多元水盐体系冰盐共晶点的测定和图形表达
2016-08-22王雪莹黄文婷黄雪莉
王雪莹,黄文婷,黄雪莉
(新疆煤炭洁净转化与化工过程重点实验室,新疆大学化学化工学院,新疆 乌鲁木齐 830046)
多元水盐体系冰盐共晶点的测定和图形表达
王雪莹,黄文婷,黄雪莉
(新疆煤炭洁净转化与化工过程重点实验室,新疆大学化学化工学院,新疆 乌鲁木齐 830046)
水盐体系共晶点的数据可以为盐湖卤水低温加工工艺开发提供必要的理论依据,采用低温冷却法,针对四元同离子体系和四元交互体系及其相关的6个三元子体系,测定研究了其冰点、共晶点以及析盐规律,绘制出了共晶点温度-液相组成图。研究结果表明:通过测定多元水盐体系降温过程中的时间-温度图,可以判断盐类析出规律、测定冰和盐的共晶点温度;上述体系中,常温下存在的复盐钾芒硝,在共晶点温度下均不再出现,水盐体系相关系得以简化;用棱柱图可以简单直观地表达三元体系、四元同离子体系和四元交互体系的相、冰点或共晶点的温度和溶液组成的关系;在三元体系的共晶点温度-液相组成图中,存在两条单盐与冰的共晶线、一个两种盐与冰的共晶点、一个冰析出面;在四元同离子体系和四元交互体系共晶点温度-液相组成图中,分别有3个和4个单盐与冰的共晶面、3条和5条两种盐与冰的共晶线、1个和2个3种盐与冰的共晶点。
水盐体系;共晶点;温度;相
DOI:10.11949/j.issn.0438—1157.20151485
引 言
盐湖资源的利用,大多采用自然或强制蒸发的方式分离盐类,能耗水耗较高。开发新技术实现高效节能、节水、益于环境的盐湖化工生产非常有必要。卤水冷冻至冰点或共晶点温度时冰、盐分别析出,进行分离后可获得纯水和相应的盐类,也即共晶冷冻结晶技术[1-6]。该技术和蒸发相比,能耗低[7],可获得纯水,并可以利用冬季冷能。不过能否采用该技术,还取决于不同卤水的冷冻性质,也即冰点或共晶点数据和卤水组成、降温析盐规律等。因此有必要针对不同卤水进行此类研究,为探索盐湖化工低温分离工艺提供理论依据。
对于二元水盐体系的冰点和共晶点的研究数据较多[8-9]。但三元体系的数据较少[10-14],四元及以上的体系鲜有报道。对于多元水盐体系,一些研究者进行了模型预测。Sander等[15]研究了一种改进的扩展UNIQUAC模型;Thomsen等[16-17]提出了对多组分溶液冰点的预测模型;Peralta等[18-19]提出了一个用过量Gibbs自由能来预测溶液的热容、密度和冰点的模型。
目前国内对于多元水盐体系低温下的相平衡的研究已有相关报道[20-21],但对水盐体系冰点和共晶点的实验测定和表达方法的研究未见相关报道。硝酸盐类盐湖,是新疆特有的干盐湖化学类型,其中一类杂硝矾矿用水溶浸后的体系属于五元体系,研究其基础数据可以为综合利用硝酸盐资源提供技术支持和保证,具有重要的意义,而对此五元体系的冰点及共晶点的研究,需要相关的次级体系(四元、三元及二元体系)的共晶点数据。故本文以其子体系四元同离子体系和四元交互体系及其相关的6个三元子体系为例,进行了冰点及共晶点研究。测定了共晶点的温度和组成,分析鉴定相应的固相,研究并绘制出共晶点温度-液相组成图、干盐投影图和共晶点温度投影图,并加以分析。
1 实验部分
1.1实验试剂和仪器
试剂:均为分析纯或基准试剂;仪器:DHJF-4010低温恒温搅拌反应浴(范围-40℃~99℃,精度±0.2℃);精密电子温差测量仪(范围-50℃~100℃,精度±0.001℃);754型紫外可见分光光度计等。
1.2实验装置
本实验装置由低温恒温搅拌反应浴、精密温差测量仪和计算机组成,实验装置如图1所示。为检验装置及实验方法的可靠性,对不同浓度的多种单盐和三元体系的冰点和共晶点,进行了多次的实验测定,实验结果与文献值[8-9]吻合良好。
图1 冰点测量实验装置Fig.1 Sketch of freezing point measurement 1—reaction bath struction; 2—liquid outlet; 3—casing; 4—loading test tube;5—agitator ;6—thermometer probe; 7—electronic temperature measuring instrument; 8—computer
1.3实验方法
图2 实验体系时间-温度图Fig.2 Time-temperature diagram of experimental system
图3 K+//Cl-,NO-3,SO24--H2O 体系共晶点XRD谱图Fig.3 XRD pattern of system
1.3.2多元体系共晶点溶液组成的测定取上述留用的溶液300 g左右,加入到烧瓶中,置于低温恒温装置中,温度调至略低于已测出的共晶点或冰点温度下,搅拌,使其缓慢析出较多冰盐时,取液相进行分析,并鉴定固相(测出的XRD如图3所示),从而得到共晶点溶液的组成。实验证明,由于传热温差很小,冰盐析出速度较慢且稳定,此时溶液组成维持不变。
1.4化学分析方法
Cl-:硝酸银容量法;K+:四苯硼钠重量法;SO42-:比浊法;NO3-:重铬酸钾氧化法;Na+:差减法,偏差小于0.4%。固相鉴定采用X射线晶体衍射法综合进行。
2 结果与讨论
2.1三元体系研究结果
上述6个三元体系的共晶点的液相组成和温度数据列于表1中。
图4 体系共晶点温度-液相组成(局部放大图)Fig.4 Eutectic point temperature-liquid composition diagram of system(enlarged partial)
底面正三角形的3个顶点分别为KNO3、K2SO4和水;三条边表示3个二元体系分别为KNO3-H2O、K2SO4-H2O和KNO3-K2SO4;三角形内部为三元体系组成的点。任一实验数据点在该图中的标绘方法是:将液相各组分的百分含量作为坐标,在底面上标出共晶点的液相组成点,垂直升高到相应的共晶点温度。将表1中的数据按此方法绘制,再依次把单盐-冰的共晶点连接起来,形成两条单盐-冰的共晶点线,相交于两盐-冰的共晶点,可得到共晶点温度-液相组成图。图4中,三棱柱底面上a1、b1、a2三点分别为 KNO3-H2O、KNO3-K2SO4-H2O和K2SO4-H2O体系的共晶点液相组成,a1′、b1′、a2′为各对应的共晶点温度,C为纯水的冰点。曲线C-a1′为KNO3-H2O冰点线、C-a2′为K2SO4-H2O冰点线;a1′-b1′为不同K2SO4的含量下,KNO3与冰的共晶点曲线;a2′-b1′为不同的KNO3含量下,K2SO4与冰的共晶点曲线。空间曲面 a1′-b1′-a2′-C为KNO3-K2SO4-H2O体系的冰点温度曲面,在此组成范围内的溶液,冰点均在 a1′-b1′-a2′-C曲面上。超过此组成范围的溶液,共晶点温度均为b1′点。
表1 R三元体系共晶点温度及液相组成Table 1 Liquid compositions and temperatures of eutectic points of ternary systems
本文所研究的三元体系,无论常温下是否存在复盐,在共晶点或冰点下均为简单体系,即复盐不再存在,共晶点温度-液相组成图中存在两条单盐与冰的共晶线、一个两种盐与冰的共晶点以及一个冰点面。
2.2四元体系实验研究结果
图5 K+//Cl-,NO-3,SO24--H2O 体系共晶点温度-液相组成Fig.5 Eutectic point temperature-liquid composition diagram of system
同离子四元体系的冰点、共晶点相图的表达方法和三元体系类似,采用三棱柱法。三棱柱的棱表示温度的绝对值,底面为干盐组成投影图,其坐标为相应的Jänecke指数,列于表2。据此绘制出相应的共晶点温度-液相组成图、干盐投影图和共晶点温度投影图,见图5~图7。图5中,底面正三角形的3个顶点分别为二元体系 KNO3-H2O、K2SO4-H2O和 KCl-H2O,三条边表示 3个三元体系分别为KNO3-KCl-H2O、K2SO4-KCl-H2O和KNO3-K2SO4-H2O,三角形内部表示四元体系,标绘方法是把每一个实验点的液相组成按Jänecke指数在底面上标出,再垂直升高到相应的共晶点温度,最后再连线获得共晶点温度-液相相图。三棱柱底面b1、b4、b5点为各三元体系的两盐共晶点液相组成点,b1′、b4′、b5′为各对应的共晶点温度;c1为此体系的三盐共晶点液相组成点,c1′为其对应的温度;a1′、a2′、a5′为各单盐和冰的共晶点温度。b4′-c1′为 KCl+ KNO3+Ice的共晶曲线、b5′-c1′为 KCl+K2SO4+Ice的共晶曲线、b1′-c1′为K2SO4+ KNO3+Ice的共晶曲线。a5′-b5′-c1′-b4′-a5′为 KCl和冰的共晶曲面;a2′-b1′-c1′-b5′-a2′为 K2SO4和冰的共晶曲面;a1′-b1′-c1′-b4′-a1′为KNO3和冰共晶曲面。
图6 体系干盐投影Fig.6 Dry salt projection diagram of system
图7 K+//Cl-,NO-3,SO24--H2O 体系共晶点温度投影Fig.7 Eutectictemperature projection diagram of system
本文所研究的同离子四元体系,共晶点温度-液相组成图中存在3个单盐与冰的共晶面、3条两种盐与冰的共晶线以及1个3种盐与冰的共晶点。
由图可直观发现KCl的浓度对共晶点温度的影响最大,其与冰相共结晶区最小,表明KCl和冰不易共晶析出,相比之下,硫酸钾溶液在很大的组成范围内,都有可能与冰共晶。
四元交互体系的共晶点温度-液相组成图的表达方法与三元体系类似,可以采用四棱柱法表达,在此不再详述,相应的Jänecke指数列于表3,据此绘制出相应的共晶点温度-液相组成图、干盐投影图和共晶点温度投影图,见图8~图10。图8中,底面四边形的4个顶点分别为二元体系NaNO3-H2O、KNO3-H2O、K2SO4-H2O和Na2SO4-H2O,四条边表示 4个三元体系分别为 NaNO3-Na2SO4-H2O、KNO3-NaNO3-H2O、K2SO4-KNO3-H2O和 Na2SO4-K2SO4-H2O,四边形内部表示四元体系。此四棱柱底面b1、b2、b3、b6点为各三元体系的两盐共晶点液相组成,b1′、b2′、b3′、b6′为各对应的共晶点温度;c2、c3为此体系的三盐共晶点液相组成,c2′、c3′为其对应的温度;a1′、a2′、a3′、a4′为各单盐和冰的共晶点温度。两盐和冰的共晶曲线 b6′-c2′、b3′-c2′、b1′-c3′、b2′-c3′、c2′-c3′分别对应为Na2SO4·10H2O+NaNO3+Ice、NaNO3+KNO3+Ice、K2SO4+KNO3+Ice、K2SO4+Na2SO4·10H2O+Ice和Na2SO4·10H2O+KNO3+Ice。a4′-b3′-c2′-b6′-a4′为NaNO3和冰的共晶曲面;a1′-b1′-c3′-c2′-b3′-a1′为KNO3和冰的共晶曲面;a2′-b2′-c3′-b1′-a2′为K2SO4和 冰 的 共 晶 曲 面 ; a3′-b2′-c3′-c2′-b6′-a3′为Na2SO4·10H2O和冰的共晶曲面。
表2 R四元体系共晶点液相组成和温度Table 2 Liquid compositions and temperatures of eutectic points of quaternary system
表2 R四元体系共晶点液相组成和温度Table 2 Liquid compositions and temperatures of eutectic points of quaternary system
Composition of solution/g·(100 g solution)-1 Jänecke index J/mol·[100 mol(2Cl-+SO42-+2NO3-)]-1No. Cl- NO3- SO42- 2Cl- SO42- H2O Eutectic point/℃ Solid phase1(b4) 8.968 2.533 0 86.11 0 1455 -11.829 Sy+KN+Ice 2(c1) 8.735 2.443 0.542 82.93 3.796 2865 -11.849 Sy+KN+Ar+Ice 3 8.919 1.317 0.614 88.08 4.475 3031 -11.652 Sy+Ar+Ice 4(b5) 9.159 0 0.457 96.40 3.600 3184 -11.297 Sy+Ar+Ice 5 5.811 3.002 1.786 65.68 14.90 3543 -8.216 Ar+KN+Ice 6 3.348 3.709 2.416 46.17 24.59 4459 -5.601 Ar+KN+Ice 7 1.353 4.767 2.758 22.13 33.29 5432 -4.587 Ar+KN+Ice 8(b1) 0 5.549 2.819 0 39.60 6431 -3.768 Ar+KN+Ice
表3 R四元体系Na+,K+//NO-3,SO24--H2O 共晶点液相组成和温度Table 3 Liquid compositions and temperatures of eutectic points of quaternary system
表3 R四元体系Na+,K+//NO-3,SO24--H2O 共晶点液相组成和温度Table 3 Liquid compositions and temperatures of eutectic points of quaternary system
Composition of solution/g·(100 g solution)Jänecke index J/mol·[100 mol(2NO3+SO4)]No. K+ NO3- SO42- 2Na+ SO42- H2O Eutectic point/℃ Solid phase 1(b6) 0 28.99 0.162 100 0.717 1414 -18.401 Na+S10+Ice 2(c2) 2.086 30.55 0.115 89.23 0.484 1280 -19.512 Na+S10+KN+Ice 3(b3) 2.146 30.79 0 88.95 0 636 -19.627 Na+KN+Ice 4 2.548 21.69 0.339 81.73 1.979 2138 -11.498 S10+KN+Ice 5 2.928 14.96 0.786 70.94 6.355 3323 -7.103 S10+KN+Ice 6 3.565 9.511 2.134 53.91 22.46 4620 -5.364 S10+KN+Ice 7 4.682 7.142 4.207 40.94 43.19 4493 -4.962 S10+KN+Ice 8(c3) 4.997 6.569 4.897 38.52 49.04 4362 -5.001 S10+KN+Ar+Ice 9 5.478 6.037 4.518 26.79 49.13 4801 -4.793 KN+Ar+Ice 10 5.772 5.682 3.944 15.01 47.26 5367 -4.194 KN+Ar+Ice 11(b1) 5.794 5.549 2.819 0 39.61 6431 -3.768 KN+Ar+Ice 12(b2) 3.679 0 7.614 40.61 100 6108 -3.115 S10+Ar+Ice 13 5.069 2.237 8.093 36.63 82.36 4498 -3.995 S10+Ar+Ice 14 5.104 4.349 6.377 35.67 65.43 4515 -4.283 S10+Ar+Ice 15 5.635 6.072 5.908 34.76 55.67 4051 -5.151 S10+Ar+Ice
同样,本文所研究的四元体系,无论常温下是否存在复盐,在共晶点或冰点温度下均为简单体系,即复盐不再存在,共晶点温度-液相组成图中存在4个单盐与冰的共晶面、5条两种盐与冰的共晶线以及两个3种盐与冰的共晶点。
图8 Na+,K+//NO-3,SO24--H2O 体系共晶点温度-液相组成(为清晰所见,未给出线上的点)Fig.8 Eutectic point temperature-liquid composition diagram of systemNa+,K+// NO-3,SO24--H2O
图9 体系干盐投影Fig.9 Dry salt projection diagram of system
同样由图可直观发现 NaNO3的浓度对共晶点温度的影响最大,其单盐和冰的共晶区最小,不易共晶析出;Na2SO4·10H2O与冰的共晶区最大,较易共晶析出。
3 结 论
(1)通过测定多元水盐体系降温过程中的时间-温度图,可以判断盐类析出规律,测定冰盐的共晶点温度与溶液组成;
(2)用棱柱图可以简单直观表达三元体系、四元同离子体系和四元交互体系的相、冰点或共晶点的温度和溶液组成的关系;
图10 体系共晶点温度投影Fig.10 Eutectictemperature projection diagram of system
(3)无复盐存在的简单三元体系共晶点温度-液相组成图中,存在两条单盐与冰的共晶线、一个两种盐与冰的共晶点、一个冰析出面;无复盐存在的四元同离子体系和交互体系共晶点温度-液相组成图中,分别有3和4个单盐与冰的共晶面、3和5条两种盐与冰的共晶线、1和2个3种盐与冰的共晶点。
References
[1] STEPAKOFF G L, SIEGELMAN D, JOHNSON R, et al. Development of an eutectic freeze process for brine disposal [J]. Desalination, 1974, 15(1): 25-38.
[2] VAN DER HAM F, SECKLER M M, WITKAMP G J. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer [J]. Chem. Eng. Process., 2004, 43(2): 161-167.
[3] HIMAWAN C, KRAMER H J M, WITKAMP G J. Study on the recovery of purified MgSO4·7H2O crystals from industrial solution by eutectic freezing [J]. Sep. Purif. Technol., 2006, 50(2): 240-248.
[4] VAN SPRONSEN J, PASCUAL M R, GENCELI F E, et al. Eutectic freeze crystallization from the ternary Na2CO3-NaHCO3-H2O system:a novel scraped wall crystallizer for the recovery of soda from an industrial aqueous stream [J]. Chem. Eng. Res. Des., 2009, 88(9):1259-1263.
[5] REDDY S T, LEWIS A E, WITKAMP G J, et al. Recovery of Na2SO4·10H2O from a reverse osmosis retentate by eutectic freeze crystallization technology [J]. Chem. Eng. Res. Des., 2010, 88(9):1153-1157.
[6] LEWIS A E, NATHOO J, THOMSEN K, et al. Design of a eutectic freeze crystallization process for multicomponent waste water stream[J]. Chem. Eng. Res. Des., 2010, 88(9): 1290-1296.
[7] 李卜义, 王建友. 浓海水处理及综合利用技术的新进展 [J]. 化工进展, 2014, 33(11): 3067-3074. LI B Y, WANG J Y. Progress on treatment and comprehensive utilization of concentrated seawater [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3067-3074.
[8] SILCOK H. Solubililies of Inorganic and Organic Compounds[M]. 3rd ed. Oxford: New York Pergamon Press, 1979.
[9] 牛自得, 程芳琴. 水盐体系相图及应用[M]. 天津: 天津大学出版社, 2002. NIU Z D, CHENG F Q. The Phase Diagram of Salt-water System and Its Application[M]. Tianjin: Tianjin University Press, 2002.
[10] WEAST R C. CRC Handbook of Chemistry and Physics[M]. BocaRaton, USA: CRC Press, 1974.
[11] HALL D L, STERNER S M , BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions [J]. Economic Geology, 1988,83(1): 197-202.
[12] OAKES C S, BODNAR R J, SIMONSON J M. The system NaCl-CaCl2-H2O(Ⅰ): The ice liquidus at 1 atm total pressure [J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 603-610.
[13] GIBBARD JR H F, GOSSMANN A F. Freezing points of electrolyte mixtures (Ⅰ): Mixtures of sodium chloride and magnesium chloride in water [J]. Journal of Solution Chemistry, 1974, 3(5): 385-393.
[14] DUBOIS M, MARIGNAC C. The H2O-NaCl-MgCl2ternary phase diagram with special application to fluid inclusion studies [J]. Economic Geology, 1997, 92(1): 114-119.
[15] SANDER B, FREDENSLUND A, RASMUSSEN P. Calculation of vapor-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation [J]. Chemical Engineering Science,1986, 41(5): 1171-1183.
[16] THOMSEN K, RASMUSSEN P, GANI R. Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems [J]. Chemical Engineering Science, 1996, 51(14):3675-3683.
[17] THOMSEN K. Aqueous electrolytes: model parameters and process simulation[D]. Denmark: Technical University of Denmark, 1997.
[18] ALONSO H A T, PERALTA J M, RUBIOLO A C, et al. Prediction of the freezing point of multicomponent liquid refrigerant solutions [J]. Journal of Food Engineering, 2011, 104(1): 143-148.
[19] PERALTA J M, RUBIOLO A C, ZORRILLA S E. Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model [J]. Journal of Food Engineering,2007, 82(4): 548-558.
Determination and graphics expression of ice-salt eutectic points of multicomponent salt-water systems
WANG Xueying, HUANG Wenting, HUANG Xueli
(Key Laboratory of Cleaner Transition of Coal & Chemicals Engineering of Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China)
For the quaternary salt-water systems, such as the homo-ion systemand interaction system, as well as their six ternary subsystems, the freezing points, eutectic points and the crystallization regularities of salts were studied by cooling method. According to experimental data,the eutectic point temperature-liquid composition diagrams for these systems were plotted. The results were as follows: (1) The crystallization regularity of salts and the eutectic point temperatures can be obtained by measuring the time-temperature curves for multicomponent salt-water systems during cooling process; (2) In these systems above, 3K2SO4·Na2SO4existing under normal temperature did not appear at the eutectic point temperature. As a result, the phase relationships in these systems were simplified; (3) The prism can be used to describe the relationships among the phases, freezing points or eutectic points and the compositions of liquids for the ternary systems, the quaternary homo-ion systems and interaction systems concisely and visually; (4) In the eutectic point temperature-liquid composition diagrams, for ternary systems without double-salts, there were twoeutectic curves with single salt and ice, one eutectic point with two salts and ice, and one ice crystallizing region. For the quaternary homo-ion systems and interaction systems, there were three and four eutectic regions with single salt and ice, three and five eutectic curves with two salts and ice, and one and two eutectic points with three salts and ice, respectively.
date: 2015-09-23.
Prof. HUANG Xueli, xuelih@163.com
supported by the National Natural Science Foundation of China (21166022).
salt-water system; eutectic point; temperature; phase
O 642.5+4
A
0438—1157(2016)05—1687—07
2015-09-23收到初稿,2016-01-25收到修改稿。
联系人:黄雪莉。第一作者:王雪莹(1988—),女,硕士研究生。
国家自然科学基金项目(21166022)。