主要由CD4+辅助性T细胞17(Th17)合成及分泌的新型细胞因子家族,其成员包括IL-17A(即IL-17原型,通常也称作IL-17),IL-17B,IL-17C,IL-17D,IL-17E 和IL-17F 6种[1-7]。IL-17通过与其细胞表面相应受体结合而发挥对机体的调控作用。目前发现的IL-17受体(IL-17R)有5种,分别是IL-17RA, IL-17RB, IL-17RC, IL-17RD和IL-17RE。IL-17RA分布广泛,常与组织特异性受体IL-17RC, IL-17RB或IL-17RE组成异源二聚体或寡聚体的方式参与配体-受体复合物形成。不同的IL-17可结合不同的受体二聚体或寡聚体:IL-17A和IL-17F结合IL-17RA/IL-17RC, IL-17B和 IL-17E结合IL-17RA/IL-17RB,IL-17C结合IL-17RA/IL-17RE复合物[8-9]。目前识别IL-17RD的配体尚不清楚,因而IL-17RD又称孤儿受体[10]。目前所知的IL-17的生物学作用主要有:①刺激组织细胞表达各种不同抗微生物多肽如β-defensin,S100蛋白,LCN2等参与宿主免疫防御;②刺激组织、细胞合成并释放中性粒细胞趋化因子(包括CXCL1, CXCL2, CXCL5, CXCL8, CXCL10, CCL2及CCL20等),炎性细胞因子(包括IL-6, TNFα, IL-1α等),基质金属蛋白酶(包括MMP1, MMP3, MMP9 和MMP13等)及破骨细胞分化因子RANKL等诱导局部组织炎症反应和组织重建。IL-17RA广泛分布于多种不同细胞,因而IL-17有可能对多种细胞产生作用,由于其强烈的致炎作用,持续高水平表达IL-17可导致机体自身免疫,因而IL-17与临床多种慢性炎症性疾病有关。临床资料表明慢性炎症性及自体免疫疾病病人也往往伴有溶骨性疾病。本文就IL-17对正常骨代谢调节及病理情况下与骨疾病发生发展的关系作一综述。

1 IL-17与骨代谢

1.1 IL-17在破骨细胞分化中的作用 正常个体骨代谢平衡取决于破骨细胞介导的骨吸收与成骨细胞介导的骨形成间的相互协调。特别是破骨细胞,作为骨转换的起始要素,它的形成与活性决定骨转换的进程及最终结果。RNAKL/RANK/OPG系统是近年来发现的调节破骨细胞分化及其骨吸收活性至关重要的信号传导途径,由破骨细胞分化因子RNAKL(Ligand of receptor activator of NF-κB)及其受体RANK和假性受体骨保护素OPG组成,小鼠缺失RNAKL导致破骨细胞无法形成而发生严重骨硬化[11]。简单来讲,破骨细胞形成始于成骨细胞、骨髓基质细胞等表达的RANKL与破骨细胞前体(单核细胞、巨噬细胞)膜上受体RANK结合、诱导RANK活化,激活细胞内NF-κB、p38MAPK、p42/p44MAPK等信号途径,从而促进破骨细胞增殖、分化、成熟,刺激破骨细胞表达TRAP等参与骨吸收作用。OPG则是由成骨细胞、骨髓基质细胞、成纤维细胞等多种细胞合成分泌的假性RANKL受体,可与RANKL结合从而抑制破骨细胞分化。机体RANKL/RANK/OPG系统中的每一种成分都是高度可诱导的,多种因子包括糖皮质激素,VitD3,IL-1, TNF, TGFβ及LPS等均可诱导细胞表达RANKL从而调控骨代谢。IL-17是近年来发现的一种诱导细胞表达RNAKL,参与骨代谢调控的重要细胞因子。Kotake等[12]在研究风湿性骨关节炎的过程中,发现病人滑膜液中丰富的Th17辅助细胞及其分泌的IL-17可刺激破骨细胞的形成,随后大量体内、外实验证实这一现象。进一步研究发现,IL-17可诱导多种细胞(包括T细胞、巨噬细胞、上皮细胞、内皮细胞、成纤维细胞,基质干细胞、骨细胞等)直接产生RANKL,同时还可通过刺激细胞合成分泌IL-1、IL-6、TNFα、PGE2等因子促进细胞产生RANKL,进而诱导破骨细胞形成、增强破骨细胞活性、促进骨吸收[12-15]。随后,Sato 等[16]利用成骨细胞与骨髓单核细胞共培养系统更清晰地阐明Th17辅助细胞及其分泌的IL-17刺激成骨细胞合成膜蛋白RANKL、诱导破骨细胞前体向破骨细胞分化这一分子机理,IL-17单独使用并不能诱导破骨细胞前体向破骨细胞分化。相反,IL-17可抑制RANKL诱导RAW264.7前体细胞分化成破骨细胞[17],这一结果表明了基质细胞在IL-17诱导破骨细胞分化中的重要性(见图1)。目前有关IL-17诱导RANKL的分子机制尚不完全清楚,有研究表明IL-17刺激牙周韧带细胞产生RANKL是通过与细胞膜IL-17RA/IL-17RC 受体结合,激活TRAF6/TBK1/JNK/NF-κB信号途径而实现的[18]。此外,IL-17可刺激破骨细胞前体表达RNAK受体[19],增强细胞内RANKL/RANK信号、促进破骨细胞形成。然而,也有研究发现在有1,25(OH)2-VitD3存在条件下,IL-17诱导成骨细胞表达GM-CSF并由此抑制破骨细胞前体合成RNAK,从而抑制破骨细胞形成[20]。此外,IL-17还可抑制骨保护素OPG的表达、增加RANKL/OPG比率从而促进破骨细胞形成[18]。因此,IL-17可从不同方面调控破骨细胞分化,而且其作用与支持细胞、环境因素密切相关,深入研究IL-17诱导破骨细胞形成的机理对防治IL-17参与的骨损伤有重要意义。

图1 Th17/IL-17通过刺激多种细胞合成RANKL,M-CSF间接诱导破骨细胞分化

1.2 IL-17在骨形成中的作用 IL-17对成骨细胞形成及其成骨活性的作用尚无定论。有研究发现,IL-17可通过刺激氧化活性物质(ROS)的产生,诱导人基质干细胞增殖并向成骨细胞分化[21]。IL-17RA基因敲除鼠切除卵巢更易诱发骨质疏松,这一现象与机体瘦素(Leptin)合成增加、抑制脂肪形成、促进骨髓干细胞向成骨细胞分化及钙化有关[22]。此外,IL-17A的水平在早期骨折部位迅速增高有助于骨愈合,IL-17A基因敲除小鼠由于成骨细胞前体增殖及成骨细胞分化降低而影响骨折愈合进程[23-24]。相反,也有研究显示IL-17可抑制成骨作用。Kim等[25]发现IL-17可抑制大鼠头盖骨成骨细胞分化及骨形成。最近,Shaw 等[26]也发现IL-17A刺激成骨细胞表达Wnt抑制剂sFRP1从而抑制成骨细胞分化及骨盐沉积,sFRP1中和抗体可阻断IL-17A的这一作用。由此可见,IL-17对成骨细胞的作用复杂,不同动物或细胞模型,由于成骨细胞来源和形成机理不同会得出不同结果,进一步研究阐明IL-17对成骨细胞分化和骨形成的作用对临床如何应用IL-17抑制剂治疗疾病有重要意义。

2 IL-17与骨质疏松

2.1 IL-17与持续高水平PTH引起的骨质疏松 甲状旁腺激素PTH和1,25(OH)2-VitD3是机体调节钙、磷代谢最主要的两种激素。正常情况下,PTH可刺激骨转换、促进骨的更新,在临床试验中间断性低剂量应用重组人PTH(PTH1-84和PTH1-34)可刺激骨形成,对老年性骨质疏松有治疗作用[27-28]。然而,机体持续高水平PTH (如甲状旁腺机能亢进患者)可激活骨髓基质细胞、成骨细胞、骨细胞、T细胞及巨噬细胞膜PTH受体(PPR),促进细胞合成RANKL,从而诱导破骨细胞形成导致骨吸收增强,打破骨代谢平衡引起骨质疏松[29-30]。对PTH作用的分子机理研究认为,PTH可刺激人和小鼠T细胞产生TNFα,后者通过GaS/cAMP/Ca2+信号途径促进Th17细胞分化、扩增并分泌IL-17A从而诱导破骨细胞形成及骨吸收,钙离子通道阻断剂diltiazem抑制Th17细胞扩增可防止连续应用PTH(cPTH)诱发的小鼠骨质疏松[31]。此外,小鼠敲除IL-17RA基因或应用IL-17A中和抗体均可防止cPTH引起的皮质骨及松质骨的吸收[31-32],进一步证实IL-17A是cPTH诱发骨质疏松中的关键因素,同时也表明钙阻断剂和IL-17A中和抗体在甲状旁腺亢进引发的骨质疏松症中的治疗作用,为进一步临床实验提供依据。

2.2 IL-17与绝经后骨质疏松 女性更年期由于卵巢功能降低导致雌激素合成分泌减少、垂体分泌卵泡刺激素(FSH)增多刺激骨骼快速吸收引起绝经后骨质疏松。雌激素对骨代谢的调控主要表现在:①抑制新的骨吸收单位BMUs(basic multicellular units)的形成;②抑制破骨细胞分化、促进破骨细胞凋亡,减少骨吸收;③尽管雌激素有抑制成骨细胞前体增殖的作用,但可辅助成骨细胞分化、抑制成骨细胞凋亡从而在细胞水平维持骨的形成[33]。一直以来,绝经后骨质疏松症被认为是一种慢性炎症性骨病,与体内炎性因子如IL-1, IL-6, TNFα, M-CSF及PGE等升高刺激破骨细胞形成密切相关[34]。最近的临床资料表明,绝经后骨质疏松症患者体内Th17细胞增多,血清IL-17和可溶性RANKL(sRANKL)水平升高[35-38]。究其机理来讲,雌激素可通过激活alpha受体(ERα)、招募雌激素受体活化抑制因子(REA)形成ERα/REA复合物,后者与RORγt启动子上游雌激素反应元件(ERE)结合抑制RORγt基因表达,从而抑制Th17分化。雌激素缺乏时,上述抑制机制丧失导致Th17分化、分泌IL-17A[39]。也有认为,小鼠雌激素缺乏可致肠道细胞通透性增强,肠道微生物透过小肠屏障引起炎症反应,刺激Th17扩增,分泌IL-17A、 TNFα、RANKL等破骨细胞因子促进破骨细胞形成及骨吸收活性,应用益生菌可防止小鼠雌激素缺乏导致的骨质疏松[40]。此外,雌激素还可抑制成骨细胞合成参与IL-17A细胞内受体信号传导重要成分Act1,从而抑制RANKL表达,小鼠敲除IL-17RA或Act1基因均可防止由于卵巢切除而引起的RANKL增多及骨质疏松[41]。可见,明确绝经后骨质疏松的发生、发展及机理对防治绝经后骨质疏松有重要指导作用。

3 IL-17在炎症性骨病中的作用

3.1 IL-17与骨髓炎 骨髓炎是一种由机体自身免疫病变或病菌感染骨骼引起的炎症性骨降解、坏死或增生的一种疾病,根据发病原因大致分为非细菌性和细菌性骨髓炎两种。非细菌性骨髓炎往往与基因多态性或基因突变导致机体自身免疫有关,比如TLR4(Asp299Gly)多态性患者,中性粒细胞活性异常,血源性骨髓炎发生率也较高[42];脯氨酸-丝氨酸-苏氨酸磷酸酶结合蛋白2(Pstpip2)基因点突变(Pstpip2L98P) 导致IL-1β合成分泌增多而诱发小鼠实验性骨髓炎等[43]。尽管骨骼系统在正常情况下很难受到细菌感染,然而外伤、手术时裸露的骨骼也可因感染细菌而引起骨髓炎。作为新近发现的强烈炎性因子IL-17在骨髓炎发生中的作用尚不清楚。目前仅有一篇相关报道认为,黑曲霉颅底骨髓炎的发病极有可能是因病人Th17细胞合成IL-17不足,导致机体不能及时清除霉菌所致[44]。此外,关节置换患者机体对假体金属或聚乙烯等颗粒的过敏反应产生的炎性因子如TNFα, IL-18[45]等也可导致骨降解最终导致假体松动,目前对假体周围Th17辅助细胞及IL-17水平尚未有评估[46],因而IL-17在关节置换后慢性炎症及骨损伤中的作用尚待研究。由于Th17辅助细胞及其分泌的IL-17在机体免疫防御以及自身免疫疾病中的重要作用,评估IL-17 在假体松动及骨髓炎发生、发展中的作用有望促进临床假体松动及骨髓炎的防治。

3.2 IL-17与风湿性关节炎 IL-17在骨代谢中的作用首先是在研究风湿性关节炎骨损伤中认识到的,可见其在风湿性关节炎中的重要性。此后的大量研究证实IL-17是导致风湿性关节炎骨损伤的主要因素。临床资料显示,风湿性关节炎病人滑膜液中有较高水平的IL-17及IL-17R[12, 47-50],而且体内高水平的IL-17 和TNFα与风湿性关节炎预后不良有关[51]。体外研究发现,IL-17可促进风湿性关节炎患者骨关节降解[52-53]。动物实验中,敲除 IL-17A基因可防止胶原注射或IL-1R缺陷引发的小鼠骨关节炎[54-55],这一结果表明IL-17是炎症诱发骨关节炎必需的因子。此外,过量表达IL-17A可加速小鼠滑膜炎发展和关节骨的丢失[56-57],IL-17A中和抗体可减轻胶原或佐剂注射诱发的关节炎及软骨和骨损伤[58-60],其机理很大程度上是由于IL-17A刺激骨关节成骨细胞,滑膜细胞和基质干细胞等产生RNAKL,促进破骨细胞形成及其骨吸收作用所致[12, 57, 61]。

3.3 IL-17与银屑病引起的骨质疏松 IL-17是银屑病发生及发展的关键因素。银屑病是由遗传、感染或物理损伤导致慢性炎症引起的自身免疫性皮肤疾病。在病灶局部先天免疫细胞(如角质细胞、自然杀伤细胞等)分泌TNFα、IL-6等细胞因子激活髓样树突状细胞,后者促使Th17细胞分化并分泌IL-17,IL-17招募并刺激多种免疫细胞,包括肥大细胞、中性粒细胞及CD8+T细胞,分泌多种角质细胞趋化因子,这些因子在刺激上皮细胞增生病变的同时招募更多免疫细胞聚集,由此不断加强的免疫反应维持并加重银屑病发展[62-63]。临床资料表明银屑病患者往往伴有关节炎及骨质疏松,且骨量降低程度取决于病程长短[63-66]。进一步研究发现银屑病患者血液IL-17水平增高,且与骨形成标志物PINP及骨密度呈负相关。在动物实验中也观察到类似的现象,Uluckan等[67]利用上皮细胞过量表达IL-17A诱发小鼠慢性皮肤炎症实验中,同时也观察到小鼠骨形成减少,其机制可能与IL-17抑制Wnt介导的成骨细胞作用有关。

3.4 IL-17与牙周炎及牙槽骨损伤 牙周炎是由慢性炎症引起的牙周组织及牙槽骨破坏的一种疾病。牙周炎引起的牙槽骨丢失主要是由破骨细胞活动造成的[68]。越来越多的证据表明牙龈局部Th17细胞及其分泌的IL-17与人牙周炎发生及严重程度密切相关[69-73]。动物实验中,应用IL-17A可导致牙龈发炎,牙槽骨破坏。牙周炎患者牙槽骨中IL-17和破骨细胞分化因子RNAKL水平增高,牙槽骨表面TRAP 阳性破骨细胞增多,提示IL-17通过诱导RANKL产生,促进破骨细胞分化及牙槽骨溶解[74-75]。目前IL-17引起牙周炎机理尚不完全清楚,有研究显示IL-17促进免疫细胞产生IL-1β,TNFα等细胞因子,后者刺激牙龈成纤维细胞产生基质金属蛋白酶MMP降解牙周组织[76],然而在口腔病原菌Prophyromonasgingivalis感染诱发的牙周炎模型中,IL-17A基因敲除鼠由于中性粒细胞招募缺陷,不能清除病原菌导致比正常鼠更为严重的牙槽骨损伤[77]。由此可见,IL-17具有抑制病原菌形成菌斑,防止病原菌进一步浸噬牙龈的保护作用。但是,如果感染持续,高水平的IL-17则促进牙周炎的发展,破坏牙槽骨。因此,深入了解IL-17在牙周炎的形成及发展中的作用,对临床根据病程治疗牙周炎有重要意义。

4 展望

IL-17作为烈性炎性因子是机体免疫防御不可缺少的成分,同时也是多种炎症性疾病发生发展的重要因素,对骨代谢调节及骨疾病发生有着重要作用。一方面IL-17可调节成骨细胞分化及骨盐沉积,另一方面又可通过刺激成骨细胞,骨细胞,基质细胞等产生RANKL促进单核细胞前体向破骨细胞分化,增强破骨细胞活性而促进骨降解转化。以IL-17或IL-17R为靶点正在成为治疗炎症性疾病及炎症性骨病的热点。动物实验及早期临床试验显示,IL-17A或IL-17R的抑制剂(通常是针对IL-17A或IL-17RA的抗体)可有效防止炎症性疾病及其诱发的骨损伤[78-80]。最近,IL-17抑制剂Cosentyx(又名secukinumab, 一种针对IL-17A的人单克隆抗体AIN457)已通过美国食品药品管理局(FDA)和欧洲委员会认证作为一线药用于治疗成人中度及重度银屑病(https://www.novartis.com),该药在临床试验中对70%银屑病患者有较好疗效。由于IL-17在机体免疫防御中至关重要,抑制IL-17A或IL-17RA难免降低机体免疫防御能力。比如,IL-17缺陷可导致细菌及真菌感染,促进肿瘤细胞生长。因此,未来对IL-17/IL-17R细胞内信号传导及致病机理的研究解读对发现新的治疗靶点,避免直接抑制IL-17导致的机体免疫力下降有重要意义。

[1] Iwakura Y, Ishigame H, Saijo S, et al. Functional specialization of interleukin-17 family members[J]. Immunity,2011, 34(2):149-162.

[2] Kolls J K, Linden A. Interleukin-17 family members and inflammation[J]. Immunity,2004, 21(4):467-476.

[3] Yao Z, Painter S L, Fanslow W C, et al.Human IL-17: a novel cytokine derived from T cells[J]. J Immunol,1996, 155(12):5483-5486.

[4] Li H, Chen J, Huang A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family[J]. Proc Natl Acad Sci USA,2000, 97(2):773-778.

[5] Starnes T, Broxmeyer H E, Robertson M J,et al. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis[J]. J Immunol,2002, 169(2):642-646.

[6] Lee J, Ho W H, Maruoka M,et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1[J]. J Biol Chem,2001, 276(2):1660-1664.

[7] Gu C, Wu L, Li X.IL-17 family: cytokines, receptors and signaling[J]. Cytokine,2013, 64(2):477-485.

[8] Wright J F, Bennett F, Li B, et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex[J]. J Immunol,2008, 181(4):2799-2805.

[9] Rickel E A, Siegel L A, Yoon B R,et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities[J]. J Immunol,2008, 181(6):4299-4310.

[10] Mellett M, Atzei P, Horgan A, et al. Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia[J]. Nat Commun,2012, 3(4):1119.

[11] Kong Y Y, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J]. Nature,1999, 397(6717):315-323.

[12] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis[J]. J Clin Invest,1999, 103(9):1345-1352.

[13] Kim N, Kadono Y, Takami M, et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis[J]. J Exp Med,2005, 202(5):589-595.

[14] Moon Y M, Yoon B Y, Her Y M, et al.IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis[J]. Arthritis Res Ther,2012, 14(6):158-162.

[15] Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines[J]. J Exp Med,1996, 183(6):2593-2603.

[16] Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med,2006, 203(12):2673-2682.

[17] Kitami S, Tanaka H, Kawato T, et al.IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells[J]. Biochimie ,2010, 92(4):398-404.

[18] Lin D, Li L, Sun Y, et al. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-kappaB pathways[J]. Immunology, 2014, 144(3):472-485.

[19] Adamopoulos I E, Chao C C, Geissler R,et al.Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors[J]. Arthritis Res Ther,2010, 12(1):R29.

[20] Balani D, Aeberli D, Hofstetter W,et al. Interleukin-17A stimulates granulocyte-macrophage colony-stimulating factor release by murine osteoblasts in the presence of 1,25-dihydroxyvitamin D(3) and inhibits murine osteoclast development in vitro[J]. Arthritis Rheum,2013, 65(2):436-446.

[21] Croes M, Oner F C, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation[J]. Bone,2016, 84:262-270.

[22] Goswami J, Hernandez-Santos N, Zuniga L A, et al. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss[J]. Eur J Immunol,2009, 39(10):2831-2839.

[23] Nam D, Mau E, Wang Y, et al.T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair[J]. Plos One,2012, 7(6):e40044.

[24] Ono T, Okamoto K, Nakashima T, et al.IL-17-producing gammadelta T cells enhance bone regeneration[J]. Nat Commun,2016, 7:10928.

[25] Kim Y G, Park J W, Lee J M, et al.IL-17 inhibits osteoblast differentiation and bone regeneration in rat[J]. Arch Oral Biol ,2014, 59(9):897-905.

[26] Shaw A T, Maeda Y, Gravallese E M. IL-17A deficiency promotes periosteal bone formation in a model of inflammatory arthritis[J]. Arthritis Res Ther,2016, 18(1):104.

[27] Souberbielle J C, Lawson-Body E, Hammadi B, et al.The use in clinical practice of parathyroid hormone normative values established in vitamin D-sufficient subjects[J]. J Clin Endocrinol Metab,2003, 88(8):3501-3504.

[28] Nakamura T, Sugimoto T, Nakano T, et al. Randomized Teriparatide [human parathyroid hormone (PTH) 1-34] Once-Weekly Efficacy Research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk[J]. J Clin Endocrinol Metab,2012, 97(9):3097-3106.

[29] Saini V, Marengi D A, Barry K J,et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH[J]. J Biol Chem,2013, 288(28):20122-20134.

[30] Ben-awadh A N, Delgado-Calle J, Tu X, et al.Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes[J]. Endocrinology,2014, 155(8):2797-2809.

[31] Li J Y, D'Amelio P, Robinson J, et al. IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice[J]. Cell Metab,2015, 22(5):799-810.

[32] Pacifici R. The Role of IL-17 and TH17 Cells in the Bone Catabolic Activity of PTH[J]. Front Immunol,2016, 7(4):57.

[33] Khosla S, Melton L J, Riggs B L. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed?[J].J Bone Miner Res,2011, 26(3):441-451.

[34] Manolagas S C, Jilka R L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis[J]. N Engl J Med,1995, 332(5):305-311.

[35] Tyagi A M, Srivastava K, Mansoori M N, et al.Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis[J]. Plos One,2012, 7(9):e44552.

[36] Molnar I, Bohaty I, Somogyine-Vari E. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis[J]. Osteoporos Int,2014, 25(2):783-786.

[37] Molnar I, Bohaty I, Somogyine-Vari E. High prevalence of increased interleukin-17A serum levels in postmenopausal estrogen deficiency[J]. Menopause,2014, 21(7):749-752.

[38] Zhang J, Fu Q, Ren Z, et al.Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis[J]. Gynecol Endocrinol,2015, 31(3):183-190.

[39] Chen R Y, Fan Y M, Zhang Q, et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERalpha/REA complex to estrogen response elements of the RORgammaT promoter[J]. J Immunol,2015, 194(8):4019-4028.

[40] Li J Y, Chassaing B, Tyagi A M, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest ,2016, 126(6):2049-2063.

[41] DeSelm C J, Takahata Y, Warren J, et al.IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner[J]. J Cell Biochem,2012, 113(9):2895-2902.

[42] Montes A H, Asensi V, Alvarez V, et al.The Toll-like receptor 4 (Asp299Gly) polymorphism is a risk factor for Gram-negative and haematogenous osteomyelitis[J]. Clin Exp Immunol,2006, 143(3):404-413.

[43] Lukens J R, Gross J M, Calabrese C, et al. Critical role for inflammasome-independent IL-1beta production in osteomyelitis[J]. Proc Natl Acad Sci USA,2014, 111(3):1066-1071.

[44] Delsing C E, Becker K L, Simon A, et al.Th17 cytokine deficiency in patients with Aspergillus skull base osteomyelitis[J]. BMC Infect Dis,2015, 15(1):140.

[45] Palm N W, Rosenstein R K, Medzhitov R.Allergic host defences[J]. Nature,2012, 484(7395):465-472.

[46] Gallo J, Goodman S B, Konttinen Y T, et al. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms[J]. Acta Biomater,2013, 9(9):8046-8058.

[47] Ziolkowska M, Koc A, Luszczykiewicz G,et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism[J]. J Immunol,2000, 164(5):2832-2838.

[48] Chabaud M, Fossiez F, Taupin J L, et al. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines[J]. J Immunol,1998, 161(1):409-414.

[49] Cai L, Yin J P, Starovasnik M A, et al.Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo[J]. Cytokine,2001, 16(1):10-21.

[50] Shahrara S, Pickens S R, Dorfleutner A, et al.IL-17 induces monocyte migration in rheumatoid arthritis[J]. J Immunol,2009, 182(6):3884-3891.

[51] Kirkham B W, Lassere M N, Edmonds J P, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort)[J]. Arthritis Rheum,2006, 54(4):1122-1131.

[52] Chabaud M, Garnero P, Dayer J M,et al.Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis[J]. Cytokine,2000, 12(7):1092-1099.

[53] Chabaud M, Lubberts E, Joosten L, et al. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis[J]. Arthritis Res,2001, 3(3):168-177.

[54] Nakae S, Nambu A, Sudo K,et al.Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice[J]. J Immunol,2003, 171(11):6173-6177.

[55] Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist[J]. Proc Natl Acad Sci USA,2003, 100(10):5986-5990.

[56] Lubberts E, Joosten L A, Oppers B, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis[J]. J Immunol,2001, 167(2):1004-1013.

[57] Koenders M I, Lubberts E, Oppers-Walgreen B, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1[J]. Am J Pathol,2005, 167:141-149.

[58] Lubberts E, Koenders M I, Oppers-Walgreen B, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion[J]. Arthritis Rheum,2004, 50(2):650-659.

[59] Chao C C, Chen S J, Adamopoulos I E,et al.Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis[J]. Autoimmunity,2011, 44(3):243-252.

[60] Bush K A, Farmer K M, Walker J S, et al. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein[J]. Arthritis Rheum,2002, 46(3):802-805.

[61] Huang H, Kim H J, Chang E J, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling[J]. Cell Death Differ,2009, 16(10):1332-1343.

[62] Girolomoni G, Mrowietz U, Paul C. Psoriasis: rationale for targeting interleukin-17[J]. Br J Dermatol,2012, 167(4):717-724.

[63] Uluckan O, Wagner E F. Role of IL-17A signalling in psoriasis and associated bone loss[J]. Clin Exp Rheumatol,2016, 34(4):17-20.

[64] Kocijan R, Englbrecht M, Haschka J, et al.Quantitative and Qualitative Changes of Bone in Psoriasis and Psoriatic Arthritis Patients[J]. J Bone Miner Res,2015, 30(10):1775-1783.

[65] Keller J J, Kang J H, Lin H C. Association between osteoporosis and psoriasis: results from the Longitudinal Health Insurance Database in Taiwan[J]. Osteoporos Int ,2013, 24(6):1835-1841.

[66] Busquets N, Vaquero C G, Moreno J R, et al.Bone mineral density status and frequency of osteoporosis and clinical fractures in 155 patients with psoriatic arthritis followed in a university hospital[J]. Reumatol Clin,2014, 10(2):89-93.

[67] Uluckan O, Jimenez M, Karbach S,et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts[J]. Sci Transl Med,2016, 8:330-337.

[68] Hienz S A, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis[J]. J Immunol Res,2015, 2015:615486.

[69] Schenkein H A, Koertge T E, Brooks C N, et al. IL-17 in sera from patients with aggressive periodontitis[J]. J Dent Res,2010, 89(9):943-947.

[70] Johnson R B, Wood N, Serio F G.Interleukin-11 and IL-17 and the pathogenesis of periodontal disease[J]. J Periodontol ,2004, 75(1):37-43.

[71] Luo Z, Wang H, Wu Y, et al.Clinical significance of IL-23 regulating IL-17A and/or IL-17F positive Th17 cells in chronic periodontitis[J]. Mediators Inflamm,2014, 2014:627959.

[72] Awang R A, Lappin D F, MacPherson A, et al.Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity[J]. Inflamm Res,2015, 64(1):1001-1012

[73] Mitani A, Niedbala W, Fujimura T, et al.Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival tissues with chronic periodontitis[J]. J Periodontol ,2015, 86(2):301-309.

[74] Cardoso C R, Garlet G P, Crippa G E, et al.Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease[J]. Oral Microbiol Immunol,2009, 24(1):1-6.

[75] Irie K, Novince C M, Darveau R P. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis[J]. J Dent Res,2014, 93(8):801-806.

[76] Beklen A, Ainola M, Hukkanen M, et al.MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis[J]. J Dent Res,2007, 86(4):347-351.

[77] Yu J J, Ruddy M J, Wong G C, et al.An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals[J]. Blood ,2007, 109(9):3794-3802.

[78] Leonardi C, Matheson R, Zachariae C, et al.Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis[J]. N Engl J Med,2012, 366(13):1190-1199.

[79] Mease P J, Genovese M C, Greenwald M W, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis[J]. N Engl J Med ,2014, 370(24):2295-2306.

[80] Martin D A, Churchill M, Flores-Suarez L, et al.A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis[J]. Arthritis Res Ther,2013, 15(5):1-9.

[收稿2016-08-12;修回2016-09-18]

(编辑:谭秀荣)

The role of IL-17 in bone metabolism and inflammatory bone diseases

YangXuehui

(Department of Molecular Medicine,Maine Medical Center Research Institute,Scarborough ME 04074, USA)

Bone homeostasis is maintained through the balance of the osteoclast-dependent bone resorption and the osteoblast-dependent bone formation.Under inflammatory conditions, the enhancements of bone resorption due to excessive osteoclast formation and activity causes osteolytic bone lesions. IL-17 family, the recently discovered cytokines mediate diverse inflammatory processes. During the last decade, IL-17 has been found to regulate the differentiation and function of both osteoblasts and osteoclasts, particularly the osteoclasts, which indicates a potential role of IL-17 in the inflammatory bone diseases. This review will summarize and discuss the regulation of IL-17 on bone homeostasis in both physiological and pathological conditions. A better understanding of the biological roles of IL-17 in bone metabolism will advance the development of effective therapeutic strategies against inflammatory bone diseases, such as rheumatoid arthritis, psoriasis and periodontitis.

interleukin-17 (IL-17);IL-17 receptor (IL-17R); RANKL;osteoclast;osteoblast;inflammatory bone diseases

杨学辉,博士,研究员。1987年毕业于兰州大学生物学系生物化学专业,获学士学位;1994年毕业于河北医科大学生物化学与分子生物学专业,获硕士学位;1997年9月至1998年7月获美国中华医学会资助于中国科学院协和基础研究所做访问学者;2000年毕业于河北医科大学中西医结合基础理论(分子生物学)专业,获博士学位。1987~2001年于河北医科大学基础医学院生物化学教研室先后任助教、讲师、副教授,从事医学本科及硕士研究生生物化学及分子生物学教学,协助指导硕士及博士研究生(韩国)。2001年至今于美国缅因医学中心研究所分子医学部从事博士后研究工作、2007年晋升为科学家I, 2015年晋升为科学家II 。主要从事有关受体酪氨酸蛋白激酶抑制性蛋白Sproutys 和IL-17RD对受体酪氨酸蛋白激酶调控的分子机理的研究,特别是Sproutys 和IL-17RD在骨骼、血管发育中的作用,及对骨代谢、心血管疾病、乳腺肿瘤生长以及转移的调控的研究。主要成果有:建立Sprouty1 (Spry1), Sprouty4(Spry4), IL-17RD 条件过表达转基因小鼠,研究上述蛋白在小鼠骨骼,心血管发育中的作用,并提供给美国内外多家研究单位以促进科学研究进程。期间获缅因癌症基金会、NIH COBRE Pilot及缅因医学中心等经费资助。迄今在Developmental Cell,Nature Communication, JBC 等期刊发表学术论文20余篇。

R393

A

1000-2715(2016)05-0441-08

猜你喜欢

炎症性骨细胞成骨细胞
破骨细胞能量代谢的研究进展
营养干预方法可改善炎症性肠病
微小核糖核酸-1205沉默Cullin-RING泛素E3连接酶4A激活AMPK信号传导保护人成骨细胞免受地塞米松损伤的研究
高盐饮食或可诱发炎症性疾病
wnt经典信号通路在酸性pH抑制成骨细胞功能中的作用
成骨细胞调节破骨细胞功能的机制及途径研究进展
炎症性肠病与肝胆胰病变
MDT在炎症性肠病诊断和治疗中的重要性
骨细胞在正畸牙移动骨重塑中作用的研究进展
土家传统药刺老苞总皂苷对2O2诱导的MC3T3-E1成骨细胞损伤改善