概率论与数理统计的翻转教学
2016-04-19廖楚越
廖楚越
【摘要】近几年,传统的教学模式受到各方面的冲击和挑战,已不再完全适应当今的现代化教学。另一方面,翻转课堂进入到人们视线。本文以概率论与数理统计的一节内容为例,探究了翻转课堂在大学数学教学中的应用。
【关键词】翻转课堂 大学数学 概率统计 课堂教学
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)03-0145-01
1.翻转课堂
翻转课堂(Flipped Classroom)是一种不同于传统教学的新型教学模式,它要求学生在课前预先学习知识点,再在课堂上讨论巩固,也就是课上与课下的“翻转”。一般来说,实施翻转课堂的教师需要利用计算机技术将知识点讲解过程录制成视频交给学生观看,并配上相应题目给学生自查。回到课堂上之后,学生与老师再充分交流,合作探究,完成知识点的内化过程。
翻转课堂最早起源于美国科罗拉多州WoodlandPark High School,该校老师乔纳森·伯尔曼和亚伦·萨姆斯将学习内容录制成微视频上传到网上供缺课学生观看。2007年,他们又全面要求学生在家里观看教学视频,回到学校之后再对学生进行辅导。这种学习方法取得良好成效并最终在美国中小学教育中得到了广泛应用。如今,不仅仅是中小学教育,大学课堂也在逐步引进翻转课堂。
国内方面,对于翻转课堂还处于理论和探究的阶段,笔者就大学课程中概率论与数理统计之“期望的定义与性质”部分进行翻转课堂的尝试,并总结了翻转课堂在大学数学课程实施过程中的一些问题,且针对这些问题采取了相应的解决办法。
2.翻转课堂的实施
2.1课前自学
课前教师需录制教学微视频供学生进行自主学习。这种视频时间一般控制在十分钟以内,因为对学生而言,如果视频过长,内容过多,注意力容易分散,不利于学习。再者,多个知识点融在一个视频当中,也不方便学生在有疑问的时候查找观看。因此,我们在录制视频的时候讲究短小精悍针对性强。本节“期望的定义与性质”就被细分成了4个部分并录制了相应的4个微视频。
另外在每个视频中都给出了若干较为基础的题目用于学生自测学习情况。
2.2课中内化
课堂讨论和探究的阶段共两次课,分组完成。
第一次课,学生刚看完视频,对知识点还比较生疏,讨论的目的在于熟悉基础知识点。课上,每个小组分别对本节的内容进行讲解,并配以例题展示。讲解完之后其它同学可对讲解小组所讲内容进行提问和补充。第一次课结束之后,再留给学生一些较难的实际背景下的期望问题,让学生在课下讨论解决。
第二次课,每组从上述题目中随机抽取一道讲解,其他组做相应的提问或补充。接着,再给出一些题目让学生在课上练习,对还存在问题的学生及时给予纠正和指导。最终使得学生能够灵活运用期望的实际含义和性质解决实际背景下的期望问题。
需要说明的是,对于大学数学这种基础课程,教师面对的往往是将近100人的课堂,这导致讨论课的时间和秩序不好把握。为此,我们要求每组学生只选择一部分内容讲解。又为了避免学生只关心自己讲解的部分而忽略了其它内容,所以每组讲完之后其它同学可以就本节任一知识点进行提问和补充。另外,为了让所有学生都积极参与,我们把讲解,提问,回答每个部分都设置了严密的加分规则并与学生的期末成绩挂钩,以此促进了学生积极性,让学生尽量参与到讨论中。
2.3课后升华
讨论课后,大部分学生已经能够准确理解期望的概念并应用,但是要最终吸收内化,还需要学生更多地去探究与思考。因此我们要求学生自选切入点,完成一篇与本节内容相关的小论文。
3.翻转课堂的反思
目前,翻转课堂在我国的发展还处于尝试和适应的阶段,结合我国高校的具体情况不免存在一些问题:
首先,翻转课堂考验了教师录制和制作视频的能力。好的视频不仅仅是机械地录制,还需要在剪辑,音效甚至视频合成上花功夫。这对长期以传统方式教学的教师来说难度很大,工作量也很大。
其次,实施翻转课堂的网络平台不够完善,没有办法对学生课下的自主学习进行实时监控。
对于基础课程来说,还有一个问题是人数众多,虽然前面我们已经在控制讨论课的节奏和秩序上想了一些办法,但是课上还是避免不了超时和吵闹的情况。
最后,由于数学不是专业课,多数学生不愿意在这门课程上花费时间。无论是课前的自主学习还是课后的小论文,学生完成的情况都不太理想。
4.结语
翻转课堂作为一种新兴的教学模式是对传统教学的颠覆,对学生和老师的极大挑战。如果能适应这种教学模式,学生的自学能力和创新能力都能够得到很好的锻炼,但如果没有解决前面说到的这些问题,就达不到期望的教学效果。所以,翻转课堂的“本土化”,还需要慢慢地摸索。
参考文献:
[1]卢强.翻转课堂的冷思考:实证与反思[J].电化教育研究,2013(8).
[2]胡运红,杨建雅,王鹏岭.翻转课堂教学模式下的大学数学微课探究——以线性代数的某知识点为例[J].运城学院学报,2015(6).
[3]李玲,昌国良.翻转课堂教学模式在大学数学教学中的应用[J].数学理论与应用,2015(06).