LED红蓝弱光照射保持樱桃番茄冷库贮藏品质
2016-12-19阎瑞香许立兴关文强
雷 静,张 娜,阎瑞香,许立兴,李 莹,关文强※
(1. 天津市食品生物技术重点实验室,天津商业大学生物技术与食品科学学院,天津 300134;2. 天津市农产品采后生理与贮藏保鲜重点实验室,国家农产品保鲜工程技术研究中心,天津 300384)
LED红蓝弱光照射保持樱桃番茄冷库贮藏品质
雷 静1,张 娜2,阎瑞香2,许立兴1,李 莹1,关文强1※
(1. 天津市食品生物技术重点实验室,天津商业大学生物技术与食品科学学院,天津 300134;2. 天津市农产品采后生理与贮藏保鲜重点实验室,国家农产品保鲜工程技术研究中心,天津 300384)
为了探究单色光对番茄冷藏过程中品质的影响,开发樱桃番茄保鲜新技术,以绿熟期樱桃番茄(Lycopersicon esculentum Mill.)为试材,在4℃条件下分别采用发光二极管(LED,light emitting diode)红蓝单色弱光(30 lx)持续照射,研究LED红蓝单色弱光对樱桃番茄采后贮藏过程中感官和主要营养品质指标的影响。结果表明:研制的LED试验装置稳定可靠,红蓝单色光的发射光谱稳定,不因光照强度的变化而发生偏移。贮藏10 d以后LED红蓝光处理的樱桃番茄感官品质显著优于无光对照(P<0.05),且LED红光处理好于蓝光处理(P<0.05)。LED蓝光照射能较好地保持樱桃番茄维生素C含量(P<0.05),但LED红光照射不利于维生素C含量的保持。LED红蓝单色弱光照射有利于促进樱桃番茄早期贮藏过程中的还原糖和可溶性总糖积累,显著抑制贮藏后期糖含量的下降(P<0.05)。LED红蓝单色弱光照射处理还能显著延缓樱桃番茄贮藏过程中可溶性固形物下降(P<0.05),提高樱桃番茄果实可滴定酸的含量,其中LED红光处理显著高于蓝光处理(P<0.05)。贮藏20 d时,红光照射可显著促进番茄红素的合成,但贮藏过程中LED蓝光照射与对照差异不显著(P>0.05)。综合来看,与对照(CK)相比,LED红蓝弱光(30 lx)照射有利于樱桃番茄4℃贮藏过程中感官和营养价值的保持,其中LED红色弱光照射处理效果较好。作为一种简便可行的物理保鲜方法,LED红蓝弱光持续照射处理在樱桃番茄采后营养品质调控方面具有应用潜力。
贮藏;品质控制;照射;LED;樱桃番茄
0 引言
樱桃番茄又名圣女果,属茄科番茄属的一个变种[1],其果实富含维生素、有机酸、糖、番茄红素和矿物质等营养成分,对人体健康具有重要作用,且适于鲜食,近年来发展很快[2]。樱桃番茄属呼吸跃变型果实,采后贮藏过程中易因衰老软化、低温冷害、微生物侵染而导致品质劣变和腐烂,不利于贮藏运输[3]。因此,通过适宜采后处理方法保持果实的新鲜状态、延长货架时间、改善樱桃番茄的营养品质具有重要的意义。目前樱桃番茄的贮藏保鲜技术研究较多的方法主要有冷藏、自发气调(MA,modified atmosphere)、涂膜、保鲜剂、紫外线处理(UV-C,ultraviolet-C)等[3-5]。但由于樱桃番茄耐贮性较低,且不同的流通途径要求的采收成熟度差异较大,加上贮运环境变化大,贮藏流通过程中易发生营养品质下降及腐烂损失等问题,因此需研究符合现代低温物流要求的樱桃番茄保鲜新技术。
可见光照射处理可以调节植物生理代谢。随着具有绿色、安全、节能等优点的LED(light emitting diode)技术及产品的快速发展,不同颜色可见光照射在现代植物生长调控中开始规模化应用。Liu等[6]研究表明,光照对于收获期番茄果实的品质有显著的影响。刘晓英等[7]研究发现较大比例红光对全生育期樱桃番茄果实照射可显著促进可滴定酸的形成,60%的蓝光可显著提高番茄果实中的维生素C含量。蒲高斌等[8]研究表明红光相比于其他光质可有效改善转色期番茄的果实着色,是促进番茄红素合成的最有效光质,而蓝光相比于其他光质能显著提高番茄的维生素C含量。随着人们对果蔬营养功能成分的重视以及新型有效保鲜技术的需求,可见光照射在果蔬采后保鲜过程中的营养品质调控开始增多。不同颜色弱光照射对芦笋、猕猴桃、西兰花、青椒贮藏过程中的品质保持具有一定的效果[9-11]。Alba R等[12]报道红光定时处理番茄可以将番茄红素含量增加2~3倍。然而,目前将LED红蓝弱光持续照射应用于提高和保持采后樱桃番茄果实贮藏过程中的营养品质的研究尚未见报道。
本文采用LED红蓝单色弱光分别对冷藏樱桃番茄果实进行持续照射,研究不同光质LED灯照射对樱桃番茄冷藏过程中主要营养品质成分的影响规律,为开发樱桃番茄保鲜新技术以及LED单色光在果蔬保鲜中的应用提供理论依据和参考。
1 材料与方法
1.1 材 料
1.1.1 试验材料
樱桃番茄(Lycopersicon esculentum Mill.),采自天津市西青区赛得金角农业生态园,品种为‘北京早红’,绿熟期(八成熟)采收,采摘成熟度一致、无机械损伤、无病虫害的樱桃番茄,采后及时运至实验室备用。
1.1.2 仪器与设备
LED光照装置为国家农产品保鲜工程技术研究中心(天津)研制(图1),装置顶部内侧安装适宜光照强度的LED灯带,内壁粘贴铝箔以避免环境光源干扰,并增强内部光源均匀性;Zolix SGM100光谱仪,北京卓立汉光仪器有限公司;电子天平EL204,梅特勒-托利多仪器(上海)有限公司;USA-Dbs色差计,美国Hunterlab公司;SY21-Ni恒温水浴锅,北京市长风仪器仪表公司;H1850R台式高速冷冻离心机,长沙湘仪离心机仪器有限公司;EVOLUTION201紫外可见分光光度计,美国Thermo公司。
1.2 方 法
1.2.1 处理方法
将樱桃番茄单层摆放在托盘中(每个托盘放15个果实),将装入托盘的樱桃番茄如图1所示放入置于温度为4℃、相对湿度为85%~90%的冷库中的LED光照装置中,关闭装置门后打开特定光线的电源开关。樱桃番茄分为3组,每组15个托盘,共45个托盘,2组在取样测定前分别持续进行红光和蓝光(光照强度为30 lx)照射处理,第3组关闭LED光源作为对照(CK),取样之前3组样品一直在冷库中贮藏。定期取样测定指标(感官品质、维生素C、还原糖、可溶性总糖、可滴定酸、可溶性固形物和番茄红素),每次测定取15个果实,3次重复。
图1 LED光照装置图Fig.1 Schematic diagram of LED irradiation equipment
1.2.2 测定项目与方法
1)LED红蓝照射装置发射光谱测量
LED光照装置中的红蓝单色光的光照强度设为10、20、30、40、50 lx,采用光谱仪测量装置产生的红蓝单色光的光谱稳定性。
2)感官品质评价
参考胡晓亮等[3]的方法,评定标准见表1。选7人建立感官评分小组,评定的指标包括外观、色泽、气味和腐败情况,每项指标最高9分,最低1分,利用加权法计算总分。每项加权系数0.25,根据总分评定样品品质,结果取平均值。
表1 樱桃番茄感官品质评价标准Table 1 Evaluation standard for sensory quality of cherry tomato
3)主要营养指标的测定
维生素C含量:参考张怡等[13]的方法,采用碘液滴定法测定。可溶性固形物含量:采用手持折射仪(RHBO-90)测定[14]。还原糖和可溶性总糖含量:参考周春丽等[15]的方法,采用3,5-二硝基水杨酸(DNS)法测定还原糖,蒽酮比色法测定可溶性总糖。可滴定酸含量:参考GB/T 12456-2008[16]中的NaOH滴定法测定。番茄红素含量:参考朱俊向等[17]的方法,以含体积分数为2%二氯甲烷的石油醚为溶剂,在502 nm波长下测定。
1.2.3 数据处理
利用Excel 2003和SPSS 16.0等统计软件对试验数据进行统计和方差分析(ANOVA),采用Duncan多重比较法分析处理间的差异显著性(α=0.05)。
2 结果与分析
2.1 LED红蓝光装置的发射光谱分析
通过调整样品在垂直方向上与LED光源的距离,可以得到不同的光照强度。LED灯源的质量会影响发射光谱的波长范围,从而影响光照效果。采用光谱仪对自制的LED光照装置发射出的不同强度(10~50 lx)的红光和蓝光光谱进行测量,结果表明不同强度下红光发射波长始终在580~660 nm范围内,最大发射光谱波长为635 nm处(图2a),蓝光发射波长在410~520 nm范围内,最大发射光谱波长为455 nm处(图2b),说明本研究所用的LED红蓝光试验装置的红蓝单色光的发射光谱稳定在相应的波长范围内,不因光照强度的变化而发生偏移。
图2 LED红光和蓝光的发射光谱分析Fig.2 Spectroscopy of LED red and blue light
2.2 LED红蓝弱光照射对樱桃番茄感官品质影响
感官品质是消费者购买樱桃番茄时最基本的指标,LED红蓝弱光照射下樱桃番茄贮藏过程中的感官品质变化见表2。
表2 LED红蓝弱光照射对樱桃番茄感官品质的影响Table 2 Effect of red and blue LED weak light irradiation on sensory quality of cherry tomato during storage
由表2可见,整个贮藏期间,樱桃番茄的感官评分随贮藏时间的延长而降低。贮藏期前5 d,LED红光和蓝光处理组与对照组之间的差异不显著,且感官评分均在8分以上。贮藏10~20 d过程中,光照组感官评分显著优于对照组(P<0.05),红光处理优于蓝光处理组,但二者差异不显著(P>0.05)。贮藏至10 d时,红光处理组果实颜色普遍开始转色,蓝光处理组部分果实转色,但对照组仅个别果实有转色现象,且多数果实开始出现果肉软化,果实蒂部出现不同程度的皱缩。贮藏20 d时,LED红光处理组和蓝光处理组的果实颜色均鲜艳有光泽,仅个别果实出现软化现象,而对照组果实果肉软化程度严重,表皮出现凹陷和褐色斑点,商品价值降低严重,感官评分降至4.7分。
温度是影响番茄贮藏效果的重要因素,不同成熟度的番茄果实适宜贮藏温度不同,温度较低容易发生冷害。研究表明成熟度较高的红色樱桃番茄在5℃下贮藏25 d[18]及4℃贮藏28 d[19],保鲜效果较好,也有研究表明3种成熟度(果色分别为黄色期、粉色期和红色期)樱桃番茄5℃下MA贮藏18 d均没有发生冷害[20]。需要较长时间贮藏(如出口、长途运输等)的番茄的采收成熟度在八成熟左右,在后期的贮藏过程中会正常后熟或者通过乙烯处理催熟。本文的研究结果表明八成熟樱桃番茄4℃低温下,贮藏后期发生冷害,出现褐斑,不能正常转红,而LED红蓝光处理能够防止冷害的发生,保持良好的营养品质,其原因可能是LED红蓝光照射能够利于维持正常新陈代谢,提高樱桃番茄对逆境的抵抗力,关于LED光照射对樱桃番茄低温贮藏过程中的低温冷害影响规律和机理尚需进一步研究。
2.3 LED红蓝弱光照射对樱桃番茄维生素C质量分数的影响
维生素C是果蔬主要的营养成分之一,是衡量果蔬营养价值的重要指标,LED红蓝弱光照射下樱桃番茄贮藏过程中的维生素C变化见图3。
图3 LED红蓝弱光照射对樱桃番茄维生素C含量的影响Fig.3 Effect of red and blue LED weak light irradiation on vitamin C content of cherry tomato during storage
从图3可看出,贮藏过程中,对照组和光照处理组的樱桃番茄维生素C含量均随贮藏时间的延长而呈现下降趋势,这与Fagundes C等[18]的研究结果一致,主要是由于在贮藏过程中樱桃番茄果实中富含的维生素C易被氧化分解[21]。整个贮藏期间,蓝光处理下的樱桃番茄维生素C含量最高,其次为对照组,红光处理组维生素C含量最低,3个处理之间差异显著(P<0.05)。贮藏至20 d时,红光处理组的维生素C质量分数从最初的31.65 mg/(100 g)降低到 21.63 mg/(100 g),损失率达31.66%;对照组的维生素 C质量分数降至23.16 mg/(100 g),损失率为26.82%;蓝光处理组的樱桃番茄贮藏末期维生素C质量分数为24.01 mg/(100 g),损失率仅为24.13%。
本研究中蓝光照射处理能有效减少樱桃番茄在贮藏期间维生素C含量的损失,原因可能在于蓝光能通过影响光受体的平衡从而影响维生素C代谢酶的活性,从而减少樱桃番茄在贮藏期间维生素C含量的损失,这与刘晓英等[7]、蒲高斌等[8]对番茄果实采前蓝光处理的影响效果一致。关于LED红光照射处理造成樱桃番茄贮藏过程中的维生素C含量下降的原因需进一步深入探究。
2.4 LED红蓝弱光照射对樱桃番茄糖含量的影响
樱桃番茄中糖类物质含量的高低是影响其食用风味和品质的关键指标,糖含量的变化还可作为果实贮藏过程中衰老程度的指标[22]。LED红蓝弱光照射下樱桃番茄贮藏过程中的还原糖和可溶性总糖含量的变化见图4。
图4 LED红蓝弱光照射对樱桃番茄糖类物质含量的影响Fig.4 Effect of red and blue LED weak light irradiation on saccharides content of cherry tomato during storage
由图4可见,贮藏初期,八成熟樱桃番茄在后熟作用下,果实中的还原糖(图4a)及可溶性总糖(图4b)含量随贮藏时间呈上升趋势,在贮藏10 d时,3组处理均达到最大值,其中红光处理组糖类物质含量最高,可溶性总糖质量分数升高至6.83%,蓝光其次,对照组最低,三者差异显著(P<0.05)。但随贮藏时间延长,对照组和蓝光处理组还原糖及可溶性总糖的含量开始急剧下降,红光处理组下降趋势则相对平缓。整个贮藏期间,红光处理组樱桃番茄的糖含量一直高于对照组,在贮藏后期下降趋势明显低于对照组,且差异显著(P<0.05)。红光和蓝光均能促进贮藏期樱桃番茄糖类物质的生成,尤以红光最为显著,并且红光保持糖类物质含量的效果更好,并能有效减缓糖含量的降低速度。
本研究中樱桃番茄的糖含量在贮藏前期增加,贮藏后期降低,与Fagundes C等[18]的研究结果一致。八成熟的樱桃番茄处于绿熟期,贮藏前期有机酸的转化[22]或者淀粉降解导致糖类物质含量升高[23],贮藏后期樱桃番茄进入衰老阶段,糖类作为呼吸基质为果实提供能量,导致其含量逐渐降低。本研究中贮藏前期红光和蓝光照射可能通过促进低成熟度果实蔗糖代谢合成相关酶的活性[24],导致糖的合成增加;贮藏后期红光则可能是能够通过降低果蔬呼吸代谢相关酶的活性,使呼吸速率下降,从而抑制糖类物质的减少[25],而蓝光却没有这种作用。由此可见,红光和蓝光均有利于樱桃番茄糖类物质的保持,减缓糖的降低速度,LED红光照射的效果更为显著。
2.5 LED红蓝弱光照射对樱桃番茄可滴定酸含量的影响
LED红蓝弱光照射下樱桃番茄贮藏过程中的可滴定酸含量的变化见图5。由图5可见,樱桃番茄的可滴定酸含量随贮藏时间的延长而呈现先升高后降低的趋势。红光处理组樱桃番茄的可滴定酸含量一直处于较高水平,其次是蓝光,最后是对照组,经差异显著分析,各组之间差异显著(P<0.05)。可滴定酸是果蔬贮藏初期的主要呼吸基质,可合成ATP或转化为糖,在贮藏过程中可滴定酸含量呈现下降的趋势[22]。Fagundes C等[18]研究表明,樱桃番茄冷藏过程中可滴定酸含量显著下降。而本研究结果有所不同,贮藏过程中可滴定酸含量并没有持续下降,贮藏初期红蓝弱光照射能够显著提高可滴定酸的含量,后期下降也较为缓慢,原因可能是LED光影响了酸转化酶和降解酶的活性[7]。另外,也可能是由于本研究中樱桃番茄成熟度较低,其有机酸的合成和分解代谢途径与成熟度较高的樱桃番茄不同引起。
图5 LED红蓝弱光照射对樱桃番茄可滴定酸含量的影响Fig.5 Effect of red and blue LED weak light irradiation on titratable acid content of cherry tomato during storage
2.6 LED红蓝弱光照射对樱桃番茄可溶性固形物含量的影响
可溶性固形物是可溶的糖、酸及其他小分子物质(酚、氨基酸、可溶性果胶、维生素C、矿物质等)的总称[26],与糖含量直接相关,其含量反映果实的成熟程度[3],LED红蓝弱光照射下樱桃番茄贮藏过程中的可溶性固形物的变化见图6。
图6 LED红蓝弱光照射对樱桃番茄可溶性固形物含量的影响Fig.6 Effect of red and blue LED weak light irradiation on soluble solids content of cherry tomato during storage
由图6可见,樱桃番茄的可溶性固形物含量在贮藏初期升高,随贮藏时间的延长,樱桃番茄的可溶性固形物含量逐渐保持平稳,但处理组的可溶性固形物含量始终显著高于对照组(P<0.05);贮藏20 d时,对照组的樱桃番茄可溶性固形物质量分数降至6.4%,处理组仍保持较高水平,且光照处理组与对照组差异显著(P<0.05)。
本试验的研究结果与其他研究人员的研究结果有所不同。Liu等[6]研究表明红光、太阳光、UV-C等间歇定时照射均不影响番茄果实贮藏过程中可溶性固形物的含量,且可溶性固形物含量在贮藏过程中变化较小。然而,本研究结果与刘晓英等[7]的研究结果相似,其研究表明全育期持续蓝光照射可显著提高樱桃番茄中可溶性固形物的含量。研究结果不同的原因可能是品种、成熟度、处理方式和时间、光源类型的不同造成的。
2.7 LED 红蓝弱光照射对樱桃番茄番茄红素含量的影响
樱桃番茄特有的红色是由番茄红素所产生的[8],番茄红素还具有重要的医疗保健作用[12]。番茄果实成熟和后熟过程中番茄红素含量会逐渐增加[18],适宜的保鲜条件可延缓樱桃番茄中的番茄红素下降[27]。
由表3可见,樱桃番茄的番茄红素含量随贮藏时间的延长呈现增加趋势,贮藏20 d时番茄红素含量约是刚采摘的番茄中番茄红素的2倍。与对照相比,红光处理15 d后显著提高了樱桃番茄贮藏后期番茄红素的含量(P<0.05),蓝光处理与对照相比番茄红素含量差异不显著(P<0.05)。本试验的研究结果与其他研究者的结果相一致。Liu等[6]研究表明不管光照与否,番茄中番茄红素含量在贮藏过程中均显著升高,而且红光照射比UV-C和阳光照射提高的番茄红素都多[6]。陈强等[28]研究认为红光相比于蓝光能显著提高番茄果实中番茄红素的含量,果实中的光敏色素通过红光诱导调节番茄红素的合成,从而改善番茄果实的着色。Alba R等[12]研究认为红光能提高番茄红素还可能是由于光敏素影响了乙烯合成,而乙烯对于调节番茄红素的合成至关重要。因此,红光可能是调控番茄贮藏过程中番茄红素合成和积累的特殊调控因子,具体的影响机制还需进行进一步的研究。
[1] 李海达,吉家曾,郑桂建,等. 不同LED补光光源对樱桃番茄产量和品质的影响[J]. 广东农业科学,2014,41(14):37-40. Li Haida, Ji Jiazeng, Zheng Guijian, et al. Effects of different LED light-supplement on the yield and quality of Cherry tomato[J]. Guangdong Agricultural Science, 2014, 41(14): 37-40. (in Chinese with English abstract)
[2] Liu Changhong, Cai Luyun, Lu Xianying, et al. Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage[J]. Journal of integrative agriculture, 2012, 11(1): 159-165.
[3] 胡晓亮,周国燕,王春霞,等. 海藻酸钠和溶菌酶复合涂膜对樱桃番茄贮藏的保鲜效果[J]. 食品与发酵工业,2011,37(10):193-196. Hu Xiaoliang, Zhou Guoyan, Wang Chunxia, et al. Research of alginate and lysozyme compound coating on fresh-keeping of cherry tomatoes[J]. Food and Fermentation Industries, 2011, 37(10): 193-196. (in Chinese with English abstract)
[4] Pataro G, Sinik M, Capitoli M M, et al. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage[J]. Innovative Food Science & Emerging Technologies, 2015, 30(1): 103-111.
[5] 殷涌光,刘静波,房新平. 切分西红柿微波短时处理常温贮藏保鲜试验研究(英文)[J]. 农业工程学报,2002,18(5):206-209. Yin Yongguang, Liu Jingbo, Fang Xinping. Cut-Tomato preservation at normal atmospheric temperature with short-time microwave treatment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(5): 206-209. (in Chinese with English abstract)
[6] Liu L H, Zabaras D, Bennett L E, et al. Effects of UV-C,red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage[J]. Food Chemistry, 2009, 115(2): 495-500.
[7] 刘晓英,常涛涛,郭世荣,等. 红蓝LED光全生育期照射对樱桃番茄果实品质的影响[J]. 中国蔬菜,2010,(22):21-27. Liu Xiaoying, Chang Taotao, Guo Shirong, et al. Effect of irradiation with blue and red LED on fruit quality of cherry tomato during growth period[J]. China Vegetables, 2010, (22): 21-27. (in Chinese with English abstract)
[8] 蒲高斌,刘世琦,杜洪涛,等. 光质对番茄果实转色期品质变化的影响[J]. 中国农学通报,2005,21(4):176-178. Pu Gaobin, Liu Shiqi, Du Hongtao, et al. Effect of light quality on tamato fruit qualities in turning-color period[J]. Chinese Agricultural Science Bulletin, 2005, 21(4): 176-178. (in Chinese with English abstract)
[9] 谢晶,蔡楠,韩志. 弱光照射对果蔬冷藏品质的影响[J]. 食品科学,2008,29(3):471-474.
表3 LED红蓝弱光照射对樱桃番茄番茄红素质量分数的影响Table 3 Effect of red and blue LED weak light irradiation on lycopene of cherry tomato during storage μg·g-1
3 结论
1)研制的LED光照装置能够精确地发射出红光和蓝光,其发射光谱波长分别为635和455 nm,能够精确地发射出红光和蓝光,保证了试验过程中照射光质的精确性。
2)LED红蓝单色弱光照射能够促进绿熟期樱桃番茄在4℃贮藏过程中更好地完成后熟,延缓成熟衰老,保持营养成分。与对照相比,LED红光和蓝光弱光照射处理可显著促进樱桃番茄还原糖和可溶性总糖的合成(P<0.05),保持可溶性固形物及可滴定酸的含量,抑制其下降趋势。蓝光处理能更有效地抑制维生素C的氧化降解,而红光处理则能更好地促进番茄红素的合成,保持较高的感官指标,提高其贮藏品质。
LED红蓝弱光处理具有安全、节能、简便等特点,在樱桃番茄采后流通保鲜中有潜在的应用价值和前景。Xie Jing, Cai Nan, Han Zhi. Effect of weak light illumination on qualities of fruits and vegetables in cold storage[J]. Food Science, 2008, 29(3): 471-474. (in Chinese with English abstract)
[10] 刘然然,寇莉萍,阎瑞香. 发光二极管绿光照射对精品蔬菜货架期品质的影响[J]. 北方园艺,2013,(8):5-9. Liu Ranran, Kou Liping, Yan Ruixiang. Effects of LED green light irradiation on quality of vegetable in shelf life[J]. Northern Horticulture, 2013, (8): 5-9. (in Chinese with English abstract)
[11] 李宁,阎瑞香,张娜. LED复合光处理对西兰花低温保鲜效果的影响[J]. 华北农学报,2015,1(1):188-193. Li Ning, Yan Ruixiang, Zhang Na. Effect of LED composite light on preservation of broccoli during cold storage[J]. Acta Agriculturae Boreali-Sinica, 2015, 1(1): 188-193. (in Chinese with English abstract)
[12] Alba Rob, Cordonnier Pratt, Marie Michele, et al. Development and hormone action-fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato[J]. Plant physiology, 2001, 23(1): 363-371.
[13] 张怡,关文强,张娜,等. 温度对西兰花抗氧化活性及其品质指标影响[J]. 食品研究与开发,2011,32(8):156-161. Zhang Yi, Guan Wenqiang, Zhang Na, et al. Changes of antionxidant activity, compounds and quality of broccoli florets during different temperatures[J]. Food Research and Development, 2011, 32(8): 156-161. (in Chinese with English abstract)
[14] 宋姝婧,王晓拓,王志东,等. 5种植物精油对樱桃番茄常温保鲜效果的影响[J]. 核农学报,2015,29(5):932-939. Song Shujing, Wang Xiaotuo, Wang Zhidong, et al. Effect of five essential oils on cherry tomatoes preservation at room temperature[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 932-939. (in Chinese with English abstract)
[15] 周春丽,钟贤武,范鸿冰,等. 果蔬及其制品中可溶性总糖和还原糖的测定方法评价[J]. 食品工业,2012,33(5):89-92. Zhou Chunli, Zhong Xianwu, Fan Hongbing, et al. Evaluation of different determination of water-soluble total sugar and reducing sugar in fruit and vegetable[J]. Food Industry, 2012, 33(5): 89-92. (in Chinese with English abstract)
[16] GB/T 12456-2008食品中总酸的测定[S].
[17] 朱俊向,吴昊,杨绍兰,等. 超声辅助提取冻干番茄粉番茄红素的工艺优化[J]. 农业工程学报,2013,29(18):284-291. Zhu Junxiang, Wu Hao, Yang Shaolan, et al. Technology optimization of ultrasonic-assisted extraction for lycopene from lyophilized tomato powder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 284-291. (in Chinese with English abstract)
[18] Fagundes C, Moraes K, Pérez-Gago M B, et al. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes[J]. Postharvest Biology & Technology, 2015, 109(11): 73-81.
[19] Kuenwoo P, Homin K, Dongman K, et al. Effect of the packaging films and storage temperatures on modified atmosphere storage of ripe tomato[J]. Horticulture Environment and Biotechnology, 1999, 40(6): 643-646.
[20] Cantwell M I, Nie X, Hong G. Impact of storage conditions on grape tomato quality[R]. 6th ISHS Postharvest Symposium, Antalya, Turkey. 2009.
[21] 胡晓亮,周国燕. 四种天然保鲜剂对樱桃番茄贮藏的保鲜效果[J]. 食品科学,2012,33(10):287-292. Hu Xiaoliang, Zhou Guoyan. Preservation effect of four natural preservation on cherry tomatoes[J]. Food Science, 2012, 33(10): 287-292. (in Chinese with English abstract)
[22] Buta J G, Moline H E, Spaulding D W, et al. Extending storage life of fresh-cut apples using natural products and their derivatives[J]. Journal of Agricultural and Food Chemistry, 1999, 47(1): 1-6.
[23] Luengwilai K, Beckies D M. Starch Granules in Tomato Fruit Show a Complex Pattern of Degradation[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8480-8487.
[24] 林小苹,赖钟雄,黄浅. 光质对植物离体培养的影响[J]. 亚热带农业研究,2008,4(1):73-80. Lin Xiaoping, Lai Zhongxiong, Huang Qian. Effect of light quality on plant tissue culture[J]. Subtropical Agriculture Research, 2008, 4(1): 73-80. (in Chinese with English abstract)
[25] Stevens C, Khan V A, Lu J Y, et al. The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches[J]. Crop Protection, 1998, 17(1): 75-84.
[26] Beckles D M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit[J]. Postharvest Biology & Technology, 2012, 63(1): 129-140.
[27] Odriozola Serrano Isabel, Soliva Fortuny Robert, Martín Belloso Olga. Antioxidant properties and shelf-life extension of fresh-cut tomatoes stored at different temperatures[J]. Journal of the Science of Food and Agriculture, 2008, 88(15): 2606-2614.
[28] 陈强,刘世琦,张自坤,等. 不同LED光源对番茄果实转色期品质的影响[J]. 农业工程学报,2009,25(5):156-161. Chen Qiang, Liu Shiqi, Zhang Zikun, et al. Effect of different light emitting diode sources on tomato fruit quality during color-changed period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 156-161. (in Chinese with English abstract)
Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage
Lei Jing1, Zhang Na2, Yan Ruixiang2, Xu Lixing1, Li Ying1, Guan Wenqiang1※
(1. Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences, Tianjin University of Commerce, Tianjin 300134, China; 2. National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China)
Tomatoes are rich in compounds including carotenoids, vitamin C (Vc), and flavonoids, which are believed to be beneficial to human health. The increasing growth in the consumption of fresh cherry tomato (Lycopersicon esculentum Mill.) has driven the demand for developing new green postharvest technology to maintain the quality during cherry tomato’s storage period and shelf life. Blue and red lights among visible light regions may be still useful for the photosynthesis of some fresh products that are not fully mature during storage. Light-emitting diodes (LEDs) technologies could provide some opportunities to develop new equipment and method for controlling postharvest quality of cherry tomato treated by different light sources during storage and shelf life. Mature-green (breaker-stage) tomatoes were harvested and treated continuously with red and blue LED weak light at 4℃ for up to 20 d. Untreated tomatoes (the control) were kept in the dark for the same period. The effects of the treatments on the sensory quality (levels of appearance, color, odor and decay), Vc, reducing sugar, total soluble sugar, total soluble solids, titratable acid and lycopene were evaluated throughout the storage. The results showed that LED irradiation apparatus used in the experiment was stable and reliable. LED red and blue lamps could emit the designated light spectrum and not drift as the change of light intensity. The sensory quality was maintained at high level in all treatment during early storage period. After 10 d storage, the cherry tomatoes irradiated by LED red and blue light began to change color to yellow and red and had significantly better sensory quality than the control treatment (P<0.05), and LED red light had better effect than LED blue light. On the 20thday, the cherry tomatoes in the control showed inferior sensory quality involving flesh severe softening, apparent browning pitting on the peel and fungal decay spot, while the tomatoes irradiated by LED red and blue light kept good sensory quality (P<0.05). LED blue light irradiation could significantly inhibit the decrease of Vc content (P<0.05) in cherry tomato during storage compared with the control treatment, while the cherry tomatoes irradiated by LED red light showed lower Vc content than the control. LED red and blue light irradiation could lead to the accumulation of reducing sugar and total soluble sugar in cherry tomato during the early stage of storage, and reducing sugar and total soluble sugar content reached the highest on the 10thday. The contents of reducing sugar and total soluble sugar in cherry tomatoes decreased gradually between the 10thand the 20thday, while it was higher in the tomatoes irradiated by LED red and blue weak light than that in the control during the whole storage (P<0.05). Compared to the control, LED red and blue light irradiation could significantly delay the decrease of total soluble solids content and titratable acid content in cherry tomato (P<0.05), and LED red light had significantly higher effect than LED blue light (P<0.05). LED red light irradiation could lead to significantly higher lycopene content on the 20thday, while there was no significant difference between LED blue light and the control during storage. In comparison with the control treatment, LED red and blue weak light irradiation was beneficial for controlling the sensory and nutritional quality of cherry tomato at 4℃ , completing the ripening process, and keeping the normal postharvest physiological metabolism. LED red weak light irradiation had the best effect among the treatments. In conclusion, LED red and blue weak light irradiation, as a simple and effective postharvest method, has the potential of application in the postharvest quality control of cherry tomato. The results provide the basis for sensory and nutritional quality control of fresh fruits and vegetables during cold storage.
storage; quality control; irradiation; LED; cherry tomato
10.11975/j.issn.1002-6819.2016.09.035
S641.2; S229+.3
A
1002-6819(2016)-09-0248-07
雷 静,张 娜,阎瑞香,许立兴,李 莹,关文强. LED红蓝弱光照射保持樱桃番茄冷库贮藏品质[J]. 农业工程学报,2016,32(9):248-254.
10.11975/j.issn.1002-6819.2016.09.035 http://www.tcsae.org
Lei Jing, Zhang Na, Yan Ruixiang, Xu Lixing, Li Ying, Guan Wenqiang. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 248-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.035 http://www.tcsae.org
2015-12-16
2016-03-17
国家自然科学基金(31271949);天津市科技计划项目(13ZCZDNC01500);天津市高等学校创新团队培养计划项目(TD12-5049)
雷 静,女,陕西渭南人,研究方向为农产品加工与贮藏。天津天津商业大学生物技术与食品科学学院天津市食品生物技术重点实验室,300134。Email:canthyteuk@163.com
※通信作者:关文强,男,河南泌阳人,教授。天津 天津商业大学生物技术与食品科学学院天津市食品生物技术重点实验室,300134。Email:gwq18@163.com