APP下载

初中数学思想方法教学策略

2016-04-13周玉

中学课程辅导·教学研究 2016年33期
关键词:数学知识思想数学

⌾周玉

初中数学思想方法教学策略

⌾周玉

正学生数学思想方法的形成,并不是在学数学知识的过程中自然而然形成的,而是需要教师有计划、有目的地进行教学,逐步让学生掌握。因此,在平时教学中要为学生提供领悟、模仿、应用数学思想方法的机会与环境,让学生循序渐进地不断积累、不断深化,以达到自己创造性地使用数学思想方法的境界。

数学思想方法;学生;数学知识;教学策略;函数思想;渗透;循序渐进;数学教学内容;数学教材;转化思想

数学思想方法是中学数学的重要内容之一。《数学教学大纲》明确指出,中学数学课在进行课本知识教学的同时,大力加强数学思想方法的教学。以下是笔者对于中学数学思想方法教学的一些认识。

一、初中数学思想方法教学的重要性

日本著名数学教育家米山国藏深深感到:许多学生在学校学的数学知识,如果毕业后没有什么机会去用的话,不久就忘掉了。然而,不管他们从事什么工作,惟有深深铭刻在头脑中的数学思想方法却随时随地的发生作用,使他们终身受益。可见在数学课堂中进行数学思想方法的教学,有利于学生的思维发展和能力培养。然而在传统的数学教学中,很多教师却只注重知识的传授,而忽视知识形成过程中的数学思想方法的教学,以至于阻碍了学生的发展。

二、初中数学思想方法的主要内容

初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化思想,数形结合思想,分类讨论思想,函数与方程思想等。

1、转化的思想方法:这是初中最常见、最常用的数学思想之一。它就是将需要解决的问题,转化为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法,如:代数式中加法与减法的转化,乘法与除法的转化,高次方程转化为低次方程,几何中添加辅助线等等,都体现出转化的思想方法。

2、数形结合的思想方法:它能抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。从而使代数问题显得直观,几何问题显得精确。初中数学中,体现数形结合思想的地方很多,比如通过数轴,将数与点对应,通过直角坐标系,将函数与图象对应等等,通过形象思维过渡到抽象思维,从而加深对知识的理解和掌握。

3、分类讨论的思想方法:这种思想方法是对复杂问题中的各种情况进行分类,然后分别研究和求解。它的实质,是将整体问题化为部分问题来解决,以增加题设条件。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。

三、加强数学思想方法教学是当前数学教育的紧迫任务

当前数学思想方法教学中存在的问题——在当前数学教学中,有些教师缺乏数学思想方法的教学。主要表现在:在判定教学目的时,对具体知识、技能训练的教学要求比较明确,而忽视数学思想方法的教学要求;在教学过程中,往往注重知识的结论,削弱知识形成过程中思想方法的训练;在知识应用过程中,仅偏重于就题论题,忽视数学思想方法的提炼;在小结时,注重知识系统的整理,而忽视思想方法的归纳等等。这样,致使数学教学停留在较低的层次上,学生没有领悟数学的真谛,不懂得数学的价值,不会运用数学概念、思想和方法去思考和解决问题;没有形成良好的思维品质,不具有创新意识。

加强数学思想方法教学的目的与意义——数学思想方法是处理数学问题的指导思想和基本策略,是数学的灵魂。因此引导学生领悟和掌握以数学知识为载体的数学思想方法,是由知识转化为能力的桥梁,是使学生提高思维水平,真正懂得数学的价值,建立科学的数学观念,从而发展数学、运用数学的重要保证,是现代教学思想与传统教学思想的根本区别之一,是深化数学教学改革的突破口。

同时,从宏观意义上讲,数学思想方法是数学发现、发明的关键和动力;从微观意义上讲,在数学教学和数学学习中,要再现数学的发现过程、提示数学思维活动的一般规律和方法。

四、通过“问题解决”,掌握和深化数学思想方法

问题是数学的心脏。数学问题的解决过程,实质是命题的不断变换和数学思想方法反复运用的过程;数学思想方法则是数学问题的解决的观念性成果,它存在于数学问题的解决之中。数学问题的步步转化,无不遵循数学思想方法指示的方向。因此通过问题解决,培养数学意识,构造数学模型,提供数学想象,伴以实际操作,诱发创造动机,就把数学嵌入活的思维活动之中,并不断在学习数学、用数学的过程中,引导学生学习知识、掌握方法、形成思想、促进思维能力的发展。

其三,分层施教,全面提高。学生的差异是客观存在的。在教学中对不同水平的学生提出不同要求,同时根据他们的学习效果,有效地实施个别辅导。对优生要适当拔高加深,鼓励学生自学、勤练、善思,教师辅以必要的点拨和讲解;对学困生要实施低起点,分散难点,多鼓励、多启发诱导的方法,既补基础知识更补数学思想的引导、揭示、提炼和应用。这样才能真正达到提高全体学生数学素养的目的。

同时,在知识形成阶段,可选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法,字母代替数的思想方法,函数的思想方法,方程、极限和统计的思想方法等等。在知识推导阶段的解题教学中可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法,在知识的总结性阶段可采用公理化、结构化等思想方法。

总之,由于数学思想方法是基于数学知识又高于数学知识的一种隐性的数学知识,要在反复的体验和实践中才能使个体逐渐认识、理解,内化为个体认知结构中对数学学习和问题有着生长点和开放面的稳定成分。教材内容的合理编排和高质量的教学设计是贯彻数学思想方法教学的基础和保证。教师要从数学的特征和中学数学内容出发,充分体现“观察—实验—思考—猜想—证明(或反驳)”这一数学知识的再创造过程和理解过程,展现概念的提出过程、结论的探索过程和解题的思考过程,对数学具有归纳、演绎两个侧面的全面认识;从使个体掌握知识、形成能力和良好思维品质的全方位要求出发,去精心设计一个单元、一堂课的教学目标、问题提出、情境创设等教学过程的各个环节。

[1]初中数学思想方法教学策略丁汉曙《语数外学习(初中版中旬)》2013年01期

[2]林小庆;有效提高数学解题能力的几点建议[J];高中数理化;2011年16期

[3]李凯;在初中数学教学中如何渗透数学思想方法[J];中学生数理化;2011年05期

[4]杨相云;基于“数学思想方法”的“同底数幂的乘法”教学探索[J];中学数学;2011年08期

江苏省沭阳县沂涛初级中学 223600)

猜你喜欢

数学知识思想数学
思想之光照耀奋进之路
思想与“剑”
节拍器上的数学知识
艰苦奋斗、勤俭节约的思想永远不能丢
“思想是什么”
如何将数学知识生活化
让学生在生活中探索数学知识
我为什么怕数学
数学到底有什么用?
错在哪里