APP下载

水旱两用秸秆还田组合刀辊作业性能试验

2016-12-19张秀梅夏俊芳张居敏贺小伟梁世芳

农业工程学报 2016年9期
关键词:刀辊耕深水田

张秀梅,夏俊芳,张居敏,贺小伟,梁世芳,张 顺,吴 昊,万 松

(华中农业大学工学院,武汉430070)

水旱两用秸秆还田组合刀辊作业性能试验

张秀梅,夏俊芳※,张居敏,贺小伟,梁世芳,张 顺,吴 昊,万 松

(华中农业大学工学院,武汉430070)

为了检测水旱两用秸秆还田组合刀辊的田间作业质量和功率,采用无线遥测技术,利用动力输出轴一体化扭矩传感器,对安装组合刀辊的耕整机进行了田间作业质量和作业功耗优化参数性能测试试验,并与传统旋耕刀辊、螺旋刀辊进行田间作业质量及功耗对比试验。田间试验结果表明:组合刀辊性能检测试验中,水田和旱地植被埋覆率分别为94.3% 和96.5%,耕深分别为20.8和20.3 cm,耕深稳定性分别为92.3%和90.6%,耕后地表平整度分别为0.9和1.2 cm,功率消耗分别为27.6 和31.2 kW,均达到了设计目标;与其他刀辊对比试验中,组合刀辊作业质量优于螺旋刀辊和传统旋耕刀,作业功耗稍高。该研究可为实现水田和旱地高茬秸秆埋覆还田和土壤耕整提供参考。

农业机械;优化;试验;组合刀辊;秸秆还田;水田旱地;作业性能;功耗

0 引言

机械化秸秆直接埋覆还田有利于提高农田肥力,减少由秸秆焚烧所引起的环境污染,提高土壤有机质含量,降低化肥施用量,实现农业的可持续性发展[1-5]。中国长江中下游地区多为麦-稻、油-稻等水旱轮作种植模式,缺乏与该模式相配套的通用型秸秆埋覆还田机具,“双抢”期间,农民在作物收获后不得不直接焚烧秸秆,既污染了环境,又加剧了土壤生态环境的恶化[6-10]。

针对目前中国尚无合适的水旱通用型秸秆还田耕作机具,华中农业大学基于前期研究成果[11-15],研制出了主要由螺旋横刀和传统旋耕刀(IIT245旋耕刀)组合而成的水旱两用秸秆还田组合刀辊[16-17],但其田间作业质量及功耗相较于螺旋刀辊和传统旋耕刀辊如何有待研究。

作业质量和功率消耗是评价农机具性能最为重要的指标[18-19]。目前国内外对旋耕机作业质量的研究已经很普遍,而且比较成熟;国外农机具田间作业功率的测试主要采用先进的数字遥测测试分析技术,通过数学耦合式传感器实时采集转速和扭矩数据。国内对旋耕机作业功耗的研究还比较落后,而且由于田间作业条件的复杂性,进行实际田间作业功耗测试的报道较少,现有研究也主要采用有线传输技术测试[19-22],这种方法测试人员需携带测试仪器跟随作业机具一起移动,设备安装和人员测试条件受到很大限制,在复杂的田间作业条件下存在稳定性和安全性问题,适应性稍差,使用不够方便。为了更加准确、方便而安全地测试机具田间作业功耗,课题组基于前期研究基础[23-24]定制了专用的功率无线遥测装置,该装置集测量和无线收发技术一体,测试人员不用随作业机具一起移动,只需在一定范围内的田边道路上进行测试,即可实时采集设备的扭矩、转速及功率数据。

本文对水旱两用秸秆还田组合刀辊依照国标测试方法进行了一序列田间作业质量和功率测试试验,并将其同传统旋耕刀辊和螺旋刀辊进行田间作业质量—功率测试的对比试验,以期为机具的进一步优化设计和推广应用提供参考。

1 材料与方法

1.1 试验刀辊

试验主要刀辊为水旱两用秸秆还田组合刀辊,简称组合刀辊。该刀辊主要包括刀盘1、传统旋耕刀2、弯刀3、刀轴4和螺旋横刀5,结构如图1所示。组合刀辊排布设计为螺旋横刀旋转半径小于弯刀和传统旋耕刀的旋转半径,保证弯刀和传统旋耕刀比螺旋横刀先入土,可降低后续横刀切土阻力[16]。此刀辊结合了传统旋耕刀碎土能力强以及课题组研制的螺旋横刀秸秆埋覆性能好的优点,适用于水田、旱地的高茬秸秆直接埋覆还田耕整作业[17]。

图1 组合刀辊结构示意图Fig.1 Structure diagram of combination blade roller

田间作业时,依靠拖拉机三点悬挂机构来控制刀辊悬挂高度,进而控制实际旋耕深度,刀辊轴随拖拉机直线前进的同时正向旋转,实现“铣削”土壤和秸秆的切削模式。首先刀盘弯刀和传统旋耕刀在旋转中将土壤及植被沿机组前进方向切断破茬,接着螺旋横刀在已耕区域内沿横向整幅切削土壤,同时刀辊在旋转中将切下的土壤及秸秆向后抛掷,撞击挡板后落下被压埋,最后平地装置将地表拖平[17]。

1.2 功率测试系统

功率测试系统为课题组基于前期对功率测试系统的研究与实际应用情况,联合黑龙江省农业机械工程科学研究院研制了专用的功率测试装置-田间机械动力学参数遥测仪之旋转功率测量模块,由扭矩输出轴转速一体传感器(转速测量范围0~4 000 r/min,精度为±1%F.S.;扭矩测量范围0~1 000 N·m,精度为±1%F.S.;参数信号最大接收发送距离:100 m)、无线动态数据采集器和采集软件主机组成。该系统采用Zigbee无线传输技术,配套动力输出轴一体化扭矩传感器,实现在田间现场接收配套机具的扭矩、转速、功率等各种动力学信号,并直接处理和分析,实时获得测试数据。

试验中,首先将传感器与拖拉机动力输出轴及被测旋耕刀辊通过万向节连接在一起;然后用相应的通信线缆,连接传感器与数据采集器的对应通道接口(扭矩/速度),同时将天线连接到采集器;最后将无线设备通过USB接口连接到主机,主机上测试数据界面显示传感器测试的实时数据,如图2所示。

图2 功率测试系统安装示意图Fig.2 Installation schematic map of power testing system

1.3 试验参数测定方法与评价指标

试验条件参照国家标准《农业机械试验条件、测定方法的一般规定》[25],田间作业质量指标按照国标GB/T5668-2008[26]执行,作业质量评价标准在参照GB/T5668-2008、NYT 499-2002[27]和DB44 T 367-2006[28]的基础上按照旋耕埋草机的作业质量检测标准(DB42/T440.1-2007)进行检测。

1.4 试验设计与方法

影响旋耕机作业质量和功耗的主要因素有刀辊转速、机组前进速度、耕深、土质、秸秆茬密度、秸秆茬物理特性和耕整刀结构参数及排列方式等。由于土质、秸秆茬密度、秸秆茬物理特性这些参数受自然条件环境影响较大,属不可控因素,故在土质、秸秆、刀辊参数相同的情况下,影响组合刀辊作业质量的主要因素有刀辊转速、机组前进速度和耕深。为明确上述3个因素对作业质量的影响,作业质量用秸秆埋覆率来衡量(90%为合格标准),采用L9(34)正交试验表对组合刀辊进行正交试验研究[29],然后根据优化参数进行田间作业性能检测,最后在相同作业条件下与关键作业部件分别为螺旋刀辊及传统旋耕刀的机具,进行田间作业质量和作业功耗的对比试验。

2 田间试验

2.1 正交试验

2.1.1 正交试验条件与方法

在华中农业大学现代农业科技试验基地选取晚稻收获后经过晾晒的高茬水稻田,测得耕作前土壤含水率为36.5%,土壤坚实度为544.5 kPa,秸秆高度35.7 cm,秸秆量660 g/m2。组合刀辊由拖拉机LX954驱动。结合该刀辊前期大量田间试验实际情况,各因素水平表如表1所示。

表1 正交试验因素水平表Table 1 Factors level of orthogonal test

2.1.2 较优方案的确定

根据上述选定的3因素3水平正交试验方案及评价指标进行9组试验,每组试验重复3次,结果取平均值,方案及结果与极差分析如表2所示。为进一步分析各因素对评价指标的影响显著性,进行了方差分析,如表3所示。

1)极差与方差分析

试验指标为秸秆埋覆率越大越好,从表2中可知,影响秸秆埋覆率的各因素从主到次依次为耕深、前进速度、刀辊旋转速度,最优方案应取各因素最大K值所对应的水平,极差分析得到的最优方案为A3B1C1,即耕深21.5 cm,前进速度为0.43 m/s,刀辊旋转速度314 r/min。

表2 试验结果分析表Table 2 Range analysis of experimental results

表3 方差分析结果Table 3 Results of variance analysis for rapeseed seeding quality

表2极差分析得出了耕深、前进速度、刀辊旋转速度这3个因素对水旱两用秸秆还田组合刀辊作业质量影响的主次顺序及较优水平组合。为进一步分析各因素对各评价指标影响的显著性,进行了方差分析,由表3得出:耕深和前进速度对秸秆埋覆率影响极显著,刀辊旋转速度对秸秆埋覆率影响不显著。

2)较优试验方案拟定

作业质量以秸秆埋覆率最高为重点考察目标,确定影响作业质量的主次因素依次为耕深A、前进速度C、刀辊旋转速度B。极差分析得到的较优组合为A3B1C1,方差分析得到耕深A对秸秆埋覆率影响极显著,前进速度的影响极显著,刀辊旋转速度的影响不显著。由于因素A最重要,则较优组合中A3因素水平保持不变;因素B影响不重要,加上刀辊转速提高,有利于土壤的细化、秸秆的搅碎及土壤与秸秆的揉合,故将优方案中因素B1调整为B2,则优方案变为A3B2C1,即正交表中的第9号试验,秸秆埋覆率达到96.7%;考虑耕整机的作业效率,拟将前进速度分别提高到C2、C3因素水平,优方案变为A3B2C2或者A3B2C3,均不包含在正交表已做的9个试验中,需要进一步试验验证。

3)验证试验

在华中农业大学现代农业科技试验基地选取晚稻收获后的高茬水稻田,测得耕作前土壤含水率为32.9%,土壤坚实度为893.6 kPa,秸秆高度33.6 cm,田间秸秆平均分布为24墩/m2,18株/墩。组合刀辊由拖拉机LX954驱动,先按照方案A3B2C2,即拖拉机前进速度0.69 m/s,刀辊旋转速度330 r/min,耕深调至21.5 cm进行田间试验,重复3个来回行程,然后保持刀辊旋转速度和耕深不变,将拖拉机前进速度提升至0.93 m/s,重复3个来回行程。试验结果测得方案A3B2C2秸秆埋覆率为92.2%,方案A3B2C3秸秆埋覆率为90.9%,均达到设计目标要求,但是埋覆效果均差于方案A3B2C1。

4)较优作业参数

综合上述试验及前期大量田间试验结果,该机田间作业的最佳参数范围为:拖拉机前进速度0.43~0.93 m/s,刀辊旋转速度330 r/min左右,耕深实测;实际田间作业时,需要根据田间状态,包括土壤、秸秆或者植被状态,在上述最佳作业参数范围内适当调整,一般在旱地作业时前进速度要慢于水田作业。

2.2 性能检测试验

2.2.1 试验条件

2015年5月23日和24日分别在华中农业大学油菜核心实验区和玉米试验地进行水田试验和旱地试验,水田试验田前茬作物为中国广泛种植的油菜,于2015年5月中下旬收割,耕整前田块泡水8 h后将水放掉至田面不见明显的水。旱地试验地前茬作物为玉米,于2014年10月中下旬收获后一直处于闲置状态,属于中国广泛存在的冬闲地,耕整前地间长满杂草类植被,主要为蒿草。测得试验条件如表4所示。考虑到田块土壤坚实度较大,加上旋耕机的功率消耗随着前进速度和刀辊转速的增加而增大[30],按照上述优化方案初步设定组合刀辊转速330 r/min,机组前进速度不低于0.43 m/s,以实测为准,进行水田和旱地作业性能测试试验。

表4 组合刀辊田间试验条件Table 4 Field conditions during performance test of combination blade roller

2.2.2结果与分析

田间作业性能指标与原设计指标对比结果如表5所示,其中测量结果为平均值,耕作效果如图3所示。

由表4、表5可知:1)水旱两用秸秆还田组合刀辊对高达78 cm的油菜秸秆和97 cm的蒿草进行水田和旱地埋覆还田试验,一次作业后耕深分别为20.8、20.3 cm,耕深稳定性分别为92.3%、90.6%,植被埋覆率分别为94.3%、96.5%,耕后地表平整度分别为0.9、1.2 cm,功耗为27.6、31.2 kW,田间作业质量和功耗指标均符合原设计指标,达到了预期设计目标;2)实际水田和旱地作业速度分别为0.47和0.45 m/s,均高于0.43 m/s。但从作业效率来说均偏低,接近下限,主要原因为:水田泡田时间较短,耕作前田间已不见明显的水,为水田旱耕作业,土壤坚实度较大,加上土壤为黏壤土;旱地土壤坚实度大,而且杂草高而密集,因而作业速度较慢;3)本试验旱地作业与正交表中第9号试验的作业速度和刀辊转速较为一致,但二者田间的土壤及植被差异较大,试验结果对比:植被埋覆率前者为96.5%,后者96.7%;耕深前者为20.3 cm,后者21.5 cm,较为接近。由此可见,该组合刀辊田间作业适应性较强,可用于不同物理性质的土壤、秸秆及杂草绿肥的田间埋覆还田。

表5 组合刀辊田间作业性能检测结果Table 5 Measurement results of the working performance of combination blade roller

图3 组合刀辊耕后效果图Fig.3 Diagram after tillage of combination blade roller

2.3 对比试验

2.3.1 试验条件

试验对比刀辊为传统旱地刀辊、螺旋刀辊及组合刀辊,2015年12月10-12日在华中农业大学水稻核心实验区选取2块水稻收获后闲置的高茬秸秆田块进行田间作业性能对比试验,其中田块1保持水稻收获后自然闲置状态,田块2耕整前放水泡田48 h后将水放掉至田面不见明显的水,测得试验条件如表6所示。

鉴于传统旋耕刀为旱耕刀,其只耕整未泡水田块,螺旋刀辊和组合刀辊耕整未泡水田和泡水田块。3种刀辊作业时均为每一前进速度为1个试验工况,试验测定3个工况,分别为旋耕常用低1、低2、低3档[31],具体数值在试验进行中测定,每个工况测定2个行程,转速均在260~330 r/min,耕深调整在刀辊作业最大耕深处实测,均由拖拉机LX954驱动。

表6 对比试验田间试验条件Table 6 Field conditions during performance test of comparative tests

2.3.2 结果与分析

组合刀辊、传统旋耕刀和螺旋刀辊田间作业对比试验结果如表7所示,其中测量结果为平均值,耕作效果如图4所示。

由表7和图4可知,组合刀辊和螺旋刀辊旋耕后秸秆埋覆率、耕深、耕深稳定性及地表平整度等作业质量指标均高于国标要求,传统旋耕刀秸秆埋覆率不达标;组合刀辊作业质量最优,但是组合刀辊作业功耗偏高;传统旋耕刀虽然作业功耗较低,但处理高茬秸秆的能力较差。主要原因有:一、传统旋耕刀在设计上追求的目标是土壤切削减阻方面以及防止缠草,正切刃的滑切角很大,以及切断秸秆过程中地面与正切刃之间的夹持角度也很大,会产生“夹不住”秸秆现象,秸秆会在“被夹持”过程中侧滑,又由于正切刃刃口比较短,所以秸秆在侧滑过程中来不及切断而滑落,传统旋耕刀不缠草,不处理秸秆,因而功耗低。螺旋横刀刃口的滑切角适中,而且螺旋横刀与地面间的夹角比较小,秸秆在切断过程中能被地面和螺旋横刀牢牢地夹持住,即便是夹持不住秸秆而产生侧滑,由于螺旋横刀刃口长而且连续,秸秆在侧滑过程中也会被切断;二、在相同的作业条件下,传统旋耕刀实际作业最大耕深偏小,作业功耗是随耕深增加而增大的,通过正交试验发现秸秆埋覆率也是随耕深增加而增大。因而对比之下,传统旋耕刀对秸秆处理能力较差,最大耕深相对较小,功耗相对较低。

组合刀辊结合传统旋耕刀和螺旋横刀的优点,具有较高的秸秆埋覆处理和土壤耕整能力,作业性能相对与螺旋刀辊有一定的提高,只是在作业功耗上有待进一步降低。

表7 对比试验作业性能检测结果Table 7 Measurement results of the working performance of comparative tests

图4 对比试验耕后效果图Fig.4 Diagram after tillage of comparative tests

3 结论与讨论

1)正交试验结果表明:耕深和前进速度对秸秆埋覆率影响极显著,刀辊旋转速度对秸秆埋覆率影响不显著。组合刀辊最佳作业参数:拖拉机前进速度0.43~0.93 m/s,刀辊旋转速度330 r/min。

2)性能检测试验结果表明:组合刀辊一次作业后,水田耕深达20.8 cm,旱地20.3 cm;水田耕深稳定性达92.3%,旱地90.6%;水田植被埋覆率达94.3%,旱地96.5%;水田耕后地表平整度达0.9 cm,旱地1.2 cm;水田功耗为27.6 kW,旱地31.2 kW,水田和旱地的作业质量和功耗均达到了原设计目标,作业质量满足GB/T5668-2008规定的性能指标以及后续农艺的要求。

3)性能对比试验结果表明:传统旋耕刀虽然作业功耗较低,但作业质量较差,其中植被埋覆率未能达到国标要求;组合刀辊虽然低1及低2档作业功耗高于其他2种刀辊,但在作业效率较高的低3档作业时功耗要低于螺旋刀辊,而且作业质量在3种刀辊中是最优的。

组合刀辊能满足水田和旱地高茬埋覆还田需求,特别能解决水旱轮作区高茬埋覆还田耕作需求问题。针对影响组合刀辊作业质量和功耗的其他因素以及如何达到节能降耗等问题有待于进一步深入研究。

[1] 隋铭明,沈飞,徐爱国,等. 基于北斗卫星导航的秸秆机械化还田作业管理系统[J]. 农业机械学报,2016,47(1):23-28. Sui Mingming,Shen Fei,Xu Aiguo, et al. Precise management system for mechanized straw returning based on BDS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 23-28. (in Chinese with English abstract)

[2] 余坤,冯浩,李正鹏,等. 秸秆还田对农田土壤水分及冬小麦耗水特征的影响[J]. 农业机械学报,2014,45(10):116-124. Yu Kun, Feng Hao, Li Zhengpeng, et al.Effects of different pretreated straw on soil water content and water consumption characteristics of winter wheat[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 116-124. (in Chinese with English abstract)

[3] 马欣,周连仁,王晓巍,等. 秸秆对根区土壤酶活性、无机氮及呼吸量的影响[J]. 中国土壤与肥料,2012(4):27-33. Ma Xin, Zhou Lianren, Wang Xiaowei,et al. Effect of straw on enzyme activity, inorganic nitrogen and CO2respiration of root zone soil[J]. Soil and Fertilizer Sciences in China, 2012(4): 27-33. (in Chinese with English abstract)

[4] 胡宏祥,程燕,马友华,等. 油菜秸秆还田腐解变化特征及其培肥土壤的作用[J]. 中国生态农业学报,2012,20(3):297-302. Hu Hongxiang, Cheng Yan, Ma Youhua, et al. Decomposition characteris-tics of returned rapeseed straw in soil and effects on soil fer-tility[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 297-302. (in Chinese with English abstract)

[5] 冯爱青,张民,李成亮,等. 秸秆及秸秆黑炭对小麦养分吸收及棕壤酶活性的影响[J]. 生态学报,2014,35(15):1-12. Feng Aiqing,Zhang Min,Li Chengliang,et al.Effects of straw and straw biochar on wheat nutrient uptake and enzyme activities in brown soil[J].Acta Ecologica Sinica, 2014, 35(15): 1-12. (in Chinese with English abstract)

[6] 陈洁,郑伟,高浩,等. 多源卫星遥感农作物秸秆焚烧过火区面积估算方法[J]. 农业工程学报,2015,31(3):207-214. Chen Jie, Zhengwei, Gao Hao, et al. Estimation method of straw burned area based on multi-source satellite remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 207-214. (in Chinese with English abstract)

[7] 李飞跃,汪建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算[J]. 农业工程学报,2013,29(14):1-7. Li Feiyue, Wang Jianfei. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 1-7. (in Chinese with English abstract)

[8] 赵建宁,张贵龙,杨殿林. 中国粮食作物秸秆焚烧碳释放量的估算[J]. 农业环境科学学报,2011,30(4):812-816. Zhao Jianning, Zhang Guilong, Yang Dianlin. Estimation of carbon emission from burning of grain cropresidues in China[J]. Journal of Agro-Environment Science, 2011, 30(4): 812-816. (in Chinese with English abstract)

[9] Li Hongyu, Han Zhiwei, Cheng Tiantao, et al. Agricultural fire impacts on the air quality of Shanghai during summer harvesttime[J]. Aerosol and Air Quality Research, 2010, 10(2): 95-101.

[10] 冯伟,张利群,庞中伟,等. 中国秸秆废弃焚烧与资源化利用的经济与环境分析[J]. 中国农学通报,2010,27(6):350-354. Feng Wei, Zhang Liqun, Pang Zhongwei, et al. The economic and environmental analysis of crop residues burning and reutilizafion in China[J]. Chinese Agricultural Science Bulletin, 2010, 27(6): 350-354. (in Chinese with English abstract)

[11] 张国忠,许绮川,夏俊芳,等. 1GMC-70型船式旋耕埋草机的设计[J]. 农业机械学报,2008,39(10):214-217. Zhang Guozhong, Xu Qichuan, Xia Junfang, et al. Design of 1GMC-70 ship type rotary tillage buried grass machine[J]. Transactions of the Chinese Society Agricultural Machinery (Transactions of the CSAM), 2008, 39(10): 214-217. (in Chinese)

[12] 余水生. 水田高茬秸秆还田耕整机的研制[D]. 武汉:华中农业大学,2012. Yu Shuisheng. Research and Trial-manufacture of Straw Returning and Tillage Machine for High Stubble Paddy Field[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)

[13] 周勇,余水生,夏俊芳. 水田高茬秸秆还田耕整机设计与试验[J]. 农业机械学报,2012,43(8):46-49,77. Zhou Yong, Yu Shuisheng, Xia Junfang. Design and experiment of cultivator for high straw returning in paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 46-49, 77 (in Chinese with English abstract)

[14] 夏俊芳,贺小伟,余水生,等. 基于ANSYS/LS-DYNA的螺旋刀辊土壤切削有限元模拟[J]. 农业工程学报,2013,29(10):34-41. He Xiaowei, Xia Junfang, Yu Shuisheng, et al. Finite element simulation of soil cutting with rotary knife roller based on ANSYS/LS-DYNA software[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 34-41. (in Chinese with English abstract)

[15] 张居敏,周勇,夏俊芳,等. 旋耕埋草机螺旋横刀的数学建模与参数分析[J]. 农业工程学报,2013,29(1):18-25. Zhang Jumin, Zhou Yong, Xia Junfang, et al. Mathematical modeling and analysis of helical blade for stubble burying rotary tiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 18-25. (in Chinese with English abstract)

[16] 张秀梅,张居敏,夏俊芳,等. 水旱两用秸秆还田耕整机关键部件设计与试验[J]. 农业工程学报,2015,31(11):10-16. Zhang Xiumei, Zhang Jumin, Xia Junfang, et al. Design and experiment on critical component of cultivator for straw returning in paddy field and dry land[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 10-16. (in Chinese with English abstract)

[17] 张居敏. 水田高茬秸秆旋耕埋覆机理研究[D]. 武汉:华中农业大学,2014. Zhang Jumin. Study on Mechanism of High Stubble Burying Rotary Tiller for Wet Land[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)

[18] 龚丽农,高焕文,蒋金琳. 免耕播种机玉米根茬处理装置作业功耗试验研究[J]. 农业工程学报,2008,24(7):124-127. Gong Linong, Gao Huanwen, Jiang Jinlin. Experimental study on power dissipation of corn rootstalk treatment device of no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 124-127. (in Chinese with English abstract)

[19] 汲文峰,贾洪雷,佟金. 旋耕-碎茬仿生刀片田间作业性能的试验研究[J]. 农业工程学报,2012,28(12):24-30. Ji Wenfeng, Jia Honglei, Tong Jin. Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 24-30. (in Chinese with English abstract)

[20] 王志山,夏俊芳,许绮川,等. 船式旋耕埋草机螺旋刀辊作业功耗试验[J]. 农业机械学报,2010,41(12):44-47. Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption experiment of rotary tillage and stubble mulch knife roller[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 44-47. (in Chinese with English abstract)

[21] 王志山,夏俊芳,许绮川,等. 水田高茬秸秆旋耕埋覆装置功耗测试方法[J]. 农业工程学报,2011,27(2):119-123. Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption testing system of high stubble buried device in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 119-123. (in Chinese with English abstract)

[22] 张居敏,贺小伟,夏俊芳,等.高茬秸秆还田耕整机功耗检测系统设计与试验[J]. 农业工程学报,2014,30(18):38-46. Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38-46. (in Chinese with English abstract)

[23] 王志山. 基于LabVIEW的船式旋耕埋草机功耗检测研究[D].武汉:华中农业大学,2010. Wang Zhishan. Research on Power Consumption Detection of Boat-Rotary Tillage and Stubble-mulch Machine Based on LabVIEW[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract)

[24] 贺小伟. 高茬秸秆旋耕翻埋功耗检测系统设计与试验研究[D]. 武汉:华中农业大学,2014. He Xiaowei. Design and Experimental Study of Power Consumption Measurement System for High Stubble Returning and Tillage Machine[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)

[25] GB/T 5626—2008. 农业机械试验条件、测定方法的一般规定[S].

[26] GB/T 5668-2008. 旋耕机[S].

[27] NYT 499-2002. 旋耕机作业质量[S].

[28] DB44/T 367-2006. 南方双季稻地区水田机械耕整作业技术规程[S].

[29] 李云雁,胡传荣. 试验设计与数据处理[M]. 北京:化学工业出版社,2011.

[30] 中国农业机械科学研究院. 农业机械设计手册[M]. 北京:中国农业科学技术出版社,2007:237-238

[31] 中国一拖集团有限公司. 东方红—LX954拖拉机使用保养说明书[M]. 洛阳:洛阳大方图文设计有限公司,2010.

Working performance experiment of combination blade roller for straw returning in paddy field and dry land

Zhang Xiumei, Xia Junfang※, Zhang Jumin, He Xiaowei, Liang Shifang, Zhang Shun, Wu Hao, Wan Song
(College of Engineering, Huazhong Agricultural University, Wuhan 430070)

In transitory and busy farming season, the straw has to be buried in the field whether it’s paddy or dry land. In this study, we designed a straw burying rotary tiller, which can bury crop straw not only in paddy field, but also in dry land. It is suitable for tillage in middle and lower reaches of Yangtze River, where the principal crop rotation is paddy field rice after dry land crop annually. In order to improve the working quality of the cultivating roller for straw returning in paddy field and dry land, the experimental studies have been conducted in the fields. First, L9(34) orthogonal experiment was conducted to research the influence factors of the performance of the cultivator for straw returning. The main influence factors for working quality of rotary tiller were tillage depth, rotary speed and forward speed. The tillage depth of 15.5, 18.5 and 21.5 cm, the rotary speed of 314, 330 and 360 r/min, and the forward speed of 0.43, 0.69 and 0.93 m/s were selected. The results showed that among the above 3 factors the influence order was tillage depth>forward speed>rotary speed. The tillage depth affected straw coverage extremely significantly, the forward speed affected straw coverage extremely significantly, and the rotary speed didn’t affect straw coverage obviously, but it affected soil crushing rate significantly. The better test conditions were shown as below: the forward speed was 0.43-0.93 m/s, the rotary speed was about 330 r/min, and the tillage depth was about 21.5 cm. Based on the better test conditions (the forward speed was selected as 0.43 m/s), the experiments on working performance of cultivator for straw returning in paddy field and dry land were conducted in the fields, and the wireless telemetry technology and the power output shaft torque sensor were used in the study. The results showed that the working qualities of cultivator which met the agro-technical requirement of rice sowing and transplanting were as follows: in paddy field, when the soil texture was clay loam, the soil water content was 42.6%, the height of straw was 78.9 cm, the tillage depth was about 150 mm and the soil compaction value was under 1 244.8 kPa, the vegetation coverage rate reached 94.3%, the tillage depth reached 20.8 cm, the stability of tillage depth was 92.3%, the field surface evenness was 0.9 cm, and the power consumption was 27.6 kW; in dry land, when the soil texture was loam, the soil water content was 25.8%, the height of wormwood was 97.2 cm, the tillage depth was 150 mm and the soil compaction value was under 2 310.5 kPa, the vegetation coverage rate reached 96.5%, the tillage depth reached 20.3 cm, the stability of tillage depth was 90.6%, the field surface evenness was 1.2 cm, and the power consumption was 31.2 kW. At the same time, the comparative tests between the combination blade roller and the spiral blade, the traditional rotary blade were also conducted, in which the new roller was in according with the national standard of the work quality. The results showed that the working quality of the combination blade roller was better than that of the spiral blade and the traditional rotary blade, and the power consumption of the combination blade roller was higher than that of the traditional rotary blade. Based on the above results, further research on the power consumption of the cultivator for straw returning in paddy field and dry land is needed. The results provide the basis for the structure optimization of the cultivator for straw returning and the improvement of its working performance, and also provide a suitable implement to achieve high stubble straw mulching and soil tillage in paddy field and dry land.

agricultural machinery; optimization; experiments; combination blade roller; straw returning; paddy field and dry land; working performance; power consumption

10.11975/j.issn.1002-6819.2016.09.002

S222

A

1002-6819(2016)-09-0009-07

张秀梅,夏俊芳,张居敏,贺小伟,梁世芳,张 顺,吴 昊,万 松. 水旱两用秸秆还田组合刀辊作业性能试验[J]. 农业工程学报,2016,32(9):9-15.

10.11975/j.issn.1002-6819.2016.09.002 http://www.tcsae.org

Zhang Xiumei, Xia Junfang, Zhang Jumin, He Xiaowei, Liang Shifang, Zhang Shun, Wu Hao, Wan Song. Working performance experiment of combination blade roller for straw returning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 9-15. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.002 http://www.tcsae.org

2015-08-23

2016-02-23

公益性行业(农业)科研专项经费资助项目(201503136);国家自然科学基金资助项目(51275196);湖北省科技支撑计划项目资助项目(2015BBA155);湖北省教育厅科学技术研究项目(B2015263)

张秀梅,女,湖北大悟人,博士生,讲师,主要从事现代农业装备设计及测控研究。武汉 华中农业大学工学院,430070。Email:15821588@qq.com

※通信作者:夏俊芳,女,湖北武汉人,教授,博士生导师,主要从事现代农业装备设计及测控研究。武汉 华中农业大学工学院,430070。Email:xjf@mail.hza.edu.cn

猜你喜欢

刀辊耕深水田
卧式旋耕机刀辊设计与模态分析 ①
微耕机旋耕刀辊弯刀排列优化仿真分析*
基于卡尔曼滤波融合算法的深松耕深检测装置研究
莫里斯的短篇小说——《小个子法国人和他的水田》
耕深自动测量方法分析
先锋厦地水田书店
悬挂式深松机耕深监测系统的设计与试验
线性拟合与Kalman预测法修正耕深测量误差
中联谷王1GZM-325H6D5V5联合整地机
近世长三角南缘的水田经营与环境博弈