APP下载

用导数解决含参函数的最值问题

2016-02-21祝燕

中学课程辅导·教学研究 2016年17期
关键词:梅县最值单调

⌾祝燕

(作者单位: 广东梅县东山中学514700 )

用导数解决含参函数的最值问题

⌾祝燕

以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。解决导数在含参函数最值问题这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。解决的主要途径是将含参数的函数的单调性弄明白。

题型一、函数含有参数,区间是确定的

(2014年安徽高考理科数学卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.

(I)讨论f(x)在其定义域上的单调性;

∴f′(x)=-3(x-x1)(x-x2).

当xx2时,f′(x)<0;当x10.

(II)∵a>0,∴x1<0,x2>0.

∴f(x)在x=0和x=1处分别取得最小值和最大值.

当0

又f(0)=1,f(1)=a,

∴当0

当a=1时,f(x)在x=0处和x=1处同时取得最小值;

当1

题型二、函数确定,区间含有参数

已知函数f(x)=xlnx, 求f(x)在[t,t+1](t>0)上的最小值;

所以函数f(x)在[t,t+2]上递增,所以f(x)min=f(t)=tlnt;

题型三、函数、区间都含有参数

(2013年广东高考卷21题)设函数f(x)=(x-1)ex-kx2(k∈R)

(1)当k=1时,求函数f(x)的单调区间;

试题解析:(1)k=1时f(x)=(x-1)ex-x2

∴f′(x)=ex+(x-1)ex-2x=x(ex-2)

当x<0时ex-2<0,故f′(x)=x(ex-2)>0,f(x)单调递增;

0< x0,故f′(x)=x(ex-2)<0,f(x)单调递减;

x>ln2时ex-2>0,故f′(x)=x(ex-2)>0,f(x)单调递增;

综上,f(x)的单调增区间为(-∞,0)和(ln2,+∞),单调减区间为(0,ln2).

(2)f′(x)=ex+(x-1)ex-2kx=x(ex-2k)

由(1)可知f(x)的在(0,ln2k)上单调递减,

∴k-ln2k>0即k>ln2k ∴f(x)的在(0,ln2k)上单调递减,在(ln2k,k)上单调递增.

∴f(x)的在[0,k]上的最大值应在端点处取得.而f(0)=-1,f(k)=(k-1)ek-2k3

∴当x=0时f(x)取最大值-1.

对于用导数解决含有参数的函数最值问题, 主要就是运用导数讨论出函数的单调性,画出函数的简单图像,不论是函数含有参数,还是区间含有参数,都要做到讨论的不重不漏,这样才能正确的求出函数的最值。

(作者单位: 广东梅县东山中学514700 )

猜你喜欢

梅县最值单调
梅县区客家门神画展
单调任意恒成立,论参离参定最值
聚焦圆锥曲线中的最值问题
数列的单调性
巧用不等式求最值
数列的单调性
数列中的最值题型例讲
对数函数单调性的应用知多少
梅花知音
梅花知音