APP下载

一类具有2个加性变时滞的系统的指数稳定性分析

2016-10-14韩彦武汤红吉

高师理科学刊 2016年11期
关键词:充分条件时滞稳定性

韩彦武,汤红吉



一类具有2个加性变时滞的系统的指数稳定性分析

韩彦武,汤红吉

(南通大学理学院,江苏南通 226019)

考虑了一类具有2个加性变时滞的系统的指数稳定性问题.通过把时滞区间分别分成2个小区间,构造一个适当的Lyapunov-Krasovskii泛函(LKF),该LKF整体正定,不要求每一部分正定.运用积分不等式和倒凸组合的方法,得出了系统指数稳定的充分条件,并以线性矩阵不等式的形式表示.数值实例表明了该方法的有效性.

加性变时滞;时滞分解;指数稳定;倒凸组合

时滞广泛存在于各类系统中,如生物系统、神经网络和网络化控制系统等.时滞的存在可能会引发系统振荡甚至使系统失稳,因此时滞系统的稳定性分析成为系统理论领域的热点问题之一[1-14].文献[1-2]构造了包含三重积分的增广LKF,得出了较好的结果;文献[3-4]在LKF求导时,利用Newton-Leibniz公式,引入了自由权矩阵;文献[5-7]利用积分不等式、凸组合或倒凸组合得出了时滞系统稳定的充分条件;文献[8-9]利用时滞分解的方法,分析了系统的稳定性.

本文针对一类加性变时滞系统,研究其指数稳定性问题.运用时滞分解的方法,把时滞区间进行分解(可以是平均分解,也可以是不平均分解),构造一个适当的LKF,利用积分不等式和倒凸组合的方法,得出系统指数渐近稳定的充分条件,并以线性矩阵不等式的形式表示.

1 问题描述

考虑具有2个加性变时滞的系统

2 主要结果及证明

证明构造Lyapunov-Krasovskii泛函(LKF)

注1通常,LKF表示为若干正定二次型和的形式,这样可以保证LKF的正定性.但在定理中,不需要是正定矩阵,由式(4)保证了LKF(6)的正定性.

注3由于本文考虑的是指数稳定性问题,所以在定理中,为便于估计,需要()是正定矩阵,若只考虑渐近稳定问题,则只需要是对称矩阵[14]756.

3 数值实例

表1 对于给定的,的最大值

表1 对于给定的,的最大值

方法来源 1   1.2  1.5方法来源 1  1.2   1.5 文献[10]0.4150.3760.248文献[13]0.8730.6730.373 文献[11]0.5120.4060.283文献[14]0.9880.8360.563 文献[12]0.5830.5190.421定理1.1260.9440.652

表2 对于给定的和,的最大值

表2 对于给定的和,的最大值

k 1   1.2   1.5 0.050.8730.6770.366 0.10.6770.4700.148

由表1可以看出,与文献[10-14]相比较,利用本文时滞分解方法可以得出较好的结果.

本文主要研究了具有2个加性变时滞系统的指数稳定性问题.综合利用时滞分解、积分不等式和倒凸组合技巧,得出系统指数稳定的充分条件,并用LIMs表示.数值实例说明了本文时滞分解方法的有效性.

[1] Sun J,Liu G,Chen J,et al.Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J].Automatica,2010,46(2):466-470

[2] Chen J,Sun J,Liu G,et al.New delay dependent stability criteria for neural networks with time-varying interval delay[J].Physics Letters A,2010,374(43):4397-4405

[3] He Y,Wu M,She J,et al.Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J].Systems and Control Letters,2004,51(1):57-65

[4] He Y,Wang Q,Lin C,et al.Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[J]. International Journal of Robust and Nonlinear Control,2005(15):923-933

[5] Shao H.New delay-dependent stability criteria for systems with interval delay[J].Automatica,2009,45(3):744-749

[6] Park P,Ko J,Jeong C.Reciprocally convex approach to stability of systems with time-varying delays[J].Automatica,2011, 47(1):235-238

[7] Seuret A.Wirtinger-based integral inequality:application to time-delay systems[J].Automatica,2013,49(9):2860-2866

[8] Han Q.Improved stability criteria and controller design for linear neutral systems[J].Automatica,2009,45(8):1948-1952

[9] Zheng M,Xiao W,Chen Q.Improved stability criteria for uncertain linear systems with interval time-varying delay[J].Journal of System Science Complex,2013,26:175-186

[10] Lam J,Gao H,Wang C.Stability analysis for continuous systems with two additive time-varying delay component[J].System and Control Letter,2007,56(1):16-24

[11] Gao H,Chen T,Lam J.A new delay system approach to network-based control[J].Automatica,2008,44(1):39-52

[12] Li P.Further results on delay-range-dependent stability with additive time-varying delay systems[J].ISA Transactions,2014, 53(2):258-266

[13] Ge X.Comments and an improved result on stability analysis for continuous system with additive time-varying delays:a less conservative result[J].Applied Mathematics and Computation,2014(241):42-46

[14] Shao H,Zhang Z.Delay-dependent state feedback stabilization for a networked control model with two additive input delays[J].Applied Mathematics and Computation,2015(265):748-758

Exponential stability analysis for a class of system with two-additive time-varying delays

HAN Yan-wu,TANG Hong-ji

(School of Science,Nantong University,Nantong 226019,China)

Deals with the exponential stability analysis of dynamic systems with two additive time-varying delay.By decomposing one delay interval into two subintervals which may be unequal,an appropriate Lyapunov-Krasovskii functional(LKF)is constructed whose each term is not positive definite while the the sum of each term is positive definite.The integral inequality method and the reciprocally convex technique are utilized to deal with the derivative of the LKF.The delay-dependent exponential stability criterion obtained from this method is expressed in terms of the linear matrix inequalities(LMIs).Anumerical example is used to show the effectiveness of this method.

additive time-varying delay;delay decomposing;exponential stability;reciprocally convex technique

1007-9831(2016)11-0001-05

O231

A

10.3969/j.issn.1007-9831.2016.11.001

2016-09-05

国家自然科学基金资助项目(61273013,61374061)

韩彦武(1977-),男,黑龙江依兰人,讲师,硕士,从事微分方程理论与应用研究.E-mail:ntuhyw@163.com

猜你喜欢

充分条件时滞稳定性
集合、充分条件与必要条件、量词
一类k-Hessian方程解的存在性和渐近稳定性
SBR改性沥青的稳定性评价
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
有限μM,D-正交指数函数系的一个充分条件
针对输入时滞的桥式起重机鲁棒控制
不确定时滞奇异摄动系统的最优故障估计
浅谈充分条件与必要条件
半动力系统中闭集的稳定性和极限集映射的连续性
一类时滞Duffing微分方程同宿解的存在性