APP下载

利用液体炸药爆轰制备石墨烯薄片*

2016-04-17孙贵磊闫鸿浩李晓杰

爆炸与冲击 2016年5期
关键词:薄片炸药表面积

孙贵磊,闫鸿浩,李晓杰

(1.中国劳动关系学院安全工程系,北京 100048;2.大连理工大学工程力学系,辽宁 大连 116024;3.北京大学力学与空天技术系,北京 100871)

利用液体炸药爆轰制备石墨烯薄片*

孙贵磊1,3,闫鸿浩2,李晓杰2

(1.中国劳动关系学院安全工程系,北京 100048;2.大连理工大学工程力学系,辽宁 大连 116024;3.北京大学力学与空天技术系,北京 100871)

强氧化性酸的环境下,石墨易形成石墨层间化合物(GICs),利用石墨这一特性,将天然石墨置于发烟硝酸中,并加入硝基甲烷,配制成液体炸药,使用塑料容器盛装后放入爆轰反应釜中引爆。收集爆轰产物,并利用XRD、EDX、SEM、TEM、Raman光谱、比表面积与孔隙度分析仪进行分析,结果显示:制备出的石墨烯具有良好的晶体特性并呈现极薄的片状结构,其比表面积达到天然石墨的9.16倍,平均厚度约为14.73 nm。

爆炸力学;石墨烯薄片;液体炸药;爆轰剥离;比表面积

自2004年石墨烯首次被制备,其独特的二维结构和优异的电学、光学、热学及机械性能使其迅速成为材料、化学、物理和工程领域的研究热点。大量研究表明,石墨烯及其衍生物在生物传感器、储氢材料、太阳能电池、半导体材料、纳米器件等领域具有重要的应用价值[1]。

目前,关于石墨烯的制备方法有很多种,从材料来源上大致可以分为两类,一类利用了石墨层间作用力相对层内原子间作用力较小的特点,将石墨层片进行剥离获取,如利用石墨为原料的机械剥离法[2]、利用膨胀石墨为原料的液相或气相剥离法及爆轰剥离法[3-5],该类方法所得产物的纯度高、缺陷少,且制备工艺简便快捷;另一类是通过化学方法合成,即通过将碳原子重新排列组合合成石墨烯,如碳化硅表面外延生长、氧化-还原法、化学气相沉积法等[6-8]。

爆轰制备技术最早应用于金刚石的制备合成,目前已应用于石墨[5]、纳米碳包金属[9-11]、纳米球状铜[12]、纳米氧化铝[13]、纳米氧化钛[14]、纳米氧化铁[15]、纳米锰酸锂[16]以及锰铁氧体(尖晶石)[17]的研究。爆轰制备技术具有工艺简单、效率高等特点,因而具有广阔的研究及应用前景。

1 实验材料与设备

实验材料:天然石墨、发烟硝酸(87%)、硝基甲烷。

实验设备:热处理炉、球形爆炸反应釜、起爆装置。

表征设备:XRD-6000、TEM(Tecnai 20)、SEM(FEI Quanta 200)、Raman光谱仪(inVia)、SEM/EDX(JSM-5600LV)、NOVA-4000比表面积与孔隙度分析仪(77 K,氮吸附)。

2 实验过程与产物表征

2.1 实验过程

将物质的量之比为3∶3∶4的石墨、发烟硝酸及硝基甲烷混合,过程如下:先将石墨与发烟HNO3混合(用于制备HNO3GICs),静置冷却后加入CH3NO2,配置成液体炸药,混合时温度应保持在273~293 K。之后将混合液体装入特定的塑料容器中,并将其置于爆轰反应釜的中心位置,密闭反应釜空间,之后用雷管引爆混合液体后,收集爆轰产物。利用XRD与EDX分析爆轰前后石墨的成分变化,采用SEM与TEM技术对产物微观形貌及结构进行表征,通过Raman光谱对爆轰产物的结构进行分析,并根据孔吸附的结果对比前驱体与爆轰产物的比表面积。

2.2 产物表征

收集到的爆轰产物呈现黑色粉末状,粒径极为细小,通过表征设备所得结果分析如下。

2.2.1 XRD分析

爆轰产物从反应釜内壁面收集,呈现黑色,其X射线衍射图谱如图1所示,图中纵坐标I表示衍射强度,横坐标2θ表示X射线衍射仪扫描整个衍射区域的角度。将图1与标准图谱中的2h型石墨衍射图谱进行对比,结果显示其特征峰(在图1中已标出的衍射峰)完全一致。在天然石墨的衍射图谱中,最强峰(002)峰和次强峰(004)峰在爆轰后峰值强度都减弱,而(100)、(102)、(103)峰的峰值强度却增强。数值显示,爆轰前后石墨的(002)峰衍射强度数值相差72倍;图1中,将天然石墨及爆轰产物的(002)峰按其衍射强度的原始数据显示于图1右侧,衍射强度对比非常明显,同理,爆轰产物的(004)峰也被大大削弱。

依据X射线衍射结果,利用Scherrer公式计算天然石墨及爆轰产物的半波宽与平均晶粒尺寸,将爆轰产物和天然石墨的参数列于表1中进行对比,表中,d002表示(002)方向晶面间距,即石墨层片间距,B002表示(002)峰的半波宽,D表示平均晶粒尺寸。由表1可以看出,爆轰产物的平均晶粒尺寸为14.73 nm,而天然石墨的平均晶粒尺寸为39.95 nm。爆轰产物的平均晶粒尺寸大大减小,说明垂直于晶面方向的晶粒尺寸远小于天然石墨,即石墨层片已在爆轰过程中剥离。

图1 天然石墨与爆轰产物的XRD图谱Fig.1 XRD patterns of natural graphite and detonation soot

表1 利用XRD测得的天然石墨与爆轰产物的参数Table 1 Parameters of natural graphite and detonation soot from XRD

2.2.2 SEM与TEM分析

利用SEM与TEM对爆轰产物进行表征,表征结果如图2所示,图2(a)为天然石墨的SEM图,图中显示天然石墨的厚度及粒径较大,在肉眼可识别的范围;图2(b)~(c)为爆轰产物的SEM图片,可以看出,爆轰产物呈现层片状,且厚度非常薄,图中所示薄片仅有13.3 nm,这与表1中Scherrer公式所推导出14.73 nm的平均晶粒度基本相符,确定爆轰后石墨层已被剥离,形成非常薄的石墨层片,结合XRD的分析,可以确定爆轰产物为纯度较高的石墨烯;图2(d)为爆轰产物的TEM图片,图中通过石墨层片可以看到背底网栅,表明所制备的石墨烯拥有极薄的厚度,这与SEM图(图2(c))所得到的结果完全一致,同时图中也显示,所得石墨烯具有非常大的表面积,这一特性使所制备的石墨烯可应用于导电添加剂。

图2 天然石墨与爆轰产物的SEM与TEM图Fig.2 SEM and TEM images of natural graphite and detonation soot

2.2.3 Raman光谱分析

图3 石墨烯的Raman光谱Fig.3 Raman spectrum of grapheme

爆轰产物中碳的结构可以通过Raman光谱给出(图3),纵坐标IR表示Raman信号强度,横坐标sR表示Raman频移。Raman光谱中有两个明显的峰,分别是位于1 576.56 cm-1处的G-band和位于1 334.82 cm-1处的为D-band。其中,G-band 主要是因为石墨基平面所有sp2原子对的拉伸运动引起的,而D-band是粒子尺寸效应、晶格畸变等缺陷及无序等原因引起的[18]。所得到的Raman光谱(见图3)中,G-band强度较高,而D-band强度非常低,显示所制备的石墨烯晶体结构较好,同时也阐释了在对前驱体进行插层处理及爆轰剥离时,并未使爆轰产物中产生大量无定形碳。

2.2.4 吸附及比表面分析

图4 不同孔径及所对应的表面积Fig.4 Pore diameters and corresponding surface areas

采用比表面积与孔隙度分析仪分析天然石墨和爆轰产物石墨烯的比表面积、孔径分布,结果显示石墨烯、天然石墨的比表面积分别为81.74、8.92 m2/g,石墨烯的比表面积达到天然石墨的9.16倍,显示在相同条件下,作为爆轰产物的石墨烯具有更强的吸附脱附能力。图4给出了不同孔径对应的孔的表面积,其中,纵坐标Sa表示单位质量的表面积,横坐标Dp表示孔径。图4中可以看出,2~3 nm的孔径对天然石墨的脱附量影响最大,而爆轰产物中,2~3 nm的孔数量有所增加,脱附量的增加主要集中于10 nm以下,其中,对脱附量影响最大的为孔径4 nm左右的孔。由此可见,爆轰过程使得石墨层片剥离后形成石墨烯后,不仅使比表面积增大,而且改变了石墨孔吸附脱附能力的分布曲线,大量增加了4 nm左右孔径的孔的数量,使爆轰产物吸附脱附性能大大增强。

3 结 论

(1)利用石墨在强氧化性酸的环境中可获得低阶插层的特点,以发烟硝酸与硝基甲烷为液体炸药组分,可以制备出具有完整的片状结构石墨烯薄片,薄片平均厚度约为14.73 nm;

(2)利用强酸性液体炸药制备出的石墨烯薄片具有良好的晶体结构,液体炸药爆轰过程未增加无序碳的量;

(3)石墨烯的比表面积增大至天然石墨的9.16倍,其比表面积的增加主要源于直径低于10 nm的孔,其中4 nm左右孔的增加量最大;

(4)利用液体炸药制备石墨烯薄片,制备工艺简单、速度快、效率高、产物纯度高,但是需要专用的爆轰设备。

[1] Basua S, Bhattacharyyab P. Recent developments on graphene and graphene oxide based solid state gas sensors[J]. Sensors and Actuators B: Chemical, 2012,173:1-21.

[2] 江莞,范宇驰,刘霞,等.机械剥离法制备石墨烯及其在石墨烯/陶瓷复合材料制备中的应用[J].中国材料进展,2011,30(1):12-20. Jiang Wan, Fan Yuchi, Liu Xia, et al. Preparation of graphene by mechanical exfoliation and its application in preparation of graphene/ceramic composites[J]. Materials China, 2011,30(1):12-20.

[3] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008,3(9):563-568.

[4] Qian Wen, Hao Rui, Hou Yanglong, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality[J]. Nano Research, 2009,2(9):706-712.

[5] Sun Guilei, Li Xiaojie, Yan honghao. Detonation of expandable graphite to make micron powder[J]. New Carbon Material, 2007,22(3):242-246.

[6] Heer W A de , Berger C, Wu Xiaosong, et al. Epitaxial graphene[J]. Solid State Communications, 2007,143(1/2):92-100.

[7] Wang Zhijuan, Zhou Xiaozhu, Zhang Juan, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C, 2009,113(32):14071-14075.

[8] Keun Soo Kim, Zhao Yue, Jang Houk, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009,457(7230):706-710.

[9] Sun Guilei, Li Xiaojie, Wang Qiquan, et al. Synthesis of carbon-coated iron nanoparticles by detonation technique[J]. Materials Research Bulletin, 2010,45(5):519-522.

[10] Sun Guilei, Li Xiaojie, Yan Honghao, et al. A simple detonation method to synthesize carbon-coated cobalt[J]. Journal of Alloys and Compounds, 2009,473(1/2):212-214.

[11] Luo Ning, Li Xiaojie, Wang Xiaohong, et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon, 2010,48(13):3858-3863.

[12] 孙贵磊.球状纳米铜颗粒的爆轰法制备[J].爆炸与冲击,2012,32(3):273-277. Sun Guilei. Spherical copper nano-particles prepared by a detonation technique[J]. Explosion and Shock Waves, 2012,32(3):273-277.

[13] 李瑞勇,闫鸿浩,王小红,等.粉状混合炸药爆轰合成纳米氧化铝实验研究[J].爆炸与冲击,2013,33(增刊):157-160. Li Ruiyong, Yan Honghao, Wang Xiaohong, et al. Ultrafine aluminum oxide particles prepared by detonation of powder explosive mixtures[J]. Explosion and Shock Waves, 2013,33(suppl):157-160.

[14] 曲艳东,李晓杰,张越举,等.硫酸亚钛爆轰制备纳米TiO2粒子[J].功能材料,2006,11(37):1838-1840. Qu Yandong, Li Xiaojie, Zhang Yueju, et al. Prepation of nanosized TiO2particles utilizing Ti2(SO4)3by detonation technique[J]. Journal of Functional Materials, 2006,11(37):1838-1840.

[15] 孙贵磊,闫鸿浩,李晓杰.爆轰制备球形纳米γ-Fe2O3粉末[J].材料开发与应用,2006,21(5):5-7. Sun Guilei, Yan Honghao, Li Xiaojie, et al. Synthesis of nanometer globuler γ-Fe2O3powder through detonation[J]. Development and Application of Materials, 2006,21(5):5-7.

[16] Xie Xinghua, Li Xiaojie, Zhao Zheng, et al. Growth and morphology of nanometer LiMn2O4powder[J]. Powder Technology, 2006,169(3):143-146.

[17] 王小红,李晓杰,张越举,等.爆轰法制备纳米MnFe2O4的实验研究[J].高压物理学报,2007,21(2):173-177. Wang Xiaohong, Li Xiaojie, Zhang Yueju, et al. Experiment research of nano manganese ferrite powders prepared by detonation method[J]. Chinese Journal of High Pressure Physics, 2007,21(2):173-177.

[18] He Chunnian, Zhao Naiqin, Shi Chunsheng, et al. A practical method for the production of hollow carbon onion particles[J]. Journal of Alloys and Compounds, 2006,425(1):329-333.

(责任编辑 曾月蓉)

本刊关于稿件、版权等的声明

在投稿、稿件处理、发表等过程中,作者需注意如下问题:

1.稿件是作者独立取得的原创性研究成果,无抄袭,无一稿多投,未在国内外公开发表过。

2.稿件无政治错误,不涉及保密和拟申请专利的内容,已经过作者单位保密审查。

3.作者署名和排序无异议,单位署名和排序无争议,且无知识产权纠纷。在稿件处理过程中,如有作者或单位署名变更,需有全体作者亲笔签名和全部单位盖章同意的书面声明。

4.稿件由编辑部组织审稿。自收稿之日时,编辑部将在4个月内反馈处理结果。若超过4个月未答复的,作者有权另行处理稿件,但需事先通知编辑部。

5.对录用的稿件,在尊重稿件内容的基础上,编辑部有权作必要的修改和删减,按规定进行标准化和规范化。

6.稿件录用后,稿件的所有出版权归编辑部。

7.稿件发表后,编辑部赠送样刊,并一次性付给作者稿酬及版权转让费。

爆炸与冲击

2016年9月25日

Preparation of grapheme by detonation using liquid explosive

Sun Guilei1,3, Yan Honghao2, Li Xiaojie2

(1.DepartmentofSafetyEngineering,ChinaInstituteofIndustrialRelations,Beijing100048,China;2.DepartmentofEngineeringMechanics,DalianUniversityofTechnology,Dalian116024,Liaoning,China;3.DepartmentofMechanics&AerospaceEngineering,CollegeofEngineering,PekingUniversity,Beijing100871,China)

Graphite intercalation compounds (GICs) can be obtained when graphite is placed in strong oxidizing acids. Using this characteristic, we prepare liquid explosive by putting natural graphite in strong HNO3and mixing it with CH3NO2. Then we poured the mixture into a plastic container and placed the container at the center of a detonation reactor to ignite the explosive mixture. After the detonation, we collected and analyzed the soot by XRD, EDX, SEM, TEM, Raman spectroscopy, the specific surface area and porosity analyzer. Results indicate that the prepared grapheme possesses perfect crystal properties and exhibits a structure of thin sheets, with a specific surface area 9.16 times that of natural graphite and an average thickness of about 14.73 nm.

mechanics of explosion; grapheme flakes; liquid explosive; detonation split; specific surface area

10.11883/1001-1455(2016)05-0715-06

2015-07-01; < class="emphasis_bold">修回日期:2015-11-08

2015-11-08

北京高等学校青年英才计划项目;中国劳动关系学院一般项目(13YY009)

孙贵磊(1980— ),男,博士,副教授,sunguilei@126.com。

O389 <国标学科代码:13035 class="emphasis_bold"> 国标学科代码:13035 文献标志码:A国标学科代码:13035

A

猜你喜欢

薄片炸药表面积
空气也能当炸药的神秘武器:云爆弹
巧求表面积
议论火炸药数字化制造
常规高效毁伤用火炸药技术发展趋势
来自森林的植物薄片
加热非燃烧烟草薄片理化特性及热裂解性能研究
求正方体的表面积
α-AlH3对HMX基炸药爆轰参数的影响
你真好
你真好