基于Simulink模型的先导式溢流阀动态特性仿真方法
2016-10-25乔丰立王艳莉焦嘉宁
乔丰立, 王艳莉, 焦嘉宁
(石家庄铁道大学 机械工程学院,河北 石家庄 050043)
基于Simulink模型的先导式溢流阀动态特性仿真方法
乔丰立,王艳莉,焦嘉宁
(石家庄铁道大学 机械工程学院,河北 石家庄050043)
以三节同心溢流阀为例研究先导式溢流阀动态特性的仿真方法,首先以反推(用p求q)法求解溢流阀静态特性方程组,计算出溢流阀工作点结构参数,然后以溢流阀动态特性方程组构建了Simulink模型。通过仿真得到了以流量为阶跃输入信号、以响应压力为输出信号的理论曲线。仿真结果表明溢流阀动态响应特性的决定因素不是阀芯和弹簧构成的二阶环节,而是主阀上、下腔的液容容积和固定阻尼器直径。上腔容积主要决定响应曲线的超调量,下腔容积主要决定响应曲线的时间;在仅减小固定阻尼器直径其它参数不变的情况下,超调量Mp降低和调整时间ts延长。实验结果证明,结构参数模型法仿真曲线和实验结果曲线基本一致,为液压系统性能研究提供了可行方法。
先导式溢流阀;动态特性仿真;结构参数模型法
0 引言
在液压控制系统中,先导式溢流阀作为压力控制元件,其动态特性对液压系统性能[1-2]有主要影响。研究溢流阀动态特性常用的方法有:传递函数法[3]、模拟仿真法[4]、实验研究法和数字仿真法[5-6]。传递函数法将动态特性方程组线性化和拉氏变换,阀结构参数经过运算综合化成为传递函数的系数,参数调整不便,同时由于溢流阀工作范围大、本质非线性,该法计算结果会出现很大误差;模拟仿真法是采用电子电路进行动态特性的模拟,该法在早期研究中有应用[4];实验研究法可以直观地、真实地了解溢流阀动态特性,但无法在制造出产品之前使用;数字仿真法是通过计算机软件对动态特性方程进行计算得到理论结果。以三节同心溢流阀为例,采用数字仿真法对先导式溢流阀的动态特性进行研究。
1 数学模型
YF型先导式溢流阀原理如图1所示。主阀芯上下两腔各有一个容腔,因阀芯位移很小,假设两容腔的体积不变。这两腔构成了动态液阻网络液容V和Vc,如图2所示。根据图1和图2可列出先导式溢流阀动态特性方程组。
1.1流量方程
溢流阀进口流量
(1)
主阀流量
图1 先导式溢流阀工作原理示意图
图2 先导式溢流阀动态液阻网络图
(2)
式中,qy为主阀通过流量;Cd为流量系数;dy为主阀阀芯阀座直径;y为主阀芯位移;φy为主阀芯锥角;ps为溢流阀设定压力;ρ为液压油密度。
固定阻尼器流量
(3)
式中,qc为固定阻尼器通过流量;dc为固定阻尼器直径;px为先导阀阀芯进口压力。
先导阀流量方程式
(4)
式中,qx为先导阀通过流量;dx为先导阀阀座孔直径;x为先导阀阀芯位移;φx为先导阀阀芯锥角。
流量连续性
(5)
式中,Ay2为主阀芯上腔作用面积;Δqc为溢流阀下腔动态流量。
1.2力、压力方程
溢流阀进口液容
(6)
式中,Βe为液压油体积弹性模量;V为主阀芯下腔及溢流阀进口之间油液容积。
先导阀进口液容
(7)
式中,Vc为主阀芯上腔及先导阀进口之间油液容积。
主阀芯(忽略阀芯重力和摩擦力)
(8)
先导阀芯
(9)
式中,mx为先导阀阀芯质量;βx为先导阀阀芯移动阻尼系数;kx为先导阀调压弹簧刚度;x0为先导阀调压弹簧预压缩量。
2 仿真方法及过程
采用计算机通用工程语言Matlab进行动态特性仿真研究。同样采用Matlab进行仿真,文献[5]采用了数字编程方法,也有较多的研究者采用AMEsim软件仿真[7]。先导式溢流阀动态特性方程组求解比较困难,获得其仿真模型的动态响应曲线更加困难,所以有研究者为降低难度采用传递函数法并借助Simulink进行计算[8],尝试该方法发现计算结果和实验结果差别巨大。
溢流阀动态特性建模仿真应以静态特性计算为基础,首先要得到使先导式溢流阀静态特性方程组收敛的结构参数,然后再以这些参数为基础建立动态特性的Simulink仿真模型。
2.1工作点参数计算
静态特性计算的目的是确定动态响应特性稳定工作点。
2.1.1工作点参数的确定
式(10)表示的是三节同心先导式溢流阀静态特性方程组最简化的表达式
(10)
求解时,以式(10)为原型的迭代格式不收敛。对此方程组转化为反推式不动点迭代方程组(略),计算时结构参数:cd=0.62,ρ=890 kg/m3,dc=0.001 m,dy=0.01 m,ky=8 371.4 N/m,y0=0.006 m,dx=0.003 m,Ay1=4.123 3×10-4m-2,x0=0.002 m,Ay2=4.308 9×10-4m-2,kx=58 843 N/m,φy=45°,φx=22.5°。迭代初值为x(0)=0.002 m、y(0)=0.002 m,可以求得在设定压力ps=20 MPa时工作点参数x20=7.26×10-5m,y20=1.1×10-3m,溢流阀溢流量qs20=3.3×10-3m3/s。
2.1.2起始点工作参数的确定
参照溢流阀动态试验国家标准《压力控制阀试验方法》GB/T8105—1987,为防止出现负压,二阶振荡系统的最大超调量也不应超过25%,设定溢流阀的起始压力为20% ps即4MPa,保证当溢流阀从工作压力20MPa向4MPa变化时不会出现负压。在前述结构参数的情况下,先导式溢流阀的起始压力4MPa则需要先导阀调压弹簧预压缩量x4=3.415×10-4m,对应的流量qs4=7.396×10-4m-3。
2.2模型建立
本例建模与传递函数法Simulink建模不同,直接采用结构参数建模,即以动态特性方程式(1)~(9)构成Simulink模型[4],应用Simulink仿真模型计算时域响应即获得输入流量阶跃信号的压力响应曲线。
构建Simulink模型时须将二阶微分方程式(8)和式(9)转化为二阶积分方程形式(11)和式(12)。
(11)
(12)
图3为位移x的双积分子模块图形,y子模块构造也一样。
图3 位移x双积分子模块图
建模的关键部分有两个:一是确定阀芯速度阻尼系数;二是限制阀芯位移。液压元件一般是欠阻尼系统,阻尼系数的实验测定比较困难,文献[9~12]取值没有给出依据。选取原则是在先导式溢流阀的结构参数下,使得阀芯和弹簧构成的二阶振荡环节有比较理想的位移阶跃曲线。根据这个原则通过仿真可以得到先导阀芯阻尼系数βx=20 N·s/m和主阀芯阻尼系数表βy=100 N·s/m。但仿真结果表明溢流阀的阶跃响应指标和弹簧振子的响应指标无关,是因为液压元件或液压系统本身的固有频率较低。阀芯位移限制是限制阀芯的最小、最大位移,根据溢流阀的结构可知,阀芯的最小位移为零,最大位移可以限制在0.002 m,仿真结果证明阀芯位移在此值之下。关于阀芯位移限制的Simulink模块见图3位移双积分模块。图4为阀芯-弹簧振子位移阶跃响应的同一化曲线,曲线表明两阀芯响应调整时间约在5 ms,速度很快,而且导阀更快于主阀。
确定速度阻尼系数后,再根据参数和变量之间的关联关系将方程组构成Simulink模型(图略),还需模型参数:主阀阀芯下腔液容容积V=2×10-4m-3,上腔液容容积Vc=5×10-6m-3,体积弹性模量βe=700 MPa。
2.3仿真过程和结果分析
2.3.1仿真过程
以(qs4、x4)作为起始点,使起始压力稳定在4MPa后 (时间点选在t=0.04s) 阶跃至工作点,需输入信号值为(qs20、x20),则可得到先导式溢流阀以流量为输入、以响应压力为输出信号的Simulink仿真结果。图5为先导式溢流阀的压力响应曲线,从图5中可以看出该曲线类似于二阶振荡曲线。
图4 阀芯-弹簧二阶振荡曲线
图5 先导式溢流阀压力阶跃响应曲线
2.3.2仿真结果分析
通过Simulink模型仿真也可得到溢流阀其它物理参数曲线,从中可以了解溢流阀的性能。图6表示主阀弹簧环节与溢流阀振荡特性同一化比较的曲线图,从图中可以看出溢流阀的压力响应曲线调整时间比主阀弹簧振子的响应时间长得多,说明溢流阀的响应特性与阀芯弹簧振子的固有特性参数无关,实际上只与液容容积和固定阻尼器孔直径有关,见图7、图8和图9。
图6 弹簧环节与溢流阀振荡特性的比较
图7 固定阻尼器直径不同的压力响应曲线
图7为在完全相同的结构参数和工作条件下,仅改变固定阻尼器直径dc,压力响应曲线的比较图。该图(在同一化后)显示,减小dc的值会使超调量Mp减小和调整时间ts延长。在图示曲线对应的3个值中,dc=0.001 5 m时静态特性方程组是不收敛的,模型仿真运行时间最长约为430 s,另外两个仿真运行时间约为1.5 s、1.4 s。由此可见存在满足动态特性要求但不满足静态特性要求的情况,因此定义使静态特性方程组和动态特性方程组都收敛的溢流阀结构参数是匹配的参数。
图8表示在不同主阀阀芯上腔体积大小条件下的压力响应曲线,从图8中曲线可以看出,阀芯上腔的油液容积Vc决定压力响应的超调量大小,数值越小超调量越大,为了控制溢流阀的超调量,此值不宜过小。
图9表示在不同主阀阀芯下腔容积大小条件下的压力响应曲线,从图9中曲线可以看出,阀芯下腔的油液容积Vc决定压力响应的调整时间,其值越大压力响应调整时间越长。
图8 不同Vc值的压力响应曲线
图9 不同V值的压力响应曲线
3 实验结果
根据理论计算所得参数,选取结构参数和其相近的溢流阀进行动态实验,获得图10所示的图形。从图中可以看出,实验曲线和理论曲线基本一致,因此本文研究方法对于先导式溢流阀设计和理论研究有应用价值,对液压系统的性能研究也有参考意义。
图10 先导式溢流阀的压力响应曲线
4 结论
(1) 通过实例提出了先导式溢流阀结构参数匹配的具体标准,参数匹配的先导式溢流阀不仅静态特性方程组收敛,而且动态特性方程组也必收敛。
(2) 先导式溢流阀的动态响应指标与阀芯和弹簧组成的二阶环节的动态响应指标无关,主要取决于固定阻尼器的直径dc、主阀阀芯下腔容积V和主阀阀芯上腔容积Vc,溢流阀液组网络系统的固有频率比其机械系统的固有频率低。
(3) 固定阻尼器直径既影响压力响应的超调量也影响压力响应的响应时间,主阀阀芯下腔容积V影响压力响应的响应时间,主阀阀芯的上腔容积Vc影响压力响应的超调量。
(4) 给出了先导式溢流阀静态工作点参数的计算方法与动态特性仿真的方法,对于溢流阀的设计和性能预测有实用价值。
[1]杨军峰.超高板式墩液压爬模快速施工技术[J].石家庄铁道大学学报:自然科学版,2015,28(s1):63-67.
[2] 裴文强.全回转套管钻机清桩施工技术[J].石家庄铁道大学学报:自然科学版,2014,27(s1):217-220.
[3]DasguptaK,KarmakarR.Dynamicanalysisofapilotoperatedpressurereliefvalve[J].JournalofSimulation,Modeling,PracticeandTheory,2002,10:35-49.
[4] 刘庆和,徐发誴.双级溢流阀静态、动态特性的理论分析与试验研究[J].机床与液压,1981(2):1-17.
[5] 贺小峰,何海洋,刘银水,等.先导式水压溢流阀动态特性的仿真[J].机械工程学报,2006,42(1):75-80.
[6]HamedHosseinAfshari,AmirZanj,AlirezaBasohbatNovinzadeh.Dynamicanalysisofanonlinearpressureregulatorusingbondgraphsimulationtechnique[J].SimulationModelingPracticeandTheory,2010,18:240-252.
[7] 弓永军,王祖温,徐杰,等.先导式纯水溢流阀仿真与试验研究[J].机械工程学报,2010,46 (24):136-142.
[8] 刘轶, 贺小峰.基于MATLAB的水压溢流阀动态特性仿真[J].机械工程与自动化,2007,5:29-31.
[9] 侯明亮.差动式溢流阀的仿真研究及性能分析[J].青岛农业大学学报,2008,25( 1):57- 60.
[10] 姚佳.基于Simulink的电液比例溢流阀频响仿真[J].液压气动与密封,2009(2):38-40.
[11] 孟武胜,巨亚鸽,赵娜,等.溢流阀动态性能仿真研究[J].机电一体化,2011(1):40-42.
[12]DasguptaK,WattonJ,PanS.Open-loopdynamicperformanceofaservo-valvecontrolledmotortransmissionsystemwithpumploadingusingsteady-statecharacteristics[J].MechanismandMachineTheory,2006,41:262-282.
Simulation Method of Pilot Relief Valve Dynamic Characteristic Based on Simulink Model
Qiao Fengli,Wang Yanli,Jiao Jianing
(School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)
Taking the three stage homocentric pilot as an example, the method of a pilot relief valve dynamic characteristic simulation was researched. The equations set of dynamic characteristic were derived according to its feature in which the steady-state fluid force of valve core was considered in mathematical equations. Firstly structure parameters were computed by using reverse derivation fixed-point iteration method to calculate pilot relief valve statistic property equations while setting the twenty percent working pressure as a starting point; secondly the simulation of pilot relief valve simulink model was built based on the pilot relief valve dynamic characteristic equations. The theoretical curve of the output pressure response was carried out by means of the simulation model with the flow step input signal. The simulation results indicated that the decisive factor of pilot relief valve dynamic characteristic is not two order oscillation element consisting of valve core and spring but the bulbs volume of valve cavity, and fixed damper diameter. The overshoot of pressure response curve was determined by upper chamber, and lower chamber influenced the response time. If only reducing the fixed damper diameter but other parameters not changed the overshootMpcould be decreased and adjustment timetscould be extended. The experiment result was consistent with the structure parameters simulation results. This method provided a practical approach for hydraulic system research.
pilot relief valve;dynamic characteristics simulation;structure parameter model
2015-10-17责任编辑:车轩玉DOI:10.13319/j.cnki.sjztddxxbzrb.2016.03.16
乔丰立(1965-),男,讲师,主要研究方向流体传动与控制技术。E-mail:qiaofengli@163.com
TH137
A
2095-0373(2016)03-0087-06
乔丰立,王艳莉,焦嘉宁.基于Simulink模型的先导式溢流阀动态特性仿真方法[J].石家庄铁道大学学报:自然科学版,2016,29(3):87-92.