APP下载

加强理论修养提升教学能力

2016-11-11谷春生

中学物理·高中 2016年10期
关键词:磁感线磁通量磁极

谷春生

随着新课改的全面推开,一线教师们积极加强了科学探究问题的设计,学生探究实践的达成,确实提升了师生的实践能力.但笔者在听课、交流、外出学习中,发现不少年轻教师对高中物理书本理论知识的认识有所偏差,故而有必要谈一谈《加强理论修养,提升教学能力》的问题,使青年教师成为外修实践,内修理论,实践与理论双丰收的一代新人.

前苏联著名教育家马卡连柯认为学生可以原谅教师严厉、刻板甚至吹毛求疵,但不能原谅他们不学无术.在新课程改革中,虽然教师的角色发生了较大的改变,但其主要工作还是教书育人,为此,作为“科学(物理学)界在课堂上的代表”,物理教师必须具备精湛的专业素养.

一般认为,教师的专业素养主要包括专业知识、专业技能和专业情意.

下面着重谈一谈物理教师必须具有深厚的专业知识和广博的知识背景.物理教师应该具备的专业知识既包括物理学学科知识,也包括进行物理课堂教学所必需的教育科学知识.其中,在物理学科知识方面,物理教师应比较清楚地理解物理学的完整体系,能正确熟练地掌握物理学中的基本概念和原理,了解和掌握与物理学科相关的背景、知识、材料及物理学的发展趋势.在教育科学知识方面,物理教师应了解并能灵活运用普通教育学、普通心理学和教育心理学等方面的知识,同时还应具有物理学科教育学、物理学科心理学、物理课程与教学论、教育测量与评价以及物理教育科研方法等领域的知识.新课程改革给中学物理教师带来的是全方位的挑战,这就要求物理教师“具有多元化的知识结构,不仅在知识的纵向有深度,在横向也应有宽度”.实践表明,在新课程改革中,物理教师只有具备深厚的专业知识和广博的知识背景,深入领悟物理新课程理念,才可能在教学过程中得心应手,使学生充分认识科学知识的价值,从而使他们积极主动地学习、探索科学知识;才能引导学生缜密地运用物理语言、规律、思维分析解决生产、生活实际中遇到的物理(科学)问题;才能带领学生创造性地开展探究性学习,更有效地培养具有创新精神和开拓能力的高素质人才.

下面举出一些在高中物理教学中青年教师的误区,通过深入剖析,以提升大家对物理学专业知识的认识.

问题磁通量发生变化,仅仅是闭合电路产生感应电流的充分不必要条件吗?

在讲授电磁学知识《电磁感应》时,人教版教材这样描述:“只要穿过闭合导体回路的磁通量发生变化,闭合导体回路中就有感应电流”;而教科版教材描述“穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生”. 磁通量发生变化是闭合导体回路产生感应电流的什么条件?有些青年教师认为仅仅是闭合电路产生感应电流的充分条件,而不是必要条件,难道还有其他方式可以产生感应电流吗?听课与交流中,不少年轻教师认为:有.他们举出的案例如下:

案例一如图1所示,有一个足够大的绝缘水平板面,空间存在竖直向下的有界匀强磁场,闭合金属铜框ACMN竖直放置,其上部的一半处于磁场的外部, 上边框焊上一个微型灵敏电流计G,现水平迅速向右平移铜框,微型灵敏电流计G指针偏转,青年老师认为这是边框AC切割磁感线产生的感应电流,竖直铜框的磁通量没发生变化.所以“磁通量发生变化,仅仅是闭合电路产生感应电流的充分条件,而不是必要条件”,切割磁感线是产生的感应电流的另一个条件,到底是不是这样的呢?

困惑释疑请看图2,由于铜边框MN在有界磁场区外部,对切割磁感线无贡献,图1过程可以等效为图2情景,边框MN不动,迅速拖动下边框AC至A′C′,则从表面上看是边框MN切割了磁感线,但本质是穿过闭合电路的磁通量发生了变化,增加了AC C′A′的磁感线的穿过面积,从而增加了磁通量.

该情景可以按照教科书中的方式进一步简化如图3所示:铜边框AC在有界匀强磁场中,边框MN在磁场区外部,水平向右整体迅速拖动铜框.

所以回路有“部分导线切割磁感线运动”时,可以从“回路磁通量是否变化”判断,也可从“部分切割的导线所产生的电动势”来判断,但根据法拉第电磁感应定律本质是穿过闭合电路的磁通量发生了变化,所以法拉第电磁感应定律广义的存在.

案例二(源于真实探究实验)

如图4所示,有一个足够大的光滑铜板水平放置,空间存在竖直向下的匀强磁场,闭合金属铜框ACMN竖直放置,现把下边框AC剪去,仅留下上面三根边框,AC两端点与铜板良好接触, 上边框焊上一个微型灵敏电流计G,现在铜板上水平迅速向右拖动铜框,保持铜框竖直并与铜板良好接触并良好接通,则微型灵敏电流计G指针偏转,青年老师认为这是边框MN切割磁感线产生的感应电流,竖直铜框的磁通量没发生变化,为什么会产生感应电流呢?难道切割磁感线是产生感应电流的另一个条件吗?

困惑释疑如图5所示物理情景较为复杂,看着铜框ACMN没有闭合,但实质是通过下部的水平光滑铜板组成了闭合电路,边框MN切割磁感线,哪个平面的磁通量发生变化了呢?原来初态下虚线AC参与上部铜框组成了闭合回路,如图5所示,运动过程中AC两端点在铜板上滑动,直至图中A′C′处,这里等效形成了ACC′A′至C′M′N′A′的折叠直角曲面,单看竖立平面ACMN和A′C′M′N′,穿过它们的磁通量都为零,仿佛初、末位置的磁通量没发生变化,但穿过等效折叠直角曲面ACC′A′至C′M′N′A′的磁通量增加了,变化的面积是ACC′A′,故在折叠直角曲面ACC′A′至C′M′N′A′中产生了逆时针方向的感应电流(俯视图),所以从本质上来讲还是穿过闭合电路的磁通量发生了变化.

案例三在如图6所示的装置中,设N、S极中间的磁场是均匀的,矩形线圈H的平面与磁铁AA′面平行并向下移动.有的青年教师说:“线圈的BC边切割了磁感线,闭合的矩形线圈中应该有感应电流.”另外的则说:“通过线圈H的磁通量在线圈运动过程中没有发生变化,所以矩形线圈中没有感应电流.”到底哪种说法对呢?

回答是第一种说法对.因为线圈的BC边作切割磁感线运动,产生了感应电动势,所以闭合电路中就有感应电流.若根据穿过闭合电路的磁通量是否有变化,来判断回路中是否有感应电流,上述结论也是对的.因为任何磁感线总是闭合的,在磁铁外部,磁感线从N极到S极;在磁铁的内部,磁感线是从S极到N极.当线圈向下移动时,穿过线圈的磁感线条数也增加了,如图7所示.这说明穿过线圈的磁通量发生了变化,因而线圈中产生了感应电流.说线圈下移时,通过线圈的磁通量不变,是不符合实际情况的,所以得出的结论是错误的,所以本质还是穿过闭合电路的磁通量发生了变化.

案例四如图4所示,一个很长的竖直放置的圆柱形磁铁,产生一个中心辐射的磁场(磁场水平向外),其大小为B=k/r(其中r为距离柱轴的半径).设一个与磁铁同轴的圆形铝环,半径为r0(大于圆柱形磁铁的半径),电阻为R,在磁场中由静止开始下落,下落过程中圆环平面始终水平.试求:圆环下落的速度v时的感应电流.

根据题意:圆环所在处在磁感应强度B=k/r0,且圆环的切割速度始终与所在处的磁场垂直,所以圆环的有效切割长度为其周长,即c=2πr0,切割磁感线产生的电动势E=BLv=2kπv,得出感应电流I=E/R=2kπv/R .

困惑得出的结论,显然没什么问题,但如果换个角度考虑,将会产生这样的疑问:圆环下落到任何一个位置时,图中所示的磁感线均与圆环平面平行,那么下落过程中穿过它的磁通量保持不变,怎么会产生感应电流呢?难道已经深入人心的产生感应电流的条件有误?穿过圆环的磁通量真的没有变化吗?

判断圆环下落过程中有无磁通量变化,首先我们要研究这个辐向磁场是如何产生的,图中的磁感线是辐射状的,而磁感线应该是闭合曲线,那么磁场的整体分布如何呢?

北京高考理综试卷24题为我们找到了答案.题目是这样的:用密度为d、电阻率为ρ、横截面积为A的薄金属条制成边长为L的闭合正方形框abb′a′.如图10所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa′和bb′边都处在磁极间,极间磁感应强度大小为B.方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力).

题目的第1问是假设磁场区域在竖直方向足够长,求方框下落的最大速度vm.

方框下落过程中,受到重力G及安培力F的作用.二力平衡时,方框达到最大速度vm.

这道试题给我们展示了辐射磁场产生的方式,只要我们把中间的磁极由方形变成圆柱形,两侧的磁极做成圆筒形围绕在圆柱体周围,在圆柱体和圆筒间留下缝隙,在磁极的缝隙间就可产生图8中所示的由中心向四周辐射的磁场.我们可以大致画出整体的磁场分布情况:

由图11可知,狭缝间的磁感线并不是由中心为起点辐射出去的,而是在磁极内外构成闭合磁感线,由于磁极间的距离很近,磁感线可近似看作是水平的;从俯视图中看起来,这些磁感线好像都是由中心向外辐射的.当套在中心磁极上的线圈向下运动时,磁极外部的磁感线与线圈平行,没有引起磁通量的变化.但中心磁极内部的磁感线却越来越密,使穿过线圈的磁通量越来越大,引起了感应电流.所以图8中的感应电流也是由于穿过圆环的磁通量发生变化引起的,开始认为线圈在下落过程中没有磁通量变化,只是考虑了磁场的局部,而没有考虑磁场的整体分布情况,所以从本质上来讲还是穿过闭合电路的磁通量发生了变化.

案例五高中物理教学要求中,在学习磁电式电流表的工作原理时,要遇到这种特殊的辐向磁场,如图12所示,在两磁极间有一个圆柱形软铁,由于软铁被磁化,在磁极和软铁之间就形成了沿半径方向的辐向磁场.

其内部为均匀的辐向磁场,不管通电线圈转到什么角度,它的平面都跟磁感线平行.线圈所在处的磁感应强度的大小都相同.

困惑若将正负接线柱用导体连接之后,用手晃动电流表.此时,线圈的两对边做切割磁感线的运动,产生感应电动势,进而产生感应电流.此过程中线圈的磁通量始终不变吗?是否可以说,在这种情况下,闭合电路的磁通量未发生改变,但产生了感应电动势?

困惑释疑这种理解是错误的.

如图12所示,当逆时针晃动电流表线框时,线圈两边都切割磁感线产生感应电动势(不抵消),根据右手定则,可判定从而产生如图所示的感应电流.但在疑问中,闭合电路(线圈回路)的磁通量始终不变吗?答案是否定的.在这种情况下,闭合电路的磁通量时刻发生变化,所以产生了感应电动势,分析详见图13.

为了问题的简化好理解,我们把线圈的铁芯尽可能的缩小,若考虑线圈的铁芯,它具有较好的导磁性,磁感线的规范画法如图12所示,这里图13画出了大致的情景.电流表中的磁极如图13中的红、蓝色半圆所示,带箭头的线表示磁感线,显然,线圈(实心紫色矩形)在图中水平位置处穿过的磁通量为零,当线圈平面向左转或向右转时,在倾斜位置处穿过的磁通量不为零.

若线圈在竖直位置,穿过的磁通量是最大的.当线圈转动时,闭合线圈的磁通量发生变化故而产生了感应电流,所以说本质还是穿过闭合电路的磁通量发生了变化.

案例六如图14所示,一个有明显圆形边界的匀强磁场,圆形边界的半径为R,磁感应强度的大小为B,方向垂直于纸面向里,磁场随时间均匀增加,B=kt (k>0),磁场中有一个闭合三角形金属框架abc,试分析金属框中有没有感应电流?剪去边框ac、bc,只剩下水平棒ab,问ab两端有没有感应电动势?

根据法拉第电磁感应定律:ENΔΦΔt=BΔSΔt,故闭合三角形金属框架abc中有感应电流,这种产生的是感生电动势,进而产生了感生电流,没有导棒切割磁感线的运动仍然能产生电磁感应现象,所以磁通量的变化才是本质.那么,有人又有疑问:剪去边框ac、bc,只剩下水平棒ab, ab两端有感应电动势,又该怎样解释呢?

英国大物理学家麦克斯韦深入研究了电磁感应现象,根据法拉第电磁感应定律和电动势的定义推导出:

ε=∮L旋·d=-dΦdt=-ddtL·d

积分式中S是以闭合回路L为边界的曲面,当回路固定不变时,

ε=∮L旋·d=-St·d.

因为B即是时间的函数,又是空间变量的函数,所以这里要用偏导数.

麦克斯韦根据研究总结得出:无论有无导体或导体回路,变化的磁场都将在其周围空间产生一种电场,这种电场的电场线是闭合的,称为有旋电场或涡旋场.这里麦克斯韦假想了一个有界曲面,根据法拉第电磁感应定律,找到了穿过该曲面的磁通量随时间的变化率,最终推导出了麦克斯韦方程组中的一个重要方程,这里虽然没有了线圈实体,但某一有界曲面依然存在.这说明对应孤立的金属棒,也要构造一个面,研究穿过这个面的磁通量随时间的变化率,进而用偏导数,微积分求出感应电动势,这也说明要想产生感应电动势,本质还是穿过闭合面的磁通量发生了变化,磁通量随时间的变化率在电磁感应现象中广义的存在.上述问题也是构造出有界三角形abc平面进行处理的.

综上所述,我认为磁通量发生变化,是闭合电路产生感应电流的充分而必要条件,即是闭合电路产生感应电流的充要条件;磁通量发生变化,也是电路产生感应电动势的充要条件.所以青年教师最好应该多多专研专业知识,加强理论修养,拓宽自己对知识认识的深度和广度,厚积而薄发,这样才能在教学中游刃有余,渐入佳境,较快地提升教学能力.

猜你喜欢

磁感线磁通量磁极
磁现象易错题专练
地球磁极“翻跟头”
地球的旋转
磁通量概念解读
磁场的性质和描述检测题
磁悬浮列车为什么能悬浮起来?
“电磁感应”五类常考问题解析
用好磁感线,解决问题一大片
你答的出来吗