油酸包覆纳米片状Al(OH)3/Mg(OH)2复合阻燃剂的制备
2016-07-04黄建智成晓玲
黄建智,成晓玲
(1.华南理工大学 化学与化工学院,广东 广州 510641;2.广东工业大学 轻工化工学院,广东 广州 510006)
油酸包覆纳米片状Al(OH)3/Mg(OH)2复合阻燃剂的制备
黄建智1,2,成晓玲2
(1.华南理工大学 化学与化工学院,广东 广州 510641;2.广东工业大学 轻工化工学院,广东 广州 510006)
摘要:通过化学复合法制备出了油酸包覆纳米片状形貌Al(OH)3/Mg(OH)2复合阻燃剂.SEM结果表明,通过改变铝镁摩尔比可制备出不同形貌的片状复合阻燃剂.X射线衍射(XRD)结果表明,复合阻燃剂以Al(OH)3为基体,表面成功包覆Mg(OH)2.红外光谱(IR)结果表明,油酸以羧酸盐形式成功包覆在复合阻燃剂的表面.X射线能谱(EDS)和热重分析(TG)结果表明,油酸均匀包覆,同时Al(OH)3和Mg(OH)2按接近反应原料的配比很好地进行复合;热重分析(TG)和差热分析(DTA)表明,复合阻燃剂相对于Al(OH)3、Mg(OH)2、Al(OH)3和Mg(OH)2机械混合样,阻燃性能有显著提高.
关键词:复合阻燃剂;氢氧化铝;氢氧化镁;纳米片状;化学复合;油酸
近年来,重大火灾事故的频发给人类的生命财产安全造成了极其严重的威胁.高分子材料已被广泛地应用于建筑、电器、日用家具等领域,高聚物的易燃性是造成众多火灾事故的主要原因,所以对材料进行阻燃处理是减少火灾危害的战略措施.
传统阻燃材料广泛采用含卤阻燃剂,一旦发生火灾,由于热分解和燃烧, 会产生大量的烟雾和有毒气体,并对环境产生危害[1-4].无机阻燃剂[5]具有热稳定性好、发烟量低、毒性低、不产生腐蚀性气体、持久阻燃效果和价格低等特点.YeLei等[2-3]等制备的无卤氢氧化镁阻燃剂应用在EVA/MH混合物,阻燃性能得到显著提高;ZhengZaihang等[4]制备的无卤氢氧化铝阻燃剂应用在聚丙烯高聚物中,阻燃性能也得到显著提高.
然而,近年来无机阻燃剂的复合已逐渐成为无机阻燃填料加工与应用的主要发展方向,复合阻燃剂[6-9]可使无机阻燃剂相互间的优点和协同阻燃效应最大程度地发挥出来.GaoYanshan等[6]制备了高阻燃性能的层状无机复合阻燃剂.LiuHui[7]等人制备的HDPE/EVA/氢氧化镁复合阻燃剂,阻燃性能得到显著提高.
为了改善复合阻燃剂与高聚物间的粘结力和界面亲和性,一般是在无机粉体与聚合物共混前对其表面进行有机改性,使无机阻燃剂能在聚合物基体中均匀分散,提高复合材料的阻燃性能[10-15].Calistor等[16]和Shadpour等[17]通过羧酸改性制备了高性能的无机复合阻燃剂.
本论文采用化学复合法制备出油酸包覆纳米片状形貌Al(OH)3/Mg(OH)2复合阻燃剂,复合阻燃剂相对于Al(OH)3、Mg(OH)2、Al(OH)3和Mg(OH)2机械混合样,阻燃性能均有显著提高.
1实验部分
1.1材料与仪器
试剂:氢氧化铝(AR)、氨水(AR)、氯化镁(AR)、油酸(AR)
仪器:D-8401型多功能电动搅拌器,恒温水浴锅,扫描电子显微镜(型号:FEIQuanta650,配备英国OxfordinstrumentINCA350X-Max50 能谱仪),X射线衍射分析仪(型号:UltimaⅢ,生产厂家:日本理学公司),红外光谱仪(型号:Nicolet380,生产厂家:日本日立),综合热分析仪(型号:NETZSCHTG-209,生产厂家:德国耐驰).
1.2测试条件
X射线衍射分析:CuKα辐射,λ=0.154 2nm,管电压40kV,管电流40mA,扫描步长0.02°/min,扫描角度范围10°~90°,扫描速度8°/min.
热综合分析:温度范围30~800 ℃;升温速度10°/min;样品质量5mg;空气气氛.
红外光谱分析:样品制备采用KBr压片法,测试范围为4 000~400cm-1.
1.3油酸包覆纳米片状Al(OH)3/Mg(OH)2复合阻燃剂的制备方法
先将2g的超细氢氧化铝粉体倒入三口烧瓶中,再称取一定量的氯化镁溶解到50mL去离子水后,倒入250mL三口烧瓶中.以300r/min的转速搅拌并将溶液升温到60 ℃.将0.3mL油酸和一定量的氨水混合,倒入40mL去离子水中稀释,然后用恒压滴液漏斗缓慢滴加到三口烧瓶,滴加完毕后,反应1h.调节溶液的pH为10.5,继续保温搅拌30min后自然冷却至室温,将所得到的悬浮液进行抽滤,分别用去离子水和无水乙醇洗涤,最后将清洗干净的沉淀物于烘箱中60 ℃下烘干,制得油酸包覆纳米片状Al(OH)3/Mg(OH)2复合阻燃剂.
2结果与讨论
2.1扫描电镜分析
图1是氢氧化铝颗粒的扫描电镜照片,图2是油酸包覆纳米片状Al(OH)3/Mg(OH)2复合阻燃剂颗粒的扫描电镜照片.图1中氢氧化铝颗粒表面光滑、粒度不均匀、形状不规则;图2中复合阻燃剂颗粒表面粗糙、粒度均匀、形貌规整,呈纳米薄片状形貌.
图1 氢氧化铝颗粒扫描电镜照片
图2 复合阻燃剂颗粒扫描电镜照片
图3是不同铝镁摩尔比制得的复合阻燃剂颗粒扫描电镜照片,从图3(a)可知,当n(Al)∶n(Mg)=1∶2时复合阻燃剂的形貌为规则的六方片状,片状厚度为0.20μm;从图3(b)可知,当n(Al)∶n(Mg)=1∶1时复合阻燃剂的六方片状形貌开始受到破坏,片状厚度稍微减小,厚度为0.18μm;从图3(c)可知,当n(Al)∶n(Mg)=2∶1时复合阻燃剂呈不规则片状形貌,片状厚度继续减小,厚度为0.14μm,粒度变得不均匀;从图3(d)可知,当n(Al)∶n(Mg)=3∶1时复合阻燃剂的片状形貌更加不规则,片状厚度为0.13μm;从图3(e)可知,当n(Al)∶n(Mg)=4∶1时复合阻燃剂的形貌为很薄的不规则片状结构,片状厚度为0.10μm.
由此可以得出结论,随着氯化镁加入量的减少,复合阻燃剂的形貌从规则的六方片状向不规则片状转变,同时片状厚度逐渐变薄.
图3 不同铝镁摩尔比制得的复合阻燃剂颗粒扫描电镜照片
2.2X射线衍射分析
由图4可知,复合阻燃剂的XRD谱图同时存在Al(OH)3和Mg(OH)2的特征衍射峰,说明没有生成新的物相,证明该材料确实为Al(OH)3/Mg(OH)2复合阻燃剂.同时Al(OH)3的 (002),(110)晶面对应的特征衍射峰强度显著减弱,但衍射峰强度仍比Mg(OH)2强.说明复合阻燃剂以Al(OH)3为基体,表面包覆Mg(OH)2.
图4 XRD谱图
2.3EDS分析
该样品反应原料的n(Al)∶n(Mg)=1∶2,由图5和表1的结果可知,用数据平均值计算铝镁摩尔比,得到n(Al)∶n(Mg)=1∶2.08,接近1∶2,说明Al(OH)3和Mg(OH)2按接近反应原料的配比很好地进行复合;而且样品中C元素含量很高,说明油酸成功包覆;由表1结果可知,谱图1和谱图2区域中C元素的质量分数分别为24.11%和22.61%,C元素的质量分数相近,说明油酸均匀包覆在复合阻燃剂表面.
2.4红外分析
处理选项:已分析所有元素 (已归一化)
Tab.1Elementweightqualitypercentageofcompositeretardant%
谱图在状态元素COMgAl总量谱图1是24.1157.1812.346.37100.00谱图2是22.6157.8212.507.07100.00平均23.3657.5012.426.72100.00标准偏差1.060.450.110.49最大24.1157.8212.507.07最小22.6157.1812.346.37
由此得出结论,油酸是以羧酸盐COOM的形式络合在复合阻燃剂颗粒的表面.
图6 IR谱图
2.5热综合分析
由图7中TG曲线可知(复合阻燃剂和机械混合样中n(Al):n(Mg)g=1∶2),对于复合阻燃剂,30~250 ℃为油酸的挥发和分解,失重率为5%,说明油酸包覆的质量分数为5%;250~300 ℃为氢氧化铝的分解,即发生Al(OH)3→Al2O3+H2O↑,失重率为15%;300~500 ℃为氢氧化镁的分解,即发生Mg(OH)2→MgO+H2O↑,失重率为40%.复合阻燃剂的分解温度区间为250~500 ℃,失重率为55%,相对于单一的氢氧化铝、氢氧化镁和机械混合样,复合阻燃剂的阻燃温度区间更大,阻燃温度更高,热失重率更大,阻燃效果最好.
图7 TG谱图
由图8中DTA曲线可知,复合阻燃剂存在两个放热峰,其中250~300 ℃为氢氧化铝的放热峰,300~500 ℃为氢氧化镁的放热峰,但放热峰的强度明显减弱,这是因为氢氧化铝与氢氧化镁产生协同阻燃效应,吸热量更大,由于复合阻燃剂燃烧时放热峰更小,从而增强了复合材料的热稳定性.
图8 DTA谱图
3结论
本文采用化学复合法制备出油酸包覆纳米片状形貌Al(OH)3/Mg(OH)2复合阻燃剂,依据异质形核原理,反应生成的氢氧化镁在氢氧化铝表面沉积、形核和生长,最终实现两者的化学复合.通过油酸对复合阻燃剂进行表面包覆,制备了油溶性复合阻燃剂,增强了无机阻燃剂与高聚物的相容性,使无机阻燃剂能在聚合物基体中均匀分散,提高复合材料的阻燃性能.
实验结果表明,随着氯化镁加入量的减少,复合阻燃剂的形貌从规则的六方片状向不规则片状转变,同时片状厚度逐渐变薄.通过控制反应原料n(Al)∶n(Mg0)=1∶2时,可制备出形貌规则、粒度均匀的纳米片状复合阻燃剂,此复合阻燃剂相对于单一的Al(OH)3、Mg(OH)2、Al(OH)3和Mg(OH)2机械混合样,阻燃性能均有显著提高.
参考文献:
[1]ZHANGGB,DINGP,ZHANGM,etal.Synergisticeffectsoflayereddoublehydroxidewithhyperfinemagnesiumhydroxideinhalogen-freeflameretardantEVA/HFMH/LDHnanocomposites[J].PolymerDegradationandStability, 2007, 92(9): 1715-1720.
[2]YEL,MIAOYY,YANH,etal.Thesynergisticeffectsofboroxosiloxaneswithmagnesiumhydroxideinhalogen-freeflameretardantEVA/MHblends[J].PolymerDegradationandStability,2013,98(4): 868-874.
[3]YEL,WUQH,QUBJ.Synergisticeffectsandmechanismofmultiwalledcarbonnanotubeswithmagnesiumhydroxideinhalogen-freeflameretardantEVA/MH/MWNTnanocomposites[J].PolymerDegradationandStability,2009,94(5): 751-756.
[4]ZHENGZH.Co-microencapsulationofammoniumpolyphosphateandaluminumhydroxideinhalogen-freeandintumescentflameretardingpolypropylene[J].PolymerComposites,2014,35(4): 715-729.
[5]GUOHF,HUH,XIEJY,etal.Gaseousammonia:superiortoaquaammoniaintheprecipitationofMg(OH)2undermildconditions[J].RSCAdv, 2014, 4(54): 28822-28825.
[6]GAOYS,WUJW,WANGQ,etal.Flameretardantpolymer/layereddoublehydroxidenanocomposites[J].JMaterChemA, 2014, 2(29): 10996-11016.
[7]LIUH,FANGZP,PENGM,etal.Theeffectsofirradiationcross-linkingonthethermaldegradationandflame-retardantpropertiesoftheHDPE/EVA/magnesiumhydroxidecomposites[J].RadiationPhysicsandChemistry, 2009,78(11): 922-926.
[8]HUANGGB,FEIZD,CHENXY,etal.Functionalizationoflayereddoublehydroxidesbyintumescentflameretardant:Preparation,characterization,andapplicationinethylenevinylacetatecopolymer[J].AppliedSurfaceScience, 2012, 258(24): 10115-10122.
[9]WANGDY,DASA,LEUTERITZA,etal.StructuralcharacteristicsandflammabilityoffireretardingEPDM/layereddoublehydroxide(LDH)nanocomposites[J].RSCAdv, 2012, 2(9): 3927-3933.
[10]LIUS.Flameretardantandmechanicalpropertiesofpolyethylene/magnesiumhydroxide/montmorillonitenanocomposites[J].JournalofIndustrialandEngineeringChemistry, 2014,20(4): 2401-2408.
[11]YUL.Organic-inorganichybridflameretardant:preparation,characterizationandapplicationinEVA[J].RSCAdv, 2014,4(34):17812-17821.
[12]LUJAN-ACOSTAR,SNCHEZ-VALDESS,RAMREZ-VARGASE,etal.EffectofAminoalcoholfunctionalizedpolyethyleneascompatibilizerforLDPE/EVA/clay/flame-retardantnanocomposites[J].MaterialsChemistryandPhysics,2014,146(3): 437-445.
[13]GEORGEGB.Useofnano-ATHasamulti-functionaladditiveforpoly(ethylene-co-vinylacetate-co-carbonmonoxide)[J].PolymerBulletin, 2014, 71(8):2081-2102.
[14]ZVONIMIRM.Fireretardancyandmorphologyoflayereddoublehydroxidenanocomposites:areviewjournalofthermoplasticcomposite[J].JMaterChem, 2012,22(36): 18701-18704.
[15]WANGZY,LIUY,WANGQ,etal.Flameretardantpolyoxymethylenewithaluminiumhydroxide/melamine/novolacresinsynergisticsystem[J].PolymerDegradationandStability, 2010,95(6): 945-954.
[16]CALISTORN.EffectofMgAl-layereddoublehydroxideexchangedwithlinearalkylcarboxylatesonfire-retardancyofPMMAandPS[J].JMaterChem, 2008,18(40): 4827-4838.
[17]SHADPOURM.ModificationofMg/Al-layereddoublehydroxidewithL-asparticacidcontainingdicarboxylicacidanditsapplicationintheenhancementofthethermalstabilityofchiralpoly(amide-imide)[J].RSCAdv, 2014,4(79): 42114-42121.
Preparation of Nanosheet Al(OH)3/Mg(OH)2Composite Retardant Coated with Oleic Acid
Huang Jian-zhi1,2, Cheng Xiao-ling2
(1.SchoolofChemistryandChemicalEngineering,SouthChinaUniversityofTechnology,Guangzhou510641,China;2.SchoolofChemicalEngineeringandLightIndustry,GuangdongUniversityofTechnology,Guangzhou510006,China)
Abstract:The nanosheet Al(OH)3/Mg(OH)2 composite retardant coated with oleic acid is synthesized through chemical compounding technique. The SEM result indicates that through changing the ratio of aluminum and magnesium can different morphology nanosheet composite retardant be prepared. The XRD result indicates that composite retardant is based on Al(OH)3, whose surface is coated with Mg(OH)2. The IR result indicates that composite retardant is coated with oleic acid by way of carboxylic acid salt. The EDS and TG result indicates that oleic acid is coated well-distributed, while Al(OH)3 and Mg(OH)2 are compounded near the ratio of reactant. The thermal analysis (TG and DTA) result indicates that compared with Al(OH)3, Mg(OH)2, and the physical mixture of Al(OH)3 and Mg(OH)2, flame retardancy of composite retardant is greatly improved.
Key words:composite flame retardant; aluminum hydroxide; magnesium hydroxide; nanosheet; chemical compound; oleic acid
收稿日期:2015-04-22
基金项目:广东省自然科学基金资助项目(10251009001000003)
作者简介:黄建智(1992-),男,硕士研究生,主要研究方向为纳米材料电化学分析.
doi:10.3969/j.issn.1007-7162.2016.02.014
中图分类号:TB383
文献标志码:A
文章编号:1007-7162(2016)02-0071-05