基于相关性分析的经管类学生数据处理能力研究
2016-05-14张葵孙正夏文学
张葵 孙正 夏文学
摘 要:文章通过问卷调查以及相关性分析方式,挖掘影响经管类学生数据处理能力提升的关键因素,并提出了有效实施“商务决策技术”课程的教学的设计策略。
关键词:大数据;数据处理;商务决策技术
中图分类号:G640 文献标识码:A 文章编号:1002-4107(2016)07-0068-02
随着大数据时代的到来,数据分析已从过去由专门数据处理人员胜任的工作,变成了商务管理人员的日常事务性工作。企业在享受大数据便利的同时却面临着数据分析人才严重短缺的难题。据麦肯锡公司预计,到2018年,美国数据分析专业人才的缺口将高达14—19万,能够使用大数据帮助企业高效决策的管理人员的缺口将达150万[1]。因此,顺应大数据时代的需要,培养具有数据处理能力的专业人才,已成为目前世界各国高等教育改革的首要任务。
本研究运用大数据时代的思维方式和工作方式,力图设计一门紧密联系企业实践的数据分析课程——“商务决策技术”,以提升学生的商务决策能力,满足大数据时代企业对管理人才的新要求。
一、数据处理课程设置现状
随着大数据时代的到来,我国高等教育研究者针对大数据的特点,对已有的数据处理相关课程进行了改革。如:李海林根据大数据具体特性,从授课内容以及实践环节对高校数据挖掘课程进行了详细设计[2];邱胜海等针对关系型数据库在面对大数据管理时存在的问题,给出了开展非关系型数据库教学的具体措施[3]。然而这些以大数据为时代背景的教学改革,并非面向数理基础较差的经管类学生。为了提高经管类学生的数据分析能力,我国很多高校已开设数据分析与建模方面的相关课程,也撰写了相关教学书籍。如:蒋绍忠[4]、刘兰娟[5]等编写了各类商务数据分析教材;葛虹等[6]以经管专业课“数据分析与管理建模”为例,提出了知识的系统性训练和创新能力的培养的建议;邓维斌等针对经管类学生在数据分析能力培养中存在的问题[7],提出编写针对性强的实验指导教材,构建科学的实验教学体系,改变实验教学模式等主要改革措施。然而,这些为经济管理类学生开设的数据处理课程中没有加入大数据的相关内容。
本研究围绕即将开设的“商务决策技术”这门新课,基于大数据理念,从课程内容、教学手段等方面对该课程进行全方位设计。在设计前,为方便日后跟踪学生的学习进展,对学生的数理基础和学习需求等方面进行了问卷调查,并对调查结果进行详细分析。
二、经管类学生数据处理能力现状调查与分析
(一)调查问卷设计
本调查共发放问卷250份,回收有效问卷234份,回收率达到93.6%。主要由2013级和2014级经管类学生填写。主要借助于李克特量表的形式测试学生对相关问题的认知程度。
设计《大数据理念下数据分析方法教学调查问卷》,除了了解学生的性别、年龄、班级、文理科生等基本信息外,还从四个方面进行了详尽的调查:前沿技术、学习动机、教学方法以及考核方式。
(二)调查结果分析
四个方面的调查结果如下。
1.学生对前沿技术的了解程度。很多学生对最新的前沿技术不甚了解。仅118人(占50%)听说过“云计算”,87人(占37%)听说过“物联网”,即使大部分学生会使用手机上网,但调查结果却显示仅168人(占72%)知道“移动互联网”这个词。对“大数据”的了解更为有限,听说过“大数据”这个词的人仅78人(占33%),能准确或大概说出其含义的仅49人(占21%)。其中,25人认为大数据的主要特征是“数据量大”;27人认为是“数据类型繁多”;8个人认为是“价值密度低”;18人认为“处理速度快”,仅3人将大数据的这四个特征全部选中。虽然大部分人对大数据不甚了解,但207人(占88%)对大数据的未来前景较为乐观,173人(占74%)已经感受到了大数据在日常生活中的存在。
2.学生的课程选修情况。为了了解哪类学生会选修这门课程,是数据处理基础好的学生?还是对数据处理感兴趣的学生?学生学习的自信心强弱会不会影响他们的选课?如果所学课程对学生未来工作有用,会不会有更多的学生选这门课呢?带着这些问题,本研究使用SPSS中的Pearson相关性分析法挖掘出影响课程选修状况的主要因素。
从分析结果中可以发现,学生是否选这门课主要取决于两大因素:“工作需要”(相关系数为0.427)和“学习信心”(相关系数为0.163),与学生的“数据处理基础”、“对数据分析是否感兴趣”的关系不大。也就是说,如果学生认为学习这门功课对未来的工作有用,即使他们的数理基础并不好,学习兴趣也不大,他们依然会非常乐意选此课;此外,学生的自信心也是学好这门课的关键。很有信心学好数据分析方法的学生仅占12%,86%的学生对此没有把握。提及何种工作会用到数据分析技术时,仅有131人(占56%)觉得数据分析技术对管理工作有用,91人(39%)觉得对销售工作有用;而94人(占40%)觉得数据分析技术对管理或销售工作根本没用,仅数据分析员或IT工作人员会用到该技术。
3.学生喜好的教学方法。近60%的学生对教学方法不甚了解,特别是现代教学方法。在调查过程中,我们对四个目前热门的教学方法,如:案例式教学法、讨论式教学法、翻转课堂、MOOC进行了详细介绍。最后,65%的学生偏爱案例式教学法,47%的学生偏爱讨论式教学法,对于翻转课堂仅有19%的学生愿意尝试,MOOC仅13%的愿意尝试。当问到哪种教学方法适用于本课程的教学时,44%的学生希望使用案例式教学法,23%的学生觉得翻转课堂不错,22%的学生依然喜欢以教师为主导的讲授式教学方法,88%学生认为MOOC不适合数据处理课程的教学工作。
4.学生喜欢的考核方式。仅有18%的人愿意闭卷考试,开卷考试和学生上台讲解的考核形式最受青睐。此外,78%的学生希望参与到教师评分中,同意教师独自给分的仅占18%,同意仅依靠学生评分的也只占6%。
三、“商务决策技术”课程教学设计策略
根据以上分析,拟在实施本课程教学时注重以下几个方面。
(一)提高学生学习数据分析技术的自信心
该课程涉及定量分析,这是经管类学生最为薄弱的知识点。从调查分析中可以发现,“工作需要”和“学习信心”这两个因素对学生选修该课程比学生的“数据处理基础”和“学习兴趣”更为重要。因此,本课程首先安排2至4个学时来讲解什么是“大数据”,大数据在未来各个领域的应用前景,并通过实例、视频或实地调研让学生了解商务数据分析的一些实际应用,只有当学生切身体会到了数据分析技术在未来生活中的应用价值,才能从根本上调动他们主动学习的积极性和自信心。
(二)丰富大数据相关内容
大数据最重要的应用就在于预测,而预测是商务决策的基础。以往的经济预测多依赖于因果模型的分析,而大数据分析则是运用相关性分析方法从海量数据中发掘数据之间的联系,进而进行有效的预测。因此,本课程将重点讲授相关分析方法,不仅讲授诸如简单线性回归、Pearson相关系数等传统相关分析方法,还会介绍大数据相关分析方法,如:最大信息系数、随机相关系数等。
(三)采用多种教学模式与方法
从调查分析中了解到:以往以教师讲授为主、学生被动学习的传统教学模式不再受到学生的青睐,翻转课堂、案例教学法、讨论式教学法是学生喜爱的教学方式。因此,本课程将采用学生平等参与的讨论式教学方式,并事先设计“自主学习任务单”、制作教学视频、布置案例教学任务等多种教学手段,将教师的教学职能从单一的讲课向设计、组织、帮助与指导方向转变。
(四)师生共建考核方式与信息反馈机制
调查分析结果表明:传统死记硬背的考核方式不再受到学生的欢迎,开卷考试和上台讲课的考核形式更能全方位地衡量学生处理实际问题的能力。因此,本课程拟首先让教师和学生共同制定考核目标,细分考核内容以及考核方式;然后由学生自主选择考核方式和内容。评分时,组织成立学生考评团,所有学生轮番成为考评团成员,与老师双向沟通,共同评分。
本文展示了“商务决策技术”课程开设的调查研究工作,并依据分析结果,提出顺应大数据时代需要,培养具有现代数据处理能力的管理人才的具体措施。希望通过培养学生学好数据处理方法的兴趣和自信心,通过制订合理的教学计划、设计新颖的教学内容、运用现代化的教学模式、采取师生共同参与的考核方式,来提升学生适应大数据时代市场需要的数据素养。
参考文献:
[1]Manyika J.,et al.Big data:The next frontier for
innovation,competition,and productivity[EB/OL].
[2015-11-03].http://www.mckinsey.com/insights/
business_technology/big_data_the_next_frontier_
for_innovation.
[2]李海林.大数据环境下的数据挖掘课程教学探索[J].
计算机时代,2014,(2).
[3]邱胜海,周玉敏,高锡荣等.大数据时代非关系型数据库
教学与实验改革探索[J].电脑知识与技术,2013,(9).
[4]蒋绍忠.数据、模型与决策——基于Excel的建模和商
务应用[M].北京:北京大学出版社,2013.
[5]刘兰娟等.经济管理中的计算机应用[M].北京:清华大
学出版,2013.
[6]葛虹,韩伟一.多模式交互教学与教学工作量评估——
以“数据分析与管理建模”为例[J].黑龙江高教研究,
2013,(2).
[7]邓维斌,周玉敏,高锡荣.经管专业数据分析能力研究
[J].数字通信,2013,(2).