肝癌特异癌胚性抗原介导的免疫治疗研究*
2016-04-06姚敏姚登福
姚敏,姚登福
(南通大学:1医学院免疫学教研室;2附属医院临床医学研究中心,江苏南通226001)
·肝病专栏·
肝癌特异癌胚性抗原介导的免疫治疗研究*
姚敏1,姚登福2
(南通大学:1医学院免疫学教研室;2附属医院临床医学研究中心,江苏南通226001)
肝细胞性肝癌(Hepatocellular carcinoma,HCC)的预防和有效治疗仍是医学界的难题[1-2]。人类HCC发生与肝炎病毒(HBV、HCV)慢性持续性感染、化学致癌物摄入等多病因作用相关。癌基因或癌相关基因激活、抗癌基因失活或胚胎期某些癌基因重新复活等诸多因素,引起肝细胞生长失控,经启动、促进、演变为多阶段发病过程。因其恶性度高,起病隐匿,早期诊断率低,确诊时往往已到中晚期,失去根治性切除机会,且术后复发机率很高,预后极差[3]。肝癌以手术切除为主的综合治疗,包括血管栓塞、射频、放化疗和生物治疗等,虽可有效地治疗局部病灶,但仍不能解决复发、转移等问题[4-5]。肝癌特异性或相关抗原、某些通路的关键信号分子、生长因子及受体和癌基因产物等均为治疗靶点,癌胚型抗原介导的治疗靶点具有高度靶向特异性,在肝癌治疗中可能具有良好的应用前景。本文述评了近年对癌胚型抗原介导的肝癌分子免疫治疗研究的新进展。
1 癌胚性HBx抗原与肝癌免疫治疗
肝癌为多基因变异的恶性肿瘤,伴随DNA甲基化改变、MicroRNA、lncRNA表达及免疫应答等[7-8]。我国肝癌患者中HBV感染者居多,在80%以上。HBV感染自然史分为免疫耐受期、免疫清除期、非活动复制期和再活动期,免疫力低下或劳累可诱导基因变异[9-10]。在HBV的A、B、C、D、E、F、G和H 8种基因型中,我国肝癌患者以C型和B型为主;C基因型占74.5%,尤其C2亚型比B基因型更易致癌,且术后又是复发的高危因素,值得重视[11-12]。HBV阳性肝癌中存在大量截短HBx蛋白为致癌基因,肝癌细胞基因组19q12、2q32.2、22q12是HBx整合位点。将HBx基因转染至肝癌HepG2细胞,受转染细胞第3、18和20号染色体发生改变,微核数量增加3倍;HBx蛋白调节胞内基因、结合转录因子、激活相关信号通路与启动子共同作用,诱导肝细胞发生恶性转化[13-14]。
HBxAg表达与HCC发生、发展密切相关[15]。在抗HBxAg单抗(188Re-anti-HBx Mab)治疗HBV相关HCC研究中,以持续表达HBxAg的肝癌Hep3B2.1-7细胞制备裸鼠人肝癌移植瘤模型,以188Re-4H9 Mab治疗,发现肝癌组织188Re-4H9 Mab特异性聚集,瘤体明显缩小,呈剂量依赖性[16]。病理学检查见瘤内出现坏死、出血程度明显高于对照组。因核素标记的抗HBx Mab的靶点是癌细胞或病毒感染细胞的表面抗原,而非体内自身抗原,与以往核素标记单抗相比,特异性更高、对正常细胞毒性更低。提示该单抗与HBx抗原特异结合,不仅可用于HCC治疗,且可在HBV持续感染而非癌变阶段发挥治疗作用[17-18]。
2 炎症介质NF-κB与肝癌
临床证实HCC为炎症相关性恶性肿瘤,核转录因子-κB(Nuclear factor-κB,NF-κB)活化在炎症和癌变间充当桥梁角色并与多药耐药的发生相关[19]。肝细胞癌变过程中NF-κB异常表达,与其受体结合经信号转导途径诱导病变细胞凋亡,以建立细胞快速防御机制,发挥抗凋亡作用。活化NF-κB促肿瘤坏死因子(TNF)-α转录产生反馈调节,使NF-κB抗凋亡效应增强从而促进癌变,以蛋白酶体抑制剂阻断NF-κB活化可逆转癌细胞对TRAIL(TNF-related apoptosis-inducing ligand)耐受性,增强TRAIL所诱导癌细胞凋亡[20]。肝癌HepG2、SMMC 7721细胞死亡受体-5 (DR5)表达水平明显升高,正常肝细胞却很少。抗DR5单抗干预TRAIL介导的NF-κB活化,可选择性诱导癌细胞凋亡,抑制P38丝裂原活化蛋白激酶磷酸化和NF-κB活化,下调MMP-9和细胞间粘附分子1表达,进而抑制癌细胞增殖、侵袭和血管生成,改变肝癌细胞的生物学特性[21-16]。
NF-κB是炎症相关多中心、多基因和多步骤肝癌的重要介质,从慢性肝炎到肝癌过程中癌组织NF-κB表达,显著高于肝硬化或慢性肝炎的癌周组织(伴不典型增生),并伴肝免疫炎症反应相关基因、肝炎病毒相关基因和原癌基因转录表达[22]。NF-κB为诱导DNA结合型转录因子,两关键分子NF-κB1和NF-κBIα基因具有启动子功能的单核苷酸多态性,为HBV C基因型HCC的独立危险因素。肝癌中NF-κB 1-94ATTG2和NF-κBIA 3’非翻译区GG等位基因频率,显著高于对照和慢性乙肝患者;NF-κBIA-826CT和NF-κBIA-881AG等位基因频率显著高于非HCC感染者,且这种关联性在C型HBV感染致癌中显著,提示C基因型HBV致癌能力高于B基因型,且与NF-κB遗传易感性有关[23-24]。
以大鼠制备肝癌发生的动态模型观察,在肝细胞变性、癌前病变和癌变的过程中,肝组织总RNA呈梯度进行性增加,DNA合成及核酸代谢旺盛。全基因组(鼠28 000个基因)表达谱分析,发现与对照组相比早期HCC有2 898个基因上调,其中1 179个基因上调幅度大于2倍,268个基因上调幅度大于8倍;晚期HCC有3 208个基因上调;晚期HCC与早期HCC相比2 416基因上调,涉及细胞周期相关基因、与信号转导相关基因、肿瘤转移相关基因、凋亡抑制基因、抑癌基因及黏附分子等,可见癌变过程复杂,决定了肝癌靶向治疗极其艰难。然而干预NF-κB活化或中和TNF-α所介导的信号传导可延缓肝癌发生,或者干预肝癌细胞中NF-κB的转录,可明显抑制肝癌细胞增殖和生物学特性的改变[25-26]。
3 癌胚性甲胎蛋白(AFP)抗原与肝癌免疫治疗
癌胚性AFP是胚胎期肝细胞合成的由609个氨基酸单链多肽组成的糖蛋白,3个结构域N端含19个氨基酸残基的前导信号点[27-28],可被主要组织相容性复合体(Major histocompatibility complex,MHC)I或II类分子识别,递呈CD4+和CD8+T细胞,活化T细胞可识别免疫显性抗原(Immuno dominant)和亚免疫显性抗原(Sub-dominant)表位,表1。发挥免疫调节作用,其多肽疫苗作用和策略是诱导和激发机体抗AFP特异免疫反应[29-30]。
表1 AFP免疫和亚免疫显性抗原表位的分子结构
免疫显性及亚显性表位均能被MHCⅠ类分子所识别,都有特异性诱导T淋巴细胞活化的能力,且人类T细胞库在MHCⅠ类免疫反应中可识别AFP抗原表位。HLA-A24阳性HCC患者外周血单核细胞,发现5种HLA-A*2402限制性T细胞表位来源于AFP衍生肽,可诱导CTL产生γ干扰素(INF-γ),且可杀死AFP阳性肝癌细胞。以AFP衍生肽作为抗原表位杀伤肝癌细胞研究已进入临床试验。即使AFP衍生肽能有效地作为肝癌特异性靶点但问题很多,如DC功能、特异CTL、CD8+T细胞反应和AFP阴性HCC靶向治疗等有待研究[31-32]。
4 癌胚性磷脂酰肌醇蛋白多糖-3 与肝癌免疫治疗
磷脂酰肌醇蛋白多糖-3(Glypican-3,GPC-3)为胞膜表面糖蛋白,正常肝无表达,HCC组织过表达并位于胞质和胞膜,高于癌旁组织与HBV感染相关,远癌未见表达[33-34]。构建位于HepG2胞膜的锚定蛋白(GPC3+α+EGFP)与淋巴细胞共培养,经Fas-Fas L通路抑制癌细胞增值,促进凋亡[35-36]。GPC-3过表达与基质金属蛋白酶(MMP)-2、纤维母细胞生长因子(FGF)-2、FGF受体-1、FGF受体-2、硫酸酯酶-1(SULF-1)和SULF-2显著相关,抑制GPC-3可下调MMP;GPC-3表达,胞核/胞质β-catenin显著增高;与MMP及增殖信号结合,促进HCC进展。SULF-2增强细胞表面GPC-3和Wnt3a表达,稳定β-catenin激活T细胞转录因子,Wnt/β-catenin靶基因cyclinD1,SULF-2致癌作用,经上调GPC-3刺激Wnt/β-catenin通路,诱导癌细胞增殖;与高亲和Hh竞争性抑制相应受体结合,调控增殖和分化等[37-38]。
癌胚性GPC-3除诊断与鉴别HCC外,极可能为HCC治疗的新靶点,表2。抗GPC-3单抗(GC33)诱导GPC-3阳性肝癌细胞产生明显抗体依赖的细胞介导的细胞毒(ADCC)作用,对肝癌Huh-7和HepG2细胞移植瘤具有明显生长抑制作用。肝癌患者GPC-3高表达,其免疫原性在鼠模型和细胞培养物得以证明。因GPC-3特异性T细胞在肝癌患者血中表达较低,但在优化共刺激下体外扩增会增高。GPC-3对肝再生和肝细胞增殖起负调节作用[39-40]。以RNAi沉默GPC-3,可显著抑制肝癌MHCC-97H细胞的增殖和侵袭,瘤体衰减。
表2 GPC-3作为肝癌免疫治疗的分子靶点
GPC-3位于Wnt/β-catenin信号通路的上游,下调SULF2或干预其基因转录后,通过该通路可抑制HCC生长,其可作为治疗新方案,具有开发应用前景[43-44]。抗GPC-3单抗(GC33)治疗HCC,抑制HepG2和Huh7增殖,使HepG2细胞合成AFP下降。将GC33与化疗药物索拉非尼联合能有效抑制肿瘤。以GPC-3转染修饰树突状细胞(DCs)激活人T细胞并引发细胞介导免疫反应,对抗HepG2细胞增殖和转移,GPC-3转染DCs细胞对HepG2细胞产生高特异细胞毒性,用pEF-hGPC3质粒转染DCs刺激效应细胞可有效溶解HepG2细胞,有望成为HCC新疫苗,建立缺GPI锚定区的突变GPC-3(sGPC3)载体,转染HCC细胞,sGPC3通过Wnt信号显著抑制癌细胞增殖,抑制HCC生长,是有价值的治疗工具[41-45]。
5 展望
综上所述,肝癌与病毒慢性感染,癌基因及癌相关基因激活及抑癌基因失活等相关,癌变机制复杂,有效治疗仍是世界性难题[1,46]。手术治疗仍是目前首选方法,疗效的关键取决于早诊诊断;晚期肝癌缺乏有效治疗手段,免疫治疗与手术、放化疗、介入等综合治疗,可望改善疗效,延长存活时间[47-48]。随着基因组学、蛋白质组学飞速发展,分子病理学、分子药理学及基因工程技术的不断进步,分子剪接、基因沉默、干预转录和单抗技术可直接封闭癌细胞生长相关通路的信号分子或作为放射性核素、药物和毒素等载体,进行基因置换、基因增补、基因矫正和免疫治疗等分子靶向研究,将会有更多、特异性更强、副作用更小的方法研制成功并在肝癌靶向治疗中发挥作用。
1.Bruix J,Reig M,Sherman M.Evidence-based diagnosis, staging,and treatment of patients with hepatocellular carci-noma[J].Gastroenterology,2016,150(4):835-853.
2.Chen W,Zheng R,Baade PD,et al.Cancer statistics in China,2015[J].CA cancer J Clin,2016,66(2):115-132.
3.Riviere L,Ducroux A,Buendia MA.The oncogenic role of hepatitis B virus[J].Recent Results Cancer Res,2014, 193(1):29-74.
4.Aerts M,Benteyn D,Van Vlierberghe H,et al.Current status and perspectives of immune-based therapies for hepatocellular carcinoma[J].World J Gastroenterol,2016,22(1):253-261.
5.Li S,Yang F,Ren X.Immunotherapy for hepatocellular carcinoma[J].Drug Discov Ther,2015,9(5):363-371.
6.Harrington M.Immune therapy for liver cancer[J].Lab Anim(NY),2014,43(8):257.
7.Guo J,Friedman SL.The expression patterns and clinical significance of microRNAs in liver diseases and hepatocellular carcinoma[J].Curr Pharm Des,2013,19(7):1262-1272.
8.Negrini M,Gramantieri L,Sabbioni S,et al.microRNA involvement in hepatocellular carcinoma[J].Anticancer A-gents Med Chem,2011,11(6):500-521.
9.Ringelhan M,O'Connor T,Protzer U,et al.The direct and indirect roles of HBV in liver cancer:prospective markers for HCC screening and potential therapeutic targets[J].J Pathol,2015,235(2):355-367.
10.Zhu M,Lu Y,Li W,et al.Hepatitis B virus X protein driven alpha fetoprotein expression to promote malignant behaviors of normal liver cells and hepatoma cells[J].J Cancer,2016,7(8):935-946.
11.Moyo B,Nicholson SA,Arbuthnot PB.The role of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma[J].Virus Res,2016,212:103-113.
12.Chen LP,Zhao J,Du Y,et al.Antiviral treatment to prevent chronic hepatitis B or C-related hepatocellular carcinoma[J].World J Virol,2012,1(6):174-183.
13.Zhu R,Mok MT,Kang W,et al.Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle,senescence and p53-mediated apoptosis[J].J Pathol,2015,237(1):38-49.
14.Chen JY,Chen YJ,Yen CJ,et al.HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3[J].Oncotarget,2016,7(1):473-489.
15.Wang Y,Zeng LI,Chen W.HBV X gene point mutations are associated with the risk of hepatocellular carcinoma:A systematic review and meta-analysis[J].Mol Clin Oncol,2016,4(6):1045-1051.
16.Kongkavitoon P,Tangkijvanich P,Hirankarn N,et al. Hepatitis B virus HBx activates Notch signaling via deltalike 4/Notch1 in hepatocellular carcinoma[J].PLoS One,2016,11(1):0146696.
17.Huang P,Zhuang B,Zhang H,et al.Hepatitis B virus X protein(HBx)is responsible for resistance to targeted therapies in hepatocellular carcinoma:ex vivo culture evidence [J].Clin Cancer Res,2015,21(19):4420-4430.
18.Liu H,Lou G,Li C,et al.HBx inhibits CYP2E1 gene expression via down-regulating HNF4 in human hepatoma cells[J].PLoS One,2014,9(9):107913.
19.Yao M,Gu X,Wang L,et al.Abnormal expression of circulating nuclear factor-κB in hepatocellular carcinoma and reversal of multidrug resistance through intervening its gene transcription[J].Zhonghua Yixue Zazhi,2016,96(10): 761-766.
20.Li W,Xiao J,Zhou X,et al.STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma[J].J Clin Invest,2015,125(11): 4239-4254.
21.Wu W,Yao D,Wang Y,et al.Suppression of human hepatoma(HepG2)cell growth by nuclear factor-kappaB/ p65 specific siRNA[J].Tumour Biol,2010,31(6):605-611.
22.Cho HJ,Kim SS,Wang HJ,et al.Detection of novel genomic markers for predicting prognosis in hepatocellular carcinoma patients by integrative analysis of copy number aberrations and gene expression profiles:results from a long-term follow-up[J].DNA Cell Biol,2016,35(2): 71-80.
23.Zhang Q,Ji XW,Hou XM,et al.Effect of functional nuclear factor-kappa B genetic polymorphisms on hepatitis B virus persistence and their interactions with viral mutations on the risk of hepatocellular carcinoma[J].Ann Oncol,2014,25(12):2413-2419.
24.Amin A,Hamza AA,Daoud S,et al.Saffron-based crocin prevents early lesions of liver cancer:in vivo,in vitro and network analyses[J].Recent Pat Anticancer Drug Discov,2016,11(1):121-133.
25.Dong ZZ,Yao DF,Wu W,et al.Delayed hepatocarcinogenesis through anti-angiogenic intervention in the nuclear factor-kappa B activation pathway in rats[J].Hepatobiliary Pancreat Dis Int,2010,9(2):169-174.
26.Wu W,Yao DF,Qiu LW,et al.Characteristics of hepatic nuclear-transcription factor-kappa B expression and quantitative analysis in rat hepatocarcinogenesis[J].Hepatobiliary Pancreat Dis Int,2009,8(5):504-509.
27.Li Z,Wang XP,Lin HP,et al.Anti-tumor immunity elicited by cross-linking vaccine heat shock protein 72 and alpha-fetoprotein epitope peptide[J].Neoplasma,2015,62(5):713-721.
28.Wang XP,Wang QX,Lin HP,et al.Glycoprotein 96 and α-fetoprotein cross-linking complexes elicited specific antitumor immunity[J].Cancer Biother Radiopharm,2013,28(5):406-614.
29.Yang JY,Li X,Gao L,et al.Co-transfection of dendritic cells with AFP and IL-2 genes enhances the induction of tumor antigen-specific antitumor immunity[J].Exp Ther Med,2012,4(4):655-660.
30.He Y,Hong Y,Mizejewski GJ.Engineering α-fetoprotein-based gene vaccines to prevent and treat hepatocellular carcinoma:review and future prospects[J].Immunotherapy,2014,6(6):725-736.
31.Zhou J,Ma P,Li J,et al.Comparative analysis of cytotoxic T lymphocyte response induced by dendritic cells pulsed with recombinant adeno-associated virus carrying α-fetoprotein gene or cancer cell lysate[J].Mol Med Rep,2015,11(4):3174-3180.
32.Schmidt N,Flecken T,Thimme R.Tumor-associated antigen specific CD8+T cells in hepatocellular carcinomaa promising target for immunotherapy[J].Oncoimmunology,2014,3(9):954919.
33.Wang L,Yao M,Pan LH,et al.Glypican-3 is a biomarker and a therapeutic target of hepato-cellular carcinoma [J].Hepatobiliary Pancreat Dis Int,2015,4(4):361-266.
34.Haruyama Y,Kataoka H.Glypican-3 is a prognostic factor and an immuno-therapeutic target in hepatocellular carcinoma[J].World J Gastroenterol,2016,22(1):275-283.
35.Gao W,Kim H,Ho M.Human monoclonal antibody targeting the heparan sulfate chains of glypican-3 inhibits HGF-mediated migration and motility of hepatocellular carcinoma cells[J].PLoS One,2015,10(9):0137664.
36.Wang Y,Wang Y,Mu H,et al.Enhanced specific antitumor immunity of dendritic cells transduced with the glypican 3 gene and cocultured with cytokine-induced killer cells against hepatocellular carcinoma cells[J].Mol Med Rep,2015,11(5):3361-3367.
37.Hanaoka H,Nagaya T,Sato K,et al.Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy[J].Mol Pharm,2015,12(6): 2151-2157.
38.Dargel C,Bassani-Sternberg M,Hasreiter J,et al.T cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in Mice[J].Gastroenterology,2015,149(4):1042-1052.
39.Dong Z,Yao M,Wang L,et al.Down-regulating glypican-3 expression:molecular-targeted therapy for hepatocellular carcinoma[J].Mini Rev Med Chem,2014,14(14): 1183-1193.
40.Gao H,Li K,Tu H,et al.Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J].Clin Cancer Res,2014,20(24):6418-6428.
41.Zaghloul RA,El-Shishtawy MM,El Galil KH,et al.E-valuation of antiglypican-3 therapy as a promising target for amelioration of hepatic tissue damage in hepatocellular carcinoma[J].Eur J Pharmacol,2015,746:353-362.
42.Yao M,Wang L,Shi Y,et al.Intervention of glypican-3 genetic transcription on anti-proliferative effect of hepatoma cells with high metastatic potentiality[J].Zhonghua Yixue Zazhi,2014,94(32):2544-2548.
43.Yu D,Dong Z,Yao M,et al.Targeted glypican-3 gene transcription inhibited the proliferation of human hepatoma cells by specific short hairpin RNA[J].Tumour Biol,2013, 34(2):661-668.
44.Yao M,Wang L,Dong Z,et al.Glypican-3 as an emerging molecular target for hepatocellular carcinoma gene therapy[J].Tumour Biol,2014,35(6):5857-5868.
45.Wang Y,Li H,Liang Q,et al.Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepato-cellular carcinoma[J].Tumour Biol, 2015,36(3):1561-1566.
46.Tagliamonte M,Petrizzo A,Tornesello ML,et al.Combinatorial immunotherapy strategies for hepatocellular carcinoma[J].Curr Opin Immunol,2016,39:103-113.
47.Wagenaar TR,Zabludoff S,Ahn SM,et al.Anti-miR-21 suppresses hepatocellular carcinoma growth via broad transcriptional network deregulation[J].Mol Cancer Res, 2015,13(6):1009-1021.
48.Harding JJ,El Dika I,Abou-Alfa GK.Immunotherapy in hepatocellular carcinoma:primed to make a difference?[J] Cancer,2016,122(3):367-377.
(2016-7-30收稿)
R392.1
A
10.3969/j.issn.1000-2669.2016.05.001
*国家国际科技合作专项(2013DFA32150),江苏省“六大人才高峰”项目(2014-YY-028)
姚登福,男,教授,博士生导师。E-mail:yaodf@ahnmc.com