蓖麻毒素毒性作用机制及防治研究进展
2016-02-15王玉霞刘子侨
王玉霞,乔 虹,刘子侨
(1.军事医学科学院毒物药物研究所,北京 100850;2.南开大学法学院,天津 300350)
蓖麻毒素毒性作用机制及防治研究进展
王玉霞1,乔 虹1,刘子侨2
(1.军事医学科学院毒物药物研究所,北京 100850;2.南开大学法学院,天津 300350)
王玉霞,研究员,1997年毕业于军事医学科学院生物化学与分子生物学专业获博士学位。2012-2014年,作为访问学者在内布拉斯加医学中心从事转基因动物模型研究。承担军队十二五重大新药创制专项、973、海洋863、国家自然科学基金等课题,在靶向抗肿瘤药物、多糖佐剂、纳米制剂的安全性研究中取得了较好进展,在神经性毒剂主动免疫、蓖麻毒素抗毒药物及免疫分析等方面取得了显著成绩。现兼任中国毒理学会饲料专业委员会委员、中国生物化学与分子生物学学会工业生物化学与分子生物学分会理事。目前获授权发明专利9项,在国际和国内学术期刊发表论文60余篇,其中30余篇为SCI收录。
蓖麻毒素为提取自蓖麻子的植物毒素,属于Ⅱ型核糖体活性抑制剂,含有A和B亚基(RTA和RTB),通过二硫键相连。RTB与靶细胞表面的糖蛋白或糖脂结合,介导毒素内吞进入细胞并沿逆向转运途径进入内质网,还原释放RTA进入细胞质。在细胞质内RTA通过其RNA核糖酶活性抑制蛋白合成产生细胞毒性。除蛋白合成抑制作用,蓖麻毒素还具有诱导细胞凋亡、细胞因子释放及过氧化作用。蓖麻毒素具有制备成本低廉、性质稳定、多种中毒途径和无特效解毒药等特点。由于它毒性剧烈,作为生物战剂和恐怖剂,严重威胁公共安全。本文针对蓖麻毒素作为恐怖剂应用历史、结构和毒性作用机制、检测方法和特异性抗毒药物研究进行综述。
蓖麻毒素;核糖体活性抑制蛋白;生物恐怖
蓖麻在世界各国均有种植,主要集中在印度、中国和巴西,占世界产量的95%以上。蓖麻全株有毒,其中蓖麻籽中毒素含量最高。蓖麻毒素(ricin)制备成本低廉、毒性极强、多种中毒途径、潜伏期长、性质稳定、无特效的解毒药。近10年来,蓖麻毒素作为暗杀、恐怖武器已构成全球性威胁。因此,蓖麻毒素易于为恐怖分子利用,随着反恐怖斗争的不断升级,对蓖麻毒素作为恐怖剂的侦检、防护及中毒急救越来越受到国际关注。
1 蓖麻毒素
蓖麻(Ricinus communis)是大戟科蓖麻属植物,是重要的油料作物,除蓖麻油外,其种子含有大量的蓖麻毒素。据记载,1888年德国科学家Stiumark攻读博士期间,从蓖麻籽中分离得到一种毒蛋白,并命名为蓖麻毒素。目前,全球每年上百万吨蓖麻籽用于生产蓖麻油,其废物蓖麻粕重量的5%是蓖麻毒素。由于来源广,制备简单,可通过施放气溶胶或喷洒液体、污染食物和水源、用注射器刺入人体等途径使人中毒,美、英、加和法等国一直尝试将蓖麻毒素作为生物战剂。早在第一次和第二次世界大战期间,美国和加拿大就试图制备蓖麻毒素生物战剂气溶胶或毒性弹头[1]。作为纯化蛋白,蓖麻毒素毒性作用没有炭疽杆菌和肉毒杆菌持久,且作为生物战剂大规模使用需要成吨的蓖麻毒素,因此难以作为战剂使用[2]。蓖麻毒素引起关注的原因在于它易于制备,可以为恐怖分子用于恐怖计划。
误食蓖麻籽导致中毒及利用蓖麻毒素进行暗杀和恐怖活动时有报道。据记载,蓖麻毒素中毒已经超过700人次,最早追溯到1974年Balint[3]报道的蓖麻毒素毒蛋白中毒,最著名的是1978年保加利亚官员马尔科夫被保加利亚特务刺伤,死于蓖麻毒素中毒,暗杀武器为克格勃制造的毒伞[2]。近年来,利用蓖麻毒素进行暗杀和恐吓的事件不断发生,Bozza等[4]汇总了为人瞩目的蓖麻毒素事件,其中包括2012年Assiri报道的蓖麻毒素粉末引起的消化道致死事件、2013年Shannon Richardson寄给美国总统奥巴马及参议员Wicker的含蓖麻毒素信件。1997年,美国政府将一些包括蓖麻毒素在内的核糖体活性抑制剂(ribosome inactivating pro⁃teins,RIP)归类为B类生物战剂,强调对蓖麻毒素恐怖威胁的应急措施是非常必要的[5-7]。
2 蓖麻毒素的分子结构和毒性作用机制
2.1 蓖麻毒素的分子结构
20世纪70年代,蓖麻毒素的一级结构测定己经完成,蓖麻毒素含有2个肽链,A链(ricin A chain,RTA)和B链(ricin B chain,RTB),RTA分子质量为32 ku,等电点为7.3;RTB分子质量为34.7 ku,等电点为5.2;氨基酸和DNA序列均已发表[8-9]。
有关蓖麻毒素的二级结构研究显示,蓖麻毒素是典型的Ⅱ型RIP,RTA和RTB通过二硫键相连接,Lord等[10]和Dang等[11]就蓖麻毒素的合成和结构进行了详尽的研究。起初,在植物细胞中合成的一条单链前体称为preproricin,RTA序列含有26个氨基酸的信号肽和9个氨基酸的前肽,在RTA和RTB之间有个12个氨基酸残基组成的连接肽。信号肽转导蛋白进入内质网后,前体蛋白的信号肽切除,初级N-糖基化及分子间二硫键形成,对于蛋白的四级结构的形成是非常重要的。此时的前肽和连接肽依然存在,可以维护RTA为非活性状态,保护植物细胞免遭毒性作用。进而,糖基化的毒素前体由囊泡转运至高尔基复合体,最终进入空泡。此过程中完成了进一步的糖基修饰、N端前肽和连接肽清除最终形成了Ⅱ型RIP[12-13]。
值得注意的是,来自不同蓖麻及其变种的蓖麻毒素,氨基酸序列及糖基修饰不完全相同,分子量也具有轻微的差异。例如Hegde[14]等分离出2种不同的毒蛋白蓖麻毒素D和蓖麻毒素E,Cawley等[9]分离出3种不同的毒蛋白:蓖麻毒素1、蓖麻毒素2和蓖麻毒素3。Skilleter等[15]和Foxwell等[16]的研究揭示,RTA含有267个氨基酸,由于糖基化水平的差异,RTA分为2个亚类,亚类A1占总RTA 60%以上,含有1个寡糖组成单元,(Man)3-4(Fuc)1(Xyl)1(GlcNAc)2;亚类A2占总RTA 30%以上,比A1多1个富含甘露糖的寡糖。而RTB由262个氨基酸组成,含有2个组成为(Man)4-6(GlcNAc)2的寡糖;Montfort等[17-18]报道的RTA含有263个氨基酸残基,有(GIcNAc)2(Man)4寡糖链修饰;RTB是259个氨基酸残基组成的序列,含2个寡糖链,(GlcNAc)2(Man)8和(GlcNAc)2(Man)7。
2.2 蓖麻毒素的毒性作用机制
早期实验发现,蓖麻毒素可引起红细胞凝聚及可溶性血清蛋白出现沉淀,一度认为此凝聚作用是其毒性的根源。到1891年,Ehrlich提出了异议,指出毒素可能是通过结合簇(haptophore)固定于细胞或组织表面,而发挥毒性作用的部分是毒素的毒簇(toxophore)。待蓖麻毒素晶体结构被解析,证实了Ehrlich假设的合理性[19-20]。在蓖麻毒素毒性作用中,RTA和RTB承担了不可或缺的角色,RTA具有细胞毒性,RTB负责与细胞识别结合。
RTA具有RNA N-糖苷酶活性,1个分子的蓖麻毒素只需要1 min就可以抑制上千个核糖体的活性[21-22]。仅凭这一点还无法解释蓖麻毒素极端的毒性作用,其小鼠的LD50为8.0 μg·kg-1[23],达到如此毒性,毒素必然有一跨越细胞膜进入靶细胞发挥毒性作用的有效途径。
植物中的RIP有2类。第一类是单链多肽,分子质量约30 ku,如天花粉和皂角素等,体外与游离核糖体反应,但对完整细胞无毒性作用。第二类分子质量约60 ku,含有A、B两条多肽共价连接;A链类似于第一类RIP,而B链具有糖基结合位点,介导A链转入细胞内,与核糖体反应产生毒性。蓖麻毒素是第二类RIP中最典型的一种[24],其B链属于糖基结合蛋白,为外源凝集素,介导毒素进入细胞[25]。Sandvig等[26]应用HeLa细胞,测定125I标记的毒素与细胞的结合情况。结果发现,细胞表面存在大约3.3×107个毒素结合位点,结合常数为2.6× 107mol·L-1。细胞表面含有大量的半乳糖,N-乙酰半乳糖胺,及N-乙酰神经氨酸[27],一旦与RTB结合,毒素便以笼形蛋白依赖及不依赖的形式内吞进入细胞[28]。
蓖麻毒素进入细胞后存在于胞内体中,胞内体的成分不同于溶酶体,pH却极相似,为5.2~6.5。在低pH环境中,少部分的蓖麻毒素-半乳糖受体复合物发生解离,受体返回细胞表面重新利用,胞内体与初级溶酶体融合,形成次级溶酶体,其中又有部分复合物解离,部分受体又得以返回膜表面。大部分毒素进入细胞后被溶酶体降解或再循环至细胞表面[29],只有大约5%的毒素分子进入高尔基体外侧网络(trans-Golgi network,TGN),在此形成活性毒素[30-31]。蓖麻毒素进入TGN后的作用细节至今仍不清楚,已经明确的是,毒素通过逆转运途径进入内质网(endoplasmic reticulum,ER),进入ER的途径可能与B链识别糖基有关[32-33]。由其他蛋白毒素的逆转运机制研究得知,许多蛋白毒素在细胞内经历了相同或相似的内吞、胞内体运输、从ER易位进入胞浆这一反向跨膜易位过程,C端的短肽(REDKL)类似于ER保守序列KDEL,可利用KDEL-ER蛋白分拣系统高效到达ER腔[34]。蓖麻毒素不具有KDEL或其同源序列,它先结合于一种含KDEL序列、末端具有半乳糖残基的ER定居蛋白,形成的复合物转移到ER腔内,与KDEL受体结合之后复合物解离,蓖麻毒素释放入ER腔,游离的ER定居蛋白又返回TGN。蓖麻毒素在ER中利用分泌蛋白跨ER膜的各种易位因子进行易位,进入胞浆的方式正好相反于新生蛋白的分泌方式[35]。RTB不仅仅介导全毒素结合于细胞膜受体上的半乳糖基,还介导毒素到ER定居蛋白,提高了蓖麻毒素内吞和加工效率,有助于毒素在细胞内的稳定,对蓖麻毒素毒性的实现至关重要。
一般认为,进入ER腔的蓖麻毒素的链间二硫键在跨膜前发生降解,原先被封闭的RTA的C末端暴露,激发了RTA借助于各种易位因子,以伸展形式进入胞浆,再折叠成活性构象[36-37]。在ER腔内的毒素,至少其A链转运到胞浆[38],Lord等[10,39]发现,A链逆转运至细胞浆是借用细胞降解错误折叠蛋白的路线,当毒素进入内质网相关的蛋白降解通路(ER-associated protein degradation,ERAD)后,大量的毒素被泛素化,并被细胞质内蛋白酶降解,只有小部分得以逃脱的毒素与核糖体结合。Ⅱ型RIP毒素毒性之间的巨大差异可能与毒素在ERAD途径降解时的逃逸能力不同有关。
进入细胞质后RTA高效率地进攻核糖体使其灭活[40],一分子RTA、1 min可以灭活1777个核糖体[22]。RTA的作用位点在28s rRNA近3’端延伸袢[41-42],导致单一的腺嘌呤连接糖苷键断裂,丢失腺嘌呤A4324,不是直接切断RNA链,也不是增加RNA对水解酶或裂解酶的敏感性[43]。rRNA袢对于蛋白合成延伸因子的结合至关重要,微小的结构破坏即可干扰核糖体、EF-2、GTP复合体的形成[44],导致蛋白质合成的抑制,最终细胞死亡[23,45]。
除了抑制新蛋白合成之外,陆续有蓖麻毒素其他毒性作用的报道。早在1987年Griffiths等[46]研究发现,蓖麻毒素可引起淋巴和肠细胞凋亡。1990年,Waring等[47]发现,蓖麻毒素可诱导巨噬细胞、未成熟T细胞出现DNA碎片,发生与凋亡有关的生化改变。后续的研究陆续发现了蓖麻毒素诱导上皮样细胞发生凋亡样的形态学改变[48]、诱导小鼠体内甲状腺及脾细胞出现凋亡[49]。
Oda等[48]及Waring等[47]的研究都指出,蓖麻毒素诱导的凋亡机制与其抑制蛋白合成作用无关。蓖麻毒素引起的细胞凋亡并非A链依赖,即属于与蛋白合成抑制不相关的途径[50]。蓖麻毒素细胞毒性存在明显的剂量依赖性,高浓度时可导致细胞坏死,低浓度时却引起细胞发生凋亡。目前认为有多种途径参与[51],包括蓖麻毒素对于DNA的脱腺嘌呤作用及激活细胞死亡的线粒体途径[52]和直接干扰DNA的修复机制[53]。
蓖麻毒素中毒后的早期急性反应,如发热、肝出血性坏死、腹水、胸水渗出和肠道出血坏死性炎症等还不能完全用抑制蛋白质合成来解释。研究表明,蓖麻毒素诱导体外培养的外周血单核细胞分泌肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)和白细胞介素1β(interleukin-1β,IL-1β),同时在蓖麻毒素中毒大鼠的血浆中亦可检测到低水平的TNF-α[54]。1997年,董巨莹等[55]报道了蓖麻毒素中毒诱导小鼠肝产生TNF-α,IL-1,IL-6和IL-8。1994年,Muldoon等[56]发现,注射抗TNF的抗体,可明显降低蓖麻毒素对小鼠的氧化损伤。Nadkarni等[57]发现,这些细胞因子释放与蓖麻毒素构建的免疫毒素引发的发热、肌痛、毛细血管渗漏综合征等不良反应有关。蓖麻毒素诱导细胞因子产生的机制可能与细胞膜受体作用后,启动了某些核转录因子,导致了一些细胞因子的产生,这些细胞因子进而可引起重要脏器及组织的氧化损伤。
Muldoon等[58]发现,蓖麻毒素中毒小鼠尿液中丙二醛、甲醛和丙酮的含量增加,中毒后36 h各脏器脂质过氧化程度明显升高、还原型谷胱甘肽的明显减少及DNA单链断裂程度最为严重,认为氧化作用可以归属到蓖麻毒素的毒性机制中,并提出脂质过氧化产生的机制与毒素激活巨噬细胞分泌活性氧(reactive oxygen species,ROS)有关[59]。1997年,Sadani等[60]研究了蓖麻毒素诱导的大鼠甲状腺损伤机制,也发现中毒大鼠甲状腺组织抗氧化状态的改变。研究表明,TNF-α、ROS和铁离子等对蓖麻毒素诱导的脂质过氧化和氧化损伤具有重要的调节作用,在毒素中毒的对症治疗中,注射抗TNF-α的抗体,可以明显降低小鼠尿液丙二醛、甲醛、丙酮的含量,给予去铁敏(desferrioxamine)可减少蓖麻毒素诱导的脂质过氧化的水平。
蓖麻毒素导致细胞死亡机制包括蛋白合成抑制及非蛋白合成抑制,细胞表面蛋白的特征决定进入细胞的毒素的量和毒性。我们前期的研究结果显示,蓖麻毒素在动物体内会富集分布于脾和肝等组织[61-62]。Derenzini等[63]的实验结果也显示,蓖麻毒素在血液中可快速被网状内皮细胞清除,肝病理检查发现肝窦间隙严重损伤,是肝非实质细胞主动摄取蓖麻毒素所致,与毒素表面的甘露糖与细胞甘露糖受体识别促进了毒素的细胞内吞噬密切相关[64-65]。
除了公认的RTB与细胞表面的半乳糖基结合之外,蓖麻毒素含有的甘露糖可以被细胞表面的甘露糖受体识别进入细胞,因此,蓖麻毒素对于表面富含甘露糖细胞的毒性也要引起重视。Skilleter等[15]体外实验还原裂解了蓖麻毒素二硫键,经分离得到RTA和RTB,进而使用酶处理去糖基,与含有糖基的RTA和RTB分别作用于肝非实质细胞,结果发现,含有糖基的游离的RTA可以被肝非实质细胞主动内吞,使用单糖D-甘露糖、L-岩澡糖或末端含有甘露糖的卵清蛋白都可以抑制75%~90%的摄取量,而D-半乳糖不能抑制;α-甘露糖苷酶切除糖基的RTA进入肝非实质细胞的量下降了60%。说明RTA通过细胞表面甘露糖受体介导进入肝非实质细胞。实验发现,除了RTA与甘露糖受体结合进入肝非实质细胞外,RTB进入肝非实质细胞的量是RTA的2倍,且α-甘露糖苷酶处理只能微弱影响RTB进入细胞的水平,天然RTB及α-甘露糖苷酶处理的RTB在细胞内聚集均可被D-甘露糖,L-岩澡糖或卵清蛋白抑制,其中D-甘露糖抑制能力较低(约40%),原因可能是α-甘露糖苷酶不能彻底去除RTB的甘露糖所致。此外,进入肝实质细胞RTB是RTA的5~7倍,RTB和糖苷酶处理后的RTB没有明显区别,且只有D-半乳糖有明显抑制,说明天然的RTA可以被肝非实质细胞内吞,却不能在肝实质细胞中聚集。
就肝细胞而言,蓖麻毒素进入肝实质细胞,主要靠RTB与细胞表面半乳糖基识别;对于肝非实质细胞,RTB除了识别细胞表面半乳糖基外,RTB的甘露糖与细胞表面甘露糖基受体识别发挥了重要作用。此外,RTA与细胞表面甘露糖基受体识别也发挥了重要作用,毒素进入肝非实质细胞,至少很大一部分是依赖于细胞的甘露糖受体与RTA和RTB的甘露糖基结合介导的内吞过程。
综合分析,几乎所有的真核细胞表面都表达含有半乳糖基修饰的受体,蓖麻毒素RTB与半乳糖基识别进入细胞是其细胞毒性作用的主要机制。然而有部分细胞如吞噬细胞等,含有丰富的甘露糖基受体,虽然其数目远不如半乳糖基,可甘露糖基受体与蓖麻毒素表面甘露糖的亲和力却是细胞表面半乳糖与毒素亲和力的近10倍[66]。此外,蓖麻毒素与细胞膜受体广泛结合后,对受体介导的下游信号系统产生影响,如一些核转录因子启动、细胞因子的分泌、抗氧化机制的影响可能是导致毒素多种毒性作用的原因所在。
3 蓖麻毒素的检测分析
蓖麻毒素的快速检测直接关系到有效的急救治疗。依据蓖麻毒素的理化性质和免疫原性已建立了多种快速、灵敏、特异的检测方法,如由毒素的蛋白免疫原性建立的免疫学分析[67-68]、生物传感器[69-71]及根据毒素的组成等建立的仪器分析[72-75]和免疫吸附结合电化学分析方法[76]。
不同的蓖麻毒素检测方法具有不同的检测原理和不同的检测灵敏度及检测样本需求。毛细管电泳结合基质辅助激光解吸附电离质谱法等仪器分析方法多根据毒素的理化性质,具有灵敏度高,样品用量少等特点,但仪器昂贵,普及困难,难以进行现场快速分析。根据毒素的抗原特性建立的免疫分析方法如放免分析和免疫PCR具有较高的检测灵敏度,但是要求在专业实验室进行,生物传感器操作快速,然而检测灵敏度差异较大,干扰因素多。蓖麻毒素快速检测试纸是根据胶体金免疫层析原理,其检测灵敏度高,操作简便快速,然而多种样品本身对此方法存在严重的干扰[77]。
分析样品中是否含有蓖麻毒素,同时还可以告知毒素是否还具有毒力的方法才是更有效的检测分析方法[4]。双夹心ELISA[78-79]、化学发光[80]、胶体金免疫层析[67,77]、xMAP微球免疫分析[81]、DNA适配子及拉曼分析[82]、表面等离子共振(SPR)[79,83-85]、免疫PCR[86]、免疫吸附结合液质联用[87]及免疫捕获飞行质谱[75]等无法检测毒素生物活性。RTA作为N-糖苷酶与核糖体60s大亚单位的28s RNA作用,水解腺嘌呤的N-糖苷键,脱去腺嘌呤,可通过反相化学发光[88]、HPLC[89]、拉曼[90]和MS检测等[75]检测释放的腺嘌呤判断蓖麻毒素活性。还可以通过免疫分析[91]、HPLC[92]、质谱[93]和PCR技术[94]检测分析样品中的蓖麻毒素蛋白和DNA,通过蛋白合成抑制检测蓖麻毒素导致的核糖体功能失活[95]。细胞实验[96-99]和动物实验[100]检测RTB链糖基结合位点的完整性以及RTA链是否具有催化活性。
4 蓖麻毒素中毒治疗及其抗毒药物
4.1 中毒途径及对症治疗
蓖麻毒素毒性强度取决于中毒途径,吸入毒性高于经口途径,潜伏期一般为4~8 h。经口毒性主要作用靶器官为肝和脾,其他脏器也会受到损伤;吸入性毒性则表现为非心源性肺水肿[101]。
吞服蓖麻籽可通过胃肠道排出,而咀嚼可加速毒素释放和吸收。严重中毒可导致广泛的细胞中毒性器官损伤,如水肿、出血和坏死等,还可引起中毒性肝病、肾病及出血性胃肠炎。中毒较轻的可在48~72 h恢复,严重者可因呼吸和循环衰竭在24 h~ 4 d死亡,也有中毒者在恢复期因肾功能衰竭死亡[102-104]。Audi等[103]报道,蓖麻毒素口服中毒,小鼠LD50为30 mg·kg-1,人致死剂量为1~20 mg·kg-1。小鼠吸入小于5 μm大小的毒素气溶胶,LD50为3~5 μg·kg-1。气溶胶颗粒直径越小,危害越大,首发症状起于8 h内,表现为呼吸困难、发热、咳嗽、恶心及胸部紧迫、大汗、肺水肿、紫绀,最后导致低血压、呼吸衰竭,甚至死亡。亚致死剂量中毒导致的急性肺损伤后需要长时间才能恢复[105]。注射途径的小鼠最小致死剂量为0.7~2 μg·kg-1,LD50为5~10 μg·kg-1,注射部位会出现肌肉、淋巴结坏死,肝、肾、脾功能障碍、胃肠道出血,患者最后死于多脏器衰竭[103,106]。当年马尔科夫在被含有蓖麻毒素的毒伞尖刺伤后第3天死亡。中毒后24 h会相继出现疲劳、恶心、呕吐和发热症状,进而发展为广泛性的坏死性淋巴结病和注射部位的组织坏死。临终的并发症有胃肠道出血、失血性休克及肾衰竭[107]。无破损的皮肤接触毒素一般不会引起中毒,眼睛接触可致结膜炎、瞳孔放大和视神经损伤。
由于蓖麻毒素起效迅速、毒性作用不可逆,其中毒的有效治疗非常困难,对于高危职业的军人和外交人员应该接种有效的疫苗;按照生物战剂的洗消方案处理和辅助性治疗是目前常用的治疗手段,纠正体液的酸碱平衡、保护肝肾功能是治疗的第一步。对于吸入性中毒,要注意呼吸道的对症处理,比如给予抗炎药物、镇痛药和人工换气等。研究显示,地塞米松和二氟甲基鸟氨酸在延长中毒小鼠的存活时间上明显好于丁羟茴醚(butylated hydroxyani⁃sole)和维生素E[101,103]。经口中毒者,应尽早洗胃、催吐、导泻和肠灌洗,为减少毒物继续吸收,还可以口服蛋清或冷牛奶、冷米汤,必要时给予胃黏膜保护剂。
4.2 抗毒药物
值得注意的是,针对蓖麻毒素中毒的预防和急救药物研究已经取得了显著进展,人们首先想到的是从源头阻止毒素进入细胞,包括使用小分子拮抗肽、免疫疫苗及中和性抗体[108]。1991年,Lambert等[109]制备了含有2个半乳糖残基、具有三叉结构的糖肽可以与RTB结合。Khan等[110]用随机肽库技术筛选到与蓖麻毒素特异性结合的12肽,Trp-Pro-His-Arg-His-His-His-Ser-Glu-Iso-Gly-His,与单抗比较,此肽和蓖麻毒素的结合缓慢而解离速率较快,用于抗毒没有明显优势。
抗蓖麻毒素单抗可被动保护同系小鼠抵抗蓖麻毒素中毒[111-113],说明免疫防护产生特异性抗体,可有效抵抗蓖麻毒素袭击。免疫疫苗可采用脱毒的毒素或去糖基化的RTA[114],免疫动物可对抗致死剂量的蓖麻毒素中毒[115-116]。RTA本身的毒性作用可通过突变其酶活性部位的Y80,Y123,E177,R180,N209和W211等关键氨基酸残基降低其毒性,而RTA抗原免疫动物引起局部甚至全身的血管渗漏综合征(vascular leak syndrome,VLS)可通过突变氨基酸L74,D75和V76而减轻或避免。因此,重组RTA突变体作为免疫抗原均明显地降低了毒副作用,并具有很好的抗毒活性[117-118]。Kende等[119]研发了针对毒素气溶胶袭击用于黏膜免疫的免疫微球(Soligenix Inc)。研发的RiVax™疫苗免疫小鼠、家兔和人员都表现出非常好的抗毒效果[120-122],可对抗10倍LD50剂量的蓖麻毒素袭击,可使100%免疫动物抵抗致死剂量的蓖麻毒素气溶胶攻击[123]。
蓖麻毒素免疫疫苗主动免疫有很好的抗毒效果,疫苗产生有效的抗毒抗体至少需要1个月以上的免疫时间。对于没有进行过免疫接种的中毒人员还需要特异性的抗毒抗体进行被动免疫治疗。以灭活全毒素、RTA及RTB为抗原制备的单克隆抗体均有明确的抗毒活性[112-113,124],这些研究结果推动了抗毒抗体研究[125-128]。Hu等[129]和Prigentu等[130]筛选了抗毒活性抗体并进行了人源化,发现将RTA抗体和RTB抗体合用可提高抗毒效果,小鼠抗毒活性实验可以对抗5×LD50蓖麻毒素中毒。我国自行研制的蓖麻毒素抗毒抗体,在小鼠蓖麻毒素腹腔中毒后2 h后用于急救仍可完全对抗3个致死剂量的毒素中毒;致死剂量中毒后6 h给予抗体急救,仍有70%小鼠存活[131],此抗体已经完成了人源化研究。
特异性抗体可用于蓖麻毒素中毒的预防和急救,其效果与中毒时间和给药时机密切相关,对于中毒时间稍长、错过了最佳抗体治疗的中毒人员,抗体难以进入细胞内,治疗无效。况且,蓖麻毒素从中毒到出现明显的中毒症状,至少有几个小时的潜伏期。因此,与抗毒疫苗和抗体相比较,研制能进入细胞的蓖麻毒素小分子拮抗剂同样重要。
2010年,Wahome等[97]建立了体外细胞实验高方法通量筛选蓖麻毒素小分子拮抗剂。Stechmann等[98]成功合成了小分子拮抗剂Retr-2,作用于中毒早期TGN的逆转运途径从而具有抗毒活性,但要在中毒前1 h大剂量给予才有效。2013年Gupta等[132-133]研究合成了Retr-2的衍生物(S)-Retro-2.1。细胞实验显示,预防给药抗蓖麻毒素活性提高了1000倍,是抗毒活性最强的小分子化合物。(S)-Retro-2.1是否能成为有效的急救药物还需要进一步进行药效学评价及安全性研究。
作为生物战剂的蓖麻毒素的医学防护,无论是战时还是和平时期的反恐怖都是非常重要的。特异性医学防护包括采用疫苗进行预防和使用小分子抗毒药物或大分子抗毒抗体进行急救,理想的免疫疫苗能快速激活机体的免疫反应,可对抗大剂量的毒素中毒,治疗抗体或小分子药物可对抗致死剂量的蓖麻毒素中毒并具有较宽的治疗窗口。防护效果除了与毒素的中毒途径、剂量相关外,还与治疗药物的给药途径、剂量及及给药时机密切相关。
5 结语
蓖麻毒素作为典型的Ⅱ型RIP,其主要毒性作用机制为抑制细胞蛋白的合成,具有剧烈的细胞毒性。此外,它还具有诱导产生细胞因子,引起脂质过氧化及诱导细胞凋亡的作用。随着反恐怖斗争的不断升级,对蓖麻毒素的侦检、防护及中毒急救越来越受到国际关注。已经建立多种蓖麻毒素检测方法,其中能判定毒素、同时检测其生物活性的方法是研究的重点。在蓖麻毒素的抗毒药物研究中,疫苗免疫具有很好的预防效果,抗毒抗体作为急救药物特异、有效,但对进入细胞内的毒素无效。因此,在开发特异性大分子抗毒药物的同时,安全有效、可用于预防及急救的小分子抗毒药物有待进一步开发。建立蓖麻毒素的检测预警、防护及中毒治疗体系,是军事医学研究中针对生物战剂及恐怖剂袭击的重点内容。
[1] Gupta RC.Handbook of toxicology of chemical warfare agents[M].Boston:Academic Press, 2009.
[2]Schep LJ,Temple WA,Butt GA,Beasley MD. Ricin as a weapon of mass terror-separating fact from fiction[J].Environ Int,2009,35(8):1267-1271.
[3]Balint GA.Ricin:the toxic protein of castor oil seeds[J].Toxicology,1974,2(1):77-102.
[4]Bozza WP,Tolleson WH,Rosado LA,Zhang B. Ricin detection: Tracking active toxin[J].Biotechnol Adv,2015,33(1):117-123.
[5]Rotz LD,Khan AS,Lillibridge SR,Ostroff SM,Hughes JM.Public health assessment of poten⁃tial biological terrorism agents[J].Emerg Infect Dis,2002,8(2):225-230.
[6]From S, Płusa T.Today's threat of ricin toxin[J].Pol Merkur Lekarski,2015,39(231):162-164.
[7]Griffiths GD.Understanding ricin from a defen⁃sive viewpoint[J].Toxins,2011,3:1373-1392.
[8]Funatsu G,Yoshitake S, Funatsu M.Primary structure of Ile chain of ricin D[J].Agric Biol Chem,1978,42(2):501-503.
[9]Cawley DB,Hedblom ML,Houston LL.Homology between ricin and Ricinus communis agglutinin:Amino terminal sequence analysis and protein synthesis inhibition studies[J].Arc Biochem Biophy,1978,190(2):744-755.
[10] Lord JM,Spooner RA.Ricin trafficking in plant and mammalian cells[J].Toxins(Basel),2011,3(7):787-801.
[11]Dang L,Van Damme EJ.Toxic proteins in plants[J].Phytochemistry,2015,117(1):51-64.
[12]Lord JM.Precursors of ricin and Ricinus communis agglutinin.Glycosylation and processing during synthesis and intracellular transport[J].Eur J Biochem,1985,146(2),411-416.
[13]Frigerio L,Jolliffe NA,Di Cola A,Felipe DH,Paris N,Neuhaus JM,et al.The internal propep⁃tide of the ricin precursor carries a sequence-spe⁃cific determinant for vacuolar sorting[J].Plant Physiol,2001,126(1):167-75.
[14]Hegde R,Podder SK.Studies of the variants of the protein toxins ricin and abrin[J].Eur J Biochem,1992,204(1):155-164.
[15] Skilleter DN,Foxwell BM.Selective uptake of ricin A-chain by hepatic non-parenchymal cellsin vitro[J].FEBS letters,1986,196(2):344-348.
[16]Foxwell BM,Donovan TA,Thorpe PE,Wilson G. The removal of carbohydrates from ricin with endoglycosidases H,F and D and alpha-manno-sidase[J].Biochim.Biophys,1985,840(2),193-203.
[17]Montfort W,Villafranca JE,Monzingo AF,Ernst SR,Katzin B,Rutenber E,et al.The three-dimen⁃sional structure of ricin at 2.8A[J].J Biochem,1987,262(11):5398-403.
[18]Li GR,Chen YS,Huang FL,Sa RN,Yao Y. Progress on research ofricin[J].JInner Mongolia Univ Nationalities(内蒙古民族大学学报:自然科学版),2009,24(1):65-67.
[19]Tahirov TH,Lu TH,Liaw YC,Chu SC,Lin JY. A new crystal form of abrin-a from the seeds of Abrus precatorius[J].J Mol Biol,1994,235(3):1152-1153.
[20]Weston SA, Tucker AD, Thatcher DR,Derbyshire DJ,Pauptit RA.X-ray structure of recombinant ricin A-chain at 1.8 A resolution[J].J Mol Biol,1994,244(4):410-422.
[21]Olsnes S,Fernandez-Puentes C,Carrasco L,Vazquez D.Ribosome inactivation by the toxic lectins abrin and ricin.Kinetics of the enzymic ac⁃tivity of the toxin A-chains[J].Eur J Biochem,1975,60(1):281-288.
[22]Endo Y,Tsurugi K.The RNA N-glycosidase activity of ricin A-chain.The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA[J].J Biol Chem,1988,263(18):8735-8739.
[23] Stirpe F,Battelli MG.Ribosome-inactivating proteins:progress and problems[J].Cell Mol Life Sci,2006,63(16):1850-1866.
[24]Dietrich JB,Ribéreau-Gayon G,Jung ML,Franz H,Beck JP,Anton R.Identity of the N terminal sequences of the three A chains of mistletoe lectins:homology with ricin like plant toxin and single-chain ribosome inhibiting proteins[J].Anti⁃cancer Drugs,1992,3(5):507-511.
[25]Olsnes S,Pihl A.Different biological properties of the two constituent peptide chains of ricin,a toxic protein inhibiting protein synthesis[J].Biochemistry,1973,12(16):3121-3126.
[26]Sandvig K,Olsnes S,Pihl A.Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells[J].J Biol Chem,1976,251(13):3977-3984.
[27]Peumans WJ,Hao Q,Van Damme EJ.Ribo⁃some inactivating proteins from plants:more than RNA N-glycosidases?[J]FASEB J,2001,15(9):1493-1506.
[28]Sandvig K,Grimmer S,Iversen TG,Rodal K,Torgersen ML,Nicoziani P,et al.Ricin transport into cells:studies of endocytosis and intracellular transport[J].Int J Med Microbiol,2000,290(4-5):415-420.
[29]Puri M,Kaur I,Perugini MA,Gupta RC.Ribo some-inactivating proteins:current status and biomedical applications[J].DrugDiscov To⁃day,2012,17(13-14):774-783.
[30]Van Deurs B, Tonessen TI, Petersen OW,Sandvig K,Olsnes S.Routing of internalized ricin and ricin conjugates to the Golgi complex[J].J Cell Biol,1986,102(1):37-47.
[31]Tagge E, Chandler J, Tang BL, Hong W,Willingham MC,Frankel A.Cytotoxicity of KDEL-terminated ricin toxins correlates with distribution of the KDEL receptor in the Golgi[J].J Histo⁃chem Cytochen,1996,44(2):159-165.
[32]Sandvig K,van Deurs B.Transport of protein toxins into cells:pathways used by ricin,cholera toxin and Shiga toxin[J].FEBS Lett,2002,529(1):49-53.
[33]Lord JM,Roberts LM.Toxin entry:retrograde transport through the secretory pathway[J].J Cell Biol,1998,140(4):733-736.
[34]Rboerts LM,Simpson JC,Lord JM.Simpson JC,Roberts LM,Lord JM.Catalysic and cytotoxic ac⁃tivities of recombinant ricin A chain mutant with charged residues added at the carboxyl terminus[J].Protein Expr Purif,1995,6(5):665-670.
[35]Tonevitsky AG, Agapov II, Shamshiev AT,Temyakov DE,Pohl P,Kirpichnikov MP.Immu⁃notoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain[J].FEBS Lett,1996,392(2):166-168.
[36]Dosio F,Franceschi A,Ceruti M,Brusa P,Cattel L,Colombatti M.Enhancement of ricin toxin A chain immunotoxin activity:synthesis,ionopho⁃retic ability andin vitroactivity of monensin deriv⁃atives[J].Biochem Pharmaecol,1996,52(1):157-166.
[37]Spooner RA,Watson PD,Marsden CJ,Smith DC,MooreKAH,CookJP,etal.Proteindisul phide-isomerase reduces ricin to it's A and B chains in the endoplasmic reticulum[J].Bio⁃chem J,2004,383(Pt 2):285-293.
[38]Roberts LM,Smith DC.Ricin:the endoplasmic reticulum connection[J].Toxicon,2004,44(5):469-472.
[39] Spooner RA,Lord JM.Ricin trafficking in cells[J].Toxins(Basel),2015,7(1):49-65.
[40] Sandvig K, Torgersen ML, EngedalN,Skotland T,Iversen TG.Protein toxins from plants and bacteria:probes for intracellular transport and tools in medcine[J].FEBS Letters,2010,584(12):2626-2634.
[41] Endo Y,Mitsui K,Motizuki M,Tsurugi K.The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes.The site and the characteristics of the modification in 28 S ribosom⁃al RNA caused by the toxins[J].J Biol Chem,1987,262(12):5908-5912.
[42] Endo Y,Tsurugi K.RNA N-glycosidase activity of ricin A-chain.Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes[J].J Biol Chem,1987,262(17):8128-8130.
[43]Ogasawara T,Sawasaki T,Morishita R,Ozawa A,Madin K,Endo Y.A new class of enzyme acting on damaged ribosomes:ribosomal RNA apurinic site specific lyase found in wheat germ[J].EMBO J,1999,18(22):6522-6531.
[44]Brigotti M,Rambelli F,Zamboni M,Montanaro L,Sperti S.Effect of alpha-sarcin and ribosomeinactivating proteins on the interaction of elonga⁃tion factors with ribosomes[J].Biochem J,1989,257(3):723-727.
[45]Walsh MJ,Dodd JE,Hautbergue GM.Ribosomeinactivating proteins:potent poisons and molecular tools[J].Virulence,2013,4(8):774-784.
[46]Griffiths GD,Leek MD,Gee DJ.The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine[J].J Pathol,1987,151(3):221-229.
[47] Waring P.DNA fragmentation induced in macro⁃phages by gliotoxin does not require protein synthesis and is preceded by raised inositol tri⁃phosphate levels[J].J Biol Chem,1990,265(24):14476-14480.
[48] Oda T,Komatsu N,Muramatsu T.Diisopropylflu orophosphate(DFP)inhibits ricin-induced apoptosis of MDCK cells[J].Biosci Biotechnol Biochem,1998,62(2):325-333.
[49]Fu T,Burbage C,Tagge EP,Brothers T,Willingham MC,Frankel AE.Ricin toxin contains three lectin sites which contribute to itsin vivotoxicity[J].Int J Immunopharmacol,1996,18(2):685-692.
[50] Authier F,Djavaheri-Mergny M,Lorin S,Frénoy JP, Desbuquois B.Fate and action of ricin in rat liverin vivo:translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain[J].Cell Microbiol,2016,18(12):1800-1814.
[51]Liao P,Li Y,Li H,Liu W.Organellar proteome analyses of ricin toxin-treated HeLa cells[J].Toxicol Ind Health,2016,32(7):1166-1178.
[52]Brigotti M,Alfieri R,Sestili P,Bonelli M,Petronini PG,Guidarelli A,et al.Damage to nuclear DNA in duced by Shiga toxin 1 and ricin in human endothelial cells[J].FASEB J,2002,16(3):365-372.
[53]Sestili P,Alfieri R,Carnicelli D,Martinelli C,Barbieri L,Stirpe F,et al.Shiga toxin 1 and ricin inhibit the repair of H2O2-induced DNA single strand breaks in cultured mammalian cells[J].DNA Repair(Amst),2005,4(2):271-277.
[54] Licastro F,Morini MC,Bolognesi A,Stirpe F. Ricin induces the production of tumor necrosis factor-α and interleukin-1 by human peripheralblood mononuclear cells[J].Biochem J,1993,294(2):517-523.
[55]Dong JY,Wang WX,Wang JB.Induction of tumor necrosis factor in the liver of ricin intoxicated mice[J].J Fourth Milt Med Univ(第四军医大学学报),1997,18(1):78.
[56]Muldoon DF,Bagchi D,Hassoun EA,Stohs SJ. The modulating effects of tumor necrosis factor alpha antibody on ricin-induced oxidative stress in mice[J].J Biochem Toxicol,1994,9(6):311-318.
[57]Nadkarni GD,Deshpande UR.Effect of ricin on acute phase response in rats[J].Indian I Exp Biol,1991,29(6):584-585.
[58]Muldoon DF,Hassoun EA,Stohs SJ.Ricininduced hepatic lipid peroxidation,glutathione depletion,and DNA single-strand breaks in mice[J].Toxicon,1992,30(9):977-984.
[59]Muldoon DF,Hassoun EA,Stohs SJ.Role of iron in ricin-induced lipid peroxidation and super⁃oxide production[J].Res Commun Mol Pathol-Pharmacol,1996,92(1):107-118.
[60]Sadani GR,Soman CS,Deodhar KK,Nadkarni GD. Reactive oxygen species involvement in ricininduced thyroid toxicity in rat[J].Hum Exp Toxicol,1997,16(5):254-256.
[61]Wang CY,Lang LW,Zhong YH,Wang YX,Jia PY,Wu JH,et al.A quantitative sandwich enzyme-linked immunosorbent assay for ricin inbiological samples and its application[J].Mil Med Sci(军事医学),2011,35(8):620-623.
[62]Dong N,Li Z,Li Q,Wu J,Jia P,Wang Y,et al. Absorption,distribution and pathological injury of ricin in mice poisoned by alimentary pathway[J].J Toxicol Pathol,2014,27(1):73-80.
[63]Derenzini M,Bonnetti E,Marinozzi V,Stirpe F. Toxic effects of ricin:studies on the pathogenesis of liver lesions[J].Virchows Arch B Cell Pathol,1976,20(1):15-28.
[64]Skilleter DN,Paine AJ,Stirpe F.A comparison of the accumulation of ricin by hepatic parenchymal and non-parenchymal cells and its inhibition of protein synthesis[J].Biochim Biophys Acta,1981,677(3-4):495-500.
[65]Skilleter DN,Price RJ,Thorpe PE.Modification of the carbohydrate in ricin with metaperiodate and cyanoborohydride mixtures:effect on binding,uptake and toxicity to parenchymal and nonparenchymal cells of rat liver[J].Biochim Bio⁃phys Acta,1985,842(1):12-21.
[66]Riccobono F.Finai ML.Mannose receptor dependent uptake of ricin A1 and A2 chains by macrophage[J].Carbohydr Res,1996,282(2):285-292.
[67]Shyu RH,Shyu HF,Liu HW,Tang SS.Colloidal gold-based immunochromatographic assay for detection of ricin[J].Toxicon,2002,40(3):255-258.
[68]Men J,Lang L,Wang C,Wu J,Zhao Y,Jia PY,et al.Detection of residual toxin in tissues of ricin-poisoned mice by sandwich enzyme-linked immunosorbent assay and immunoprecipitation[J].Anal Biochem,2010,401(2):211-216.
[69]Fan JR,Zhu J,Wu WG,Huang Y.Plasmonic metasurfaces based on nanopin-cavity resonator for quantitative colorimetric ricin sensing[J/OL].Small,2016,6.doi:10.1002/smll.201601710.(2016-11-25) http://onlinelibrary.wiley.com/doi/ 10.1002/smll.201601710/abstract; jsessionid= E7C633AC390063DF1FE7E3DBE0C9A1CC.f03t04
[70]Kirby R,Cho EJ,Gehrke B,Bayer T,Park YS,Neikirk DP,et al.Aptamer-based sensor arrays for the detection and quantitation of proteins[J].Anal Chem,2004,76(14):4066-4075.
[71]Uzawa H,Ohga K,Shinozaki Y,Ohsawa I,Nagatsuka T,Seto Y,et al.A novel sugar-probe biosensor for the deadly plant proteinous toxin,ricin[J].Biosens Bioelectron,2008,24(4):929-933.
[72]Zheng J,Zhao C,Tian G,He L.Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy[J].Talanta,2017,162:552-557.
[73]Yeung WS,Luo GA,Wang QG,Ou JP.Capillary electrophoresis-based immunoassay[J].J Chro⁃matogr B Analyt Technol Biomed Life Sci,2003,797(1-2):217-228.
[74]Despeyroux D,Walker N,Pearce M,Fisher M,McDonnell M,Bailey SC,et al.Characterization of ricin heterogeneity by electrospray mass spec⁃trometry,capillary electrophoresis,and resonant mirror[J].Anal Biochem,2000,279(1):23-36.
[75]Wang D,Baudys J,Barr JR,Kalb SR.Improved sensitivity for the qualitative and quantitative analy⁃sis of active ricin by MALDI-TOF mass spectrom⁃etry[J].Anal Chem,2016,88(13):6867-6872.
[76]Cunningham JC,Scida K,Kogan MR,Wang B,Ellington AD,Crooks RM.Paper diagnostic de⁃vice for quantitative electrochemical detection of ricin at picomolar levels[J].Lab Chip,2015,15(18):3707-3715.
[77]Wu JH,Wang YX,Jia PY,Wang CY,Zhao Y,Peng H,et al.Immunochromatography detection of ricin in environmental and biological samples[J].Nano Biomed Eng,2011,3(3):169-173.
[78]Huebner M,Wutz K,Szkola A,Niessner R,Seidel M.Aglyco-chip for the detection of ricin by an automated chemiluminescence read-out system[J].Anal Sci,2013,29(4):461-466.
[79]Anderson GP,Glaven RH,Algar WR,Susumu K,Stewart MH,Medintz IL,Goldman ER.Single domain antibody-quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance[J].Anal Chim Acta,2013,786(13):132-138.
[80]Xiao X,Tao J,Zhang HZ,Huang CZ,Zhen SJ. ExonucleaseⅢ-assisted graphene oxide ampli⁃fied fluorescence anisotropy strategy for ricin detection[J].Biosens Bioelectron,2016,85:822-827.
[81]Simonova MA, Valyakina TI, Petrova EE,Komaleva RL,Shoshina NS,Samokhvalova LV,et al.Development of xMAP assay for detection of six protein toxins[J].Anal Chem,2012,84(15):6326-6330.
[82]Lamont EA,He LL,Warriner K,Labuza TP,Sreevatsan S.A single DNA aptamer functions as a biosensor for ricin[J].Analyst,2011,136(19):3884-3895.
[83]Stern D,Pauly D,Zydek M,Müller C,Avondet MA,Worbs S,et al.Simultaneous differentiation and quantification of ricin and agglutinin by an anti⁃body-sandwich surface plasmon resonance sen⁃sor[J].Biosens Bioelectron,2016,78:111-117.
[84]Feltis BN,Sexton BA,Glenn FL,Best MJ,Wilkins M,Davis TJ.A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents[J].Biosens Bioelectron,2008,23(7):1131-1136.
[85]Nagatsuka T,Uzawa H,Sato K,Kondo S,Izumi M,Yokoyama K,et al.Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips[J].ACS Appl Mater Interfaces,2013,5(10):4173-4180.
[86]Gaylord ST,Dinh TL,Goldman ER,Anderson GP,Ngan KC,Walt DR.Ultrasensitive detection of ricin toxin in multiple sample matrixes using single-domain antibodies[J].Anal Chem,2015,87(13):6570-6577.
[87]Ma X,Tang J,Li C,Liu Q,Chen J,Li H,et al. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ioniza⁃tion tandem mass spectrometry[J].Anal Bioanal Chem,2014,406(21):5147-5155.
[88]Sturm MB,Schramm VL.Detecting ricin:sensi⁃tive luminescent assay for ricin A-chain ribosome depurination kinetics[J].Anal Chem,2009,81(8):2847-2853.
[89]Chen XY,Link TM,Schramm VL.Ricin A-chain:kinetics,mechanism,and RNA stem-loop inhibi⁃tors[J].Biochemistry,1998,37(33):11605-11613.
[90]Tang JJ,Sun JF,Lui R,Zhang ZM,Liu JF,Xie JW.New surface-enhanced raman sensing chip designed for on-site detection of active ricin in complex matrices based on specific depurination[J].ACS Appl Mater Interfaces,2016,8(3):2449-2455.
[91]Lumor SE,Hutt A,Ronningen I,Diez-Gonzalez F,Labuza TP.Validation of immunodetection(ELISA)of ricin using a biological activity assay[J].J Food Sci,2011,76(1):C112-C116.
[92]Becher F,Duriez E,Volland H,Tabet JC,Ezan E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spec⁃trometry[J].Anal Chem,2007,79(2):659-665.
[93]McGrath SC,Schieltz DM,McWilliams LG,Pirkle JL,Barr JR.Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry[J].Anal Chem,2011,83(8):2897-2905.
[94]Felder E,Mossbrugger I,Lange M,Wölfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR(qPCR)[J].Toxins(Basel),2012,4(9):633-642.
[95]Ling J,Liu WY,Wang TP.Radioassay for RNA N-glycosidase with tritium-labeled sodium-borohy⁃dride or amino acid[J].Bio Org Chem,1994,22:395-404.
[96]Rasooly R,He X.Sensitive bioassay for detec⁃tion of biologically active ricin in food[J].J Food Prot,2012,75(5):951-954.
[97] Wahome PG,Bai Y,Neal LM,Robertus JD,Mantis NJ.Identification of small-molecule inhibi⁃tors of ricin and shiga toxin using a cell-based high-throughput screen[J].Toxicon,2010,56(3):313-323.
[98]Stechmann B,Bai SK,Gobbo E,Lopez R,Merer G,Pinchard S,et al.Inhibition of retro⁃grade transport protects mice from lethal ricin challenge[J].Cell,2010,141(2):231-242.
[99]Pauly D,Worbs S,Kirchner S,Shatohina O,Dorner MB,Dorner BG.Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices[J].PLoS One,2012,7(4):e35360.
[100] Zhan J,Zhou P.A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin[J].Toxicology,2003,186(1-2):119-123.
[101] Moshiri M,Hamid F,Etemad L.Ricin toxicity:Clinical and molecular aspects[J].Rep Biochem Mol Biol,2016,4(2):60-65.
[102] Qiu ZW,Niu WK.Diagnosis and treatment of acute ricin poisoning[J].Chin J Emerg Med(中华急诊医学杂志),2006,15(7):669-670.
[103] Audi J,Belson M,Patel M,Schier J,Osterloh J.Ricin poisoning:a comprehensive review[J].JAMA,2005,294(18):2342-2351.
[104] Grimshaw B,Wennike N,Dayer M.Ricin poisoning:a case of internet-assisted parasuicide[J].Br J Hosp Med(Lond),2013,74(9):532-533.
[105] Bhaskaran M,Didier PJ,Sivasubramani SK,Doyle LA,Holley J,Roy CJ.Pathology of lethal and sublethal doses of aerosolized ricin in rhesus macaques[J].Toxicol Pathol,2014,42(3):573-581.
[106] Pincus SH,Bhaskaran M,Brey RN 3rd,Didier PJ,Doyle-Meyers LA,Roy CJ.Clinical and pathologicalfindings associated with aerosol exposure of macaques to ricin toxin[J].Toxins(Basel),2015,7(6):2121-2133.
[107]Crompton R,Gall D.Georgi Markov-death in a pellet[J].Med Leg J,1980,48(2):51-62.
[108]Guo JW,Shen BF.Current status of antagoinst and vaccine for toxic ricin[J].Int J Immunol(国际免疫学杂志),2006,29(4):217-220.
[109]Lambert JM,McIntyre G,Gauthier MN,Zullo D,Rao V,Steeves RM,et al.The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides[J].Biochemistry,1991,30(13):3234-3247.
[110]Khan AS, Thompson R, Cao C, Valdes JJ. Selection and characterization of peptide memi⁃topes binding to ricin[J].Biotechnol Lett,2003,25(19):1671-1675.
[111]Yermakova A,Klokk TI,O‘Hara JM,Cole R,Sandvig K,Mantis NJ.Neutralizing monoclonal antibodies against disparate epitopes on ricin tox⁃in’s enzymatic subunit interfere with intracellular toxin transport[J/OL].Sci Rep,2016,[2016-12-03].http://www.nature.com/articles/srep22721
[112] Yermakova A, Mantis NJ.Neutralizing activity and protective immunity to ricin toxin conferred by B subunit(RTB)-specific Fab fragments[J].Toxicon,2013,72:29-34.
[113] Noy-Porat T,Rosenfeld R,Ariel N,Epstein E,Alcalay R,Zvi A,et al.Isolation of anti-ricin protective antibodies exhibiting high affinity from immunized non-human primates[J/OL].Toxins(Basel),2016,8(3).[2016-11-22].http://www. mdpi.com/2072-6651/8/3/64
[114] Vance DJ,Mantis NJ.Progress and challenges associated with the development of ricin toxin subunitvaccines[J].ExpertRevVaccines,2016,15(9):1213-22.
[115]Roy CJ,Brey RN,Mantis NJ,Mapes K,Pop IV,Pop LM,etal.Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin:Epitope-specific neutralizing antibodies correlate with protection[J].Proc Natl Acad Sci USA.2015,112(12):3782-3787.
[116] Vitetta ES,Smallshaw JE,Coleman E,Jafri H,Foster C,Munford R,et al.A pilot clinical trial of a recombinant ricin vaccine in normal humans[J].Proc Natl Acad Sci USA,2006,103(7):2268-2273.
[117]OlsonMA, CarraJH, Roxas-DuncanV,Wannemacher RW,Smith LA,Millard CB.Finding a new vaccine in the ricin protein fold[J].Protein Eng Des Sel,2004,17(4):391-397.
[118] Marsden CJ,Knight S,Smith DC,Day PJ,Roberts LM,Phillips GJ,Lord JM.Insertional mutagenesis of ricin A chain:a novel route to an anti-ricin vaccine[J].Vaccine,2004,22(21-22):2800-2805.
[119] Kende M,Yan C,Hewetson J,Frick MA,Rill WL,Tammariello R.Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres againstaerosolchallenge[J].Vaccine,2002,20(11-12):1681-1691.
[120] Smallshaw JE,RichardsonJA,PincusS,Schindler J,Vitetta ES.Preclinical toxicity and efficacy testing of RiVax,a recombinant protein vaccine against ricin[J].Vaccine,2005,23(39):4775-4784.
[121] Smallshaw JE,Richardson JA and Vitetta ES. RiVax,a recombinant ricin subunit vaccine,protects mice against ricin delivered by gavage or aerosol[J].Vaccine,2007,25(42):7459-7469.
[122] Marconescu PS, Smallshaw JE, Pop LM,Ruback SL,Vitetta ES.Intradermal administra⁃tion of RiVax protects mice from mucosal and systemic ricin intoxication[J].Vaccine,2010;28(32):5315-5322.
[123] McLain DE, Lewis BS, Chapman JL,Wannemacher RW,Lindsey CY,Smith LA. Protective effect of two recombinant ricin subunit vaccines in the New Zealand white rabbit subjected to a lethal aerosolized ricin challenge:survival,immunological response and histopathological findings[J].Toxicol Sci,2012,126(1):72-83.
[124] Respaud R,Marchand D,Pelat T,Tchou-Wong KM,Roy CJ,Parent C,et al.Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmo nary intoxication to ricin[J].J Control Release,2016,234:21-32.
[125] McGuinness CR,Mantis NJ.Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit[J].Infec⁃tion and Immunity,2006,74(6):3463-3470.
[126] Yermakova A,Mantis NJ.Protective immunity to ricin toxin conferred by antibodies against the toxin′s binding subunit(RTB)[J].Vaccine,2011,29(45):7925-7935.
[127]O'Hara JM,Yermakova A,Mantis NJ.Immunity to ricin:fundamental insights into toxin-antibody interactions[J].Curr Top Microbiol Immunol,2012,357:209-241.
[128]Herrera C,Klokk TI,Cole R,Sandvig K,Mantis NJ.A bispecific antibody promotes aggregation of ricin toxin on cell surfaces and alters dynamics of toxin internalization and trafficking[J].PLoS One,2016,11(6):e0156893.
[129]Hu WG,Yin J,Chau D,Negrych LM,Cherwono⁃grodzky JW.Humanization and characterization of an anti-ricin neutralization monoclonal antibody[J].PLoS One,2012,7(9):e45595.
[130]Prigent J,Panigai L,Lamourette P,Sauvaire D,Devilliers K,Plaisance M,et al.Neutralising anti⁃bodies against ricin toxin[J].PLoS One,2011,6(5):e20166.
[131]Dong N,Luo LL,Wu JH,Jia PY,Li Q,Wang YX,et al.Monoclonal antibody,mAb 4C13,an effective detoxicant antibody against ricin poisoning[J].Vaccine,2015,33(32):3836-3842.
[132]Gupta N,Pons V,Noël R,Buisson DA,Michau A,Johannes L,et al.(S)-N-Methyldihydroquinazoli⁃nones are the active enantiomers of retro-2 derived compounds against toxins[J].ACS Med Chem Lett,2013,5(1):94-97.
[133]Gupta N,Noël R,Goudet A,Hinsinger K,Michau A,Pons V,et al.Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses,Leishmania and Chlamydiales[J/OL].Chem Biol Interact,2016,[2016-11-03].http://www.sciencedirect. com/science/article/pii/S0009279716304276
Toxicity and treament of ricin poisoning:a review
WANG Yu-xia1,QIAO Hong1,LIU Zi-qiao2
(1.Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China;2.School of Law,Nankai University,Tianjin 300350,China)
Ricin is a plant toxin isolated from the seed of the castor plant(Ricinus communis).As a typical II ribosome inactivating protein,ricin consists of two polypeptide chains named ricin toxin A chain(RTA)and ricin toxin B chain(RTB),linked via a disulfide bridge.RTB binds to both glycopro⁃tein and glycolipid at the surface of the target cell and mediates ricin to be endocytosed and transported retro⁃gradely to the endoplasmic reticulum.After being reduced and retrotranslocated to the cytosol,RTA mediates its toxicity due to its activity of a RNA N-glycosidases.Aside from its main toxic effect of protein synthesis inhibition,ricin also displays other properties that contribute to its toxicity such as inducing apoptosis,cytokine secreting and peroxidation.Ricin is stable and can be easily isolated.It has many routes of intoxication with no specific antidotes.Due to its natural abundance,remarkable toxicity,and the potential to be used in biological warfare as well as terrorist attacks,ricin has been classified as a Category B biothreat agent.Here we reviewed its history as a biothreat agent,constitu⁃tion,intoxication mechanism,detection methods and the development of specific antitodes.
ricin;biothreat agent;ribosome inactivating protein;bioterrorism
WANG Yu-xia,Tel:(010)66931645,E-mail:wangyuxia1962@hotmail.com
R99,R996.2
A
1000-3002-(2016)12-1385-12
10.3867/j.issn.1000-3002.2016.12.017
2016-11-20接受日期:2016-12-05)
(本文编辑:乔 虹)
王玉霞,E-mail:wangyuxia1962@hotmail.com,Tel:(010)66931645