新鲜胚胎移植与冻融胚胎移植对母婴结局影响的研究进展
2016-04-09郭延秀殷艳晶田莉
郭延秀,殷艳晶,田莉*
(1. 北京大学人民医院妇产科,北京 100044;2. 北京昌平区医院妇产科,北京 102200)
新鲜胚胎移植与冻融胚胎移植对母婴结局影响的研究进展
郭延秀1,殷艳晶2,田莉1*
(1. 北京大学人民医院妇产科,北京100044;2. 北京昌平区医院妇产科,北京102200)
不孕症的发病率近年呈上升趋势,体外受精-胚胎移植(IVF-ET)是治疗不孕症的主要方法之一。自上世纪80年代冻融胚胎移植(FET)首次获得临床妊娠后,作为新鲜胚胎移植失败后的补充治疗,已成为IVF-ET治疗不孕症的重要组成部分。FET对母体和子代的健康影响如何,也成为生殖医学、围产医学和遗传学研究的热点。本文就近年来鲜胚移植或FET治疗后母婴结局的研究进展进行综述。
体外受精;新鲜胚胎移植;冻融胚胎移植;母婴结局
(JReprodMed2016,25(8):753-756)
辅助生殖技术(ART)是20世纪70年代兴起的一种以体外受精-胚胎移植(IVF-ET)及其衍生技术为主体的治疗不孕症的方法,其中,根据所移植胚胎的不同,又分为新鲜胚胎移植和冻融胚胎移植(FET)两种方式。随着ART不断发展和改进,ET成功率逐渐提高,鲜胚移植和FET均有较高的临床妊娠率,然而关于两者的疗效和安全性比较,临床上一直存在争议。研究者们越来越关注两者在临床妊娠率、流产率、活产率以及妊娠并发症等方面的差异。本文通过近年来的相关文献分析,旨在了解鲜胚移植和FET对母婴结局的影响。
一、鲜胚移植和FET的临床应用
随着IVF-ET技术的发展,鲜胚移植后临床妊娠率提高,多胎妊娠率也相应增加,多胎妊娠的妊娠并发症随之增多。因此,临床医生开始合理限制新鲜胚胎的移植数,将剩余的优质胚胎进行冷冻保存,以备再次移植所需。冷冻胚胎复苏技术的应用,提高了IVF的累计妊娠率,减轻了反复促排卵给患者带来的经济压力及精神负担,且能有效预防卵巢过度刺激综合征(OHSS)的发生。
自1990年首例玻璃化冷冻卵裂期胚胎移植成功、获得临床妊娠并分娩后,人类胚胎冷冻技术有了长足发展。有研究报道,玻璃化冷冻的胚胎复苏率达到95%,其中,玻璃化冷冻组的临床妊娠率比程序化冷冻组高50%,而持续妊娠率相似[1-2]。目前,胚胎玻璃化冷冻技术已是相对成熟且常规的冷冻方法,其最大限度地减少了冷冻技术本身对胚胎质量的影响。有文献报道显示,FET的妊娠率和活产率已经接近甚至超过鲜胚移植周期[3]。
二、鲜胚移植和FET对母婴结局的影响
目前ART的研究逐渐转向关注母体和子代健康[4]。Wennerholm等[5]的研究中,纳入了北欧337 431例行ART助孕治疗的孕产妇,结果显示,与自然妊娠相比FET增加了早产、早早产、低体重儿、小于胎龄儿、巨大儿及新生儿死亡的发生率,但妊娠期并发症的发生率比鲜胚移植者降低;这些结局对子代的长远健康也有一定影响,如增加成年后代谢性疾病发生的风险等[6]。鲜胚移植及FET对母婴结局的影响因素可能存在差异,鲜胚移植主要与促排卵及子宫内膜的容受性等有关,而FET可能与解冻后的胚胎质量有关。
(一)鲜胚移植时控制性卵巢刺激(COS)对妊娠结局的影响
COS是鲜胚移植中的关键步骤,指在可控制的范围内,刺激多个卵泡发育和成熟。这就会导致卵泡发育和胚胎移植过程中出现超生理剂量的激素分泌,包括雌激素、孕激素及血管内皮生长因子(VEGF)等,继而产生多种效应,包括卵母细胞、子宫内膜、种植的胚胎发生改变等[7]。
1. COS时激素水平的变化:众多研究表明超生理剂量的雌激素会降低IVF成功率,增加不良母婴结局,包括小于胎龄儿和产前子痫等[8-11],FET则可以避免这种影响[12]。超生理剂量的雌激素会导致由胎盘及蜕膜产生的大分子糖蛋白——妊娠相关蛋白A(PAPP-A)显著减少,子宫血管重建,胎盘发育异常[13],继而影响滋养细胞的分化和侵蚀、胚胎的发育和粘附,导致多种异常围产期结局[14]。此外,COS后,患者体内孕酮水平的升高会导致子宫内膜成熟度提前,与胚胎发育成熟度不同步,进而影响胚胎着床[15]。
2. COS对子宫内膜的影响:(1)COS影响子宫内膜的容受性:子宫内膜随月经周期发生周期性的变化,在为胚胎种植做准备的过程中,其内膜容受性也发生变化。内膜通过孕激素重塑,黄体生成素(LH)峰后适于胚胎种植的时间只有6~10 d[16]。人类及动物实验均表明,COS会引起种植时子宫内膜组织形态提前发育、孕激素受体提前降调节,继而影响胚胎种植过程[17-18]。COS可以使特定整合素表达降低,影响内膜种植窗时的容受性[19],而小鼠模型研究表明,非种植窗内胚胎种植成功后可能出现胎盘形成缺陷及胎儿发育缺陷[20]。(2)COS影响子宫内膜的基因表达:COS过程中大量促性腺激素的应用会影响子宫内膜基因的转录调控,进而破坏子宫内膜正常的容受性。有研究报道,COS周期胚胎着床过程中患者子宫内膜转化生长因子-β(TGF-β)信号通路表达异常,同时子宫内膜出现大量白细胞聚集[21]。(3)COS影响内膜的免疫环境:有研究报道子宫内膜的免疫环境在胚胎种植过程中起重要作用,尤其是自然杀伤(NK)细胞与内膜容受性相关;胚胎种植过程中蜕膜化的NK细胞可以分泌多种细胞因子参与种植过程,如VEGF等[15]。COS过程中NK细胞的数量及亚型均比自然周期显著减少,可能对胚胎种植产生不利影响[22]。
3. COS对胚胎的影响:(1)COS影响胚胎发育和生长:流行病学研究显示,超促排卵时激素微环境异常会对胎盘形成及胎儿发育产生不利影响[10,23]。Mainigi等[24]将自然妊娠的小鼠囊胚植入自然和超排卵假孕的小鼠体内,19 d后去卵巢发现:植入超排卵假孕小鼠体内的鼠胚体重减少25%,胎盘也小,且存在胎盘与胎儿发育相关基因表达异常。(2)COS时胚胎表观遗传学变化:胚胎种植时的微环境变化会诱导胚胎的表观遗传学发生变化,基因表达的表观遗传学调节有很多机制,包括印记基因选择性甲基化等;甲基化在配子发育时就已开始,卵母细胞及父源性印记基因的甲基化,导致胎盘形成、胚胎发育受到影响,最终影响胎儿发育和子代长远健康[25]。
(二)FET对母婴结局的影响
目前,FET技术已广泛应用于辅助生殖助孕治疗,但胚胎冷冻保存及复苏对于母婴结局的影响如何,仍然存在争议。既往研究表明:FET后巨大儿及大于胎龄儿的比例要高于自然妊娠及鲜胚移植时的比例[16,26-27]。荷兰的一项研究表明FET组比鲜胚移植组新生儿体重增加[28]。另有研究表明体外培养的时间越长,大于胎龄儿(LGA)的几率越大,体外培养5~6 d后移植比培养2 d后移植LGA的几率明显增加[29]。Bu等[30]研究发现移植冷冻后复苏胚胎比移植新鲜胚胎男婴的出生比例升高,而部分研究则认为FET与出生女性新生儿比例升高相关[31]。另外,冷冻对于胚胎的损害从形态上无法分辨,这就对优化选择胚胎造成困难[32]。
关于冷冻保存对人类胚胎发育潜能的影响,目前只有少数研究报道了冷冻胚胎与新鲜胚胎培养发育的分子调控机制。冻融胚胎及新鲜胚胎间基因的表达不同,主要涉及细胞凋亡及多种应急通路,如Bcl-2相关X蛋白(Bax)、胚胎干细胞关键蛋白(NANOG及SOX2)及尾型同源框2(CDX2)途径,与鲜胚移植相比,FET时母亲效应基因,如真核翻译起始因子1A(EIF1AX)及结节性硬化基因2(TSC2)会发生更大的变化[33];与新鲜囊胚相比,玻璃化冻融的第5天囊胚纺锤体发生异常的几率增加,但玻璃化冻融囊胚仍能保持较高的复苏率[34]。Chacón等[35]的动物实验表明,冷冻技术并不改变牛囊胚表观遗传学的表达情况。
玻璃化FET周期避免了大量促性腺激素的刺激,采取接近自然周期的移植策略,可以有效减少对子宫内膜容受性的影响。因此,尽管玻璃化FET周期的临床妊娠率、流产率及活产率报道不一,但均在可接受的范围。有研究报道,FET周期的妊娠率和种植率均高于鲜胚移植周期,且FET更适用于胚胎发育相对迟缓及孕酮水平提前升高的患者[36-37]。侯晓妮等[38]研究指出:对于有OHSS发生高风险的患者应该果断选择全胚冷冻后择期行FET,可以减少甚至杜绝OHSS的发生,从而提高IVF的安全性以获得更为满意的妊娠结局,并且降低患者的治疗费用。李玉梅等[39]研究指出:高龄患者全胚冷冻后行FET能获得与鲜胚移植相似的临床妊娠率和活产率,且妊娠期并发症发生率低。
三、问题与展望
综上所述,尽管IVF-ET的妊娠并发症及围产儿不良结局高于自然妊娠,但FET周期的母婴结局有优于鲜胚移植周期的趋势。随着FET技术的发展,现在提出了“非选择性全胚胎冷冻移植(freeze-all ET)”的概念,即IVF后将胚胎全部冷冻保存,不做鲜胚移植,而是择期进行FET。关于freeze-all ET,目前各个生殖中心尚无统一标准。一方面,冷冻技术对胚胎质量的影响仍然存在争议;另一方面,患者对于FET的接受度、治疗时间延长、治疗费用增加以及来自家庭与社会压力等问题仍然需要解决。因此,临床上进行ART助孕治疗时,应根据各中心现有的技术条件及患者的实际情况综合评价后,进行个体化治疗。
[1]Edgar DH,Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos[J]. Hum Reprod Update,2012,18:536-554.
[2]AbdelHafez FF,Desai N,Abou-Setta AM,et al. Slow freezing,vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis[J/OL]. Reprod Biomed Online,2010,20:209-222.
[3]Roque M,Lattes K,Serra S,et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis[J]. Fertil Steril,2013,99:156-162.
[4]Kalra SK,Barnhart KT. In vitro fertilization and adverse childhood outcomes: what we know,where we are going,and how we will get there. A glimpse into what lies behind and beckons ahead[J]. Fertil Steril,2011,95:1887-1889.
[5]Wennerholm UB,Henningsen AK,Romundstad LB,et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group[J]. Hum Reprod,2013,28:2545-2553.
[6]Kajantie E,Hovi P. Is very preterm birth a risk factor for adult cardiometabolic disease?[J]. Semin Fetal Neonatal Med,2014,19:112-117.
[7]Santos MA,Kuijk EW,Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo[J]. Reproduction,2010,139:23-34.
[8]Farhi J,Ben-Haroush A,Andrawus N,et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation[J/OL]. Reprod Biomed Online,2010,21:331-337.
[9]Joo BS,Park SH,An BM,et al. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner[J]. Fertil Steril,2010,93:442-446.
[10]Imudia AN,Awonuga AO,Doyle JO,et al. Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization[J]. Fertil Steril,2012,97:1374-1379.
[11]Imudia AN,Goldman RH,Awonuga AO,et al. The impact of supraphysiologic serum estradiol levels on peri-implantation embryo development and early pregnancy outcome following in vitro fertilization cycles[J]. J Assist Reprod Genet,2014,31:65-71.
[12]Imudia AN,Awonuga AO,Kaimal AJ,et al. Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverse obstetric outcomes: a preliminary study[J]. Fertil Steril,2013,99:168-173.
[13]Aberdeen GW,Bonagura TW,Harman CR,et al. Suppression of trophoblast uterine spiral artery remodeling by estrogen during baboon pregnancy: impact on uterine and fetal blood flow dynamics[J]. Am J Physiol Heart Circ Physiol,2012,302:H1936-1944.
[14]Giorgetti C,VandenMeerschaut F,De Roo C,et al. Multivariate analysis identifies the estradiol level at ovulation triggering as an independent predictor of the first trimester pregnancy-associated plasma protein-A level in IVF/ICSI pregnancies[J]. Hum Reprod,2013,28:2636-2642.
[15]Lee JY,Lee M,Lee SK. Role of endometrial immune cells in implantation[J]. Clin Exp Reprod Med,2011,38:119-125.
[16]Paulson RJ. Hormonal induction of endometrial receptivity[J]. Fertil Steril,2011,96:530-535.
[17]Develioglu OH,Hsiu JG,Nikas G,et al. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors[J]. Fertil Steril,1999,71:1040-1047.
[18]Pelkonen S,Koivunen R,Gissler M,et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006[J]. Hum Reprod,2010,25:914-923.
[19]Sendag F,Akdogan A,Ozbilgin K,et al. Effect of ovarian stimulation with human menopausal gonadotropin and recombinant follicle stimulating hormone on the expression of integrins alpha3,beta1 in the rat endometrium during the implantation period[J]. Eur J Obstet Gynecol Reprod Biol,2010,150:57-60.
[20]Cha J,Sun X,Dey SK. Mechanisms of implantation: strategies for successful pregnancy[J]. Nat Med,2012,18:1754-1767.
[21]Haouzi D,Assou S,Mahmoud K,et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients[J]. Hum Reprod,2009,24:1436-1445.
[22]Chaouat G. Inflammation,NK cells and implantation: friend and foe (the good,the bad and the ugly?): replacing placental viviparity in an evolutionary perspective[J]. J Reprod Immunol,2013,97:2-13.
[23]Kalra SK. Adverse perinatal outcome and in vitro fertilization singleton pregnancies: what lies beneath? Further evidence to support an underlying role of the modifiable hormonal milieu in in vitro fertilization stimulation[J]. Fertil Steril,2012,97:1295-1296.
[24]Mainigi MA,Olalere D,Burd I,et al. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth[J]. Biol Reprod,2014,90:26.
[25]Lucifero D,Mann MR,Bartolomei MS,et al. Gene-specific timing and epigenetic memory in oocyte imprinting[J]. Hum Mol Genet,2004,13:839-849.
[26]Pelkonen S,Koivunen R,Gissler M,et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006[J]. Hum Reprod,2010,25:914-923.
[27]Sazonova A,Kallen K,Thurin-Kjellberg A,et al. Obstetric outcome after in vitro fertilization with single or double embryo transfer[J]. Hum Reprod,2011,26:442-450.
[28]Vergouw CG,Kostelijk EH,Doejaaren E,et al. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF[J]. Hum Reprod,2012,27:2619-2626.
[29]Makinen S,Soderstrom-Anttila V,Vainio J,et al. Does long in vitro culture promote large for gestational age babies?[J]. Hum Reprod,2013,28:828-834.
[30]Bu Z,Chen ZJ,Huang G,et al. Live birth sex ratio after in vitrofertilization and embryo transfer in China-an analysis of 121,247 babies from 18 centers[J/OL]. PLoS One,2014,9: e113522.
[31]Wikland M,Hardarson T,Hillensjö T,et al. Obstetric outcomes after transfer of vitrified blastocysts[J]. Hum Reprod,2010,25:1699-1707.
[32]Van Landuyt L,Van de Velde H,De Vos A,et al. Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos[J]. Hum Reprod,2013,28:2943-2949.
[33]Shaw L,Sneddon SF,Brison DR,et al. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos[J]. Reproduction,2012,144:569-582..
[34]Chatzimeletiou K,Morrison EE,Panagiotidis Y,et al. Cytoskeletal analysis of human blastocysts by confocal laser scanning microscopy following vitrification[J]. Hum Reprod,2012,27:106-113.
[35]Chacón L,Gómez MC,Jenkins JA,et al. Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos[J]. Zygote,2011,19:255-264.
[36]Aflatoonian A,Oskouian H,Ahmadi S,et al. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial[J]. J Assist Reprod Genet,2010,27:357-363.
[37]Shapiro BS,Daneshmand ST,Garner FC,et al. Embryo cryopreservation rescues cycles with premature luteinization[J]. Fertil Steril,2010,93:636-641.
[38]侯晓妮,王俊霞,王玢,等. 卵巢过度刺激高风险患者全胚冷冻后择期移植妊娠结局分析[J]. 生殖医学杂志,2014,23: 376-379.
[39]李玉梅,桂宝恒,刘冬娥. 高龄患者全胚冷冻后行解冻胚胎移植妊娠结局分析[J]. 生殖医学杂志,2015,24: 601-605.
[编辑:侯丽]
Research progress in impact of fresh versus frozen-thawed embryo transfer upon maternal and neonatal outcomes
GUO Yan-xiu1,YIN Yan-jing2,TIAN Li1*
1.DepartmentofObstetricsandGynecology,PekingUniversityPeople’sHospital,Beijing100044 2.DepartmentofObstetricsandGynecology,ChangpingDistrictHospital,Beijing102200
In recent years,the incidence of infertility is on the rise,and IVF-ET is one of the main treatment methods for infertility. With the first frozen embryo transfer was performed in 1980s,frozen embryo transfer technology (FET) is having much rapid development,and has become an important part of IVF-ET. The reproductive medicine,perinatal medicine and genetics are focus on what the health effects of the FET on mother and the offspring. This paper reviewed the impact of fresh embryo transfer and FET treatment on maternal and neonatal outcomes.
IVF;Fresh embryo transfer;Frozen embryo transfer;Maternal and neonatal outcomes
2015-09-17;
2015-12-29
卫生部公益性行业科研专项(2115000011)
郭延秀,女,山东济宁人,博士,妇产科专业.(*
)
DOI:10.3969/j.issn.1004-3845.2016.08.019