二元Weinman型指数分布随机变量之和、差、积、商及比率的分布
2016-01-28李国安
李国安
(宁波大学理学院,浙江宁波315211)
二元Weinman型指数分布随机变量之和、差、积、商及比率的分布
李国安
(宁波大学理学院,浙江宁波315211)
[摘要]出于水文科学应用的需要,本文导出了二元Weinman型指数分布随机变量之和、差、及比率的精确分布;计算了二元Weinman型指数分布随机变量之积、及商的精确分布,所得结果可应用于水文科学的教学和研究之中.
[关键词]二元Weinman型指数分布; 和; 积; 比率; 水文科学
1引言
Weinman[1]于1966年引入了如下的二元指数分布
它是所有不独立的二元指数分布中所含参数最小的二元指数分布,同时又是一个对称指数分布,称之为二元Weinman型指数分布,文献[2]获得了来自二元Weinman型指数分布II型截尾样本的应力—强度结构系统可靠度的一致最小方差无偏估计;文献[3]对它的特征及参数估计问题进行了研究,导出了二元Weinman型指数分布的一个特征,获得了参数的最大似然估计及矩估计,给出了二元Weinman型指数分布的二种模拟,还得到了强度为二元Weinman型指数分布时并联结构系统可靠度的估计;几乎与此同时,国外学者对二元指数分布随机变量之和、积、商的分布展开了研究,文献[4]研究了二元Gumbel指数分布随机变量之和、积、比率的分布;文献[5]研究了二元Freund型指数分布随机变量之和、积、比率的分布;文献 [6]研究了二元Lawrance-Lewis型指数分布随机变量之和、积、比率的分布;文献[7]研究了二元downton型指数分布随机变量之和、积、比率的分布;文献[8]研究了可靠性模型中的五类二元指数分布,分别研究了二元downton型、Arnold-Strauss型、Marshall-Olkin型、Freund型、Lawrance-Lewis型指数分布随机变量之和的精确分布.出于教学和科研二方面的需要:本文导出了二元Weinman型指数分布随机变量之和、差、积、商、及比率的精确分布.
2二元Weinman型指数分布随机变量之和、差、及比率的分布
由
得行列式
由此得
得行列式
3二元Weinman型指数分布随机变量之积、及商的分布
由此得
分别代入,合并得
由此得
得
[参考文献]
[1]Weinman D G.A multivariate extension of the exponential distribution[D].Ph. D. thesis, Arizona State University, 1966.
[2]Cramer E,Kamps U.The UMVUE of P{X [3]李国安.二元Weinman型指数分布的特征及其应用[J].数学研究与评论,2005,25(2):337-340. [4]Nadarajah S.Sums, products, and ratios for the bivariate gumbel distribution[J].Mathematical and Computer Modelling,2005,42:499-518. [5]Gupta A K,Nadarajah S.Sums, products, and ratios for Freund’s bivariate exponential distribution[J].Applied Mathematics and Computation,2006,173:1334-1349. [6]Saralees Nadarajah S,Ali M M.The distribution of sums, products and ratios for Lawrance and Lewis’s bivariate exponential random variables[J].Computational Statistics & Data Analysis,2006,50:3449-3463. [7]Nadarajah S,Kotz S.Sums, products, and ratios for downton’s bivariate exponential distribution[J].Stoch Environ Res Risk Assess,2006,20:164-170. [8]Nadarajah S,Kotz S.Reliability models based on bivariate exponential distributions[J].Probabilistic Engineering Mechanics,2006,21:338-351. [9]Arnold B C,Strauss D J.Bivariate distributions with exponential conditionals[J].Journal of the American Statistical Association,1988,83:522-527. [10]Marshall A W,Olkin I.A multivariate exponential distribution[J].Journal of the American Statistical Association,1967,62(1):30-44. [11]Nadarajah S.Exact distributions of XY for some bivariate exponential distributions[J].Statistics: A Journal of Theoretical and Applied Statistics, 2006,40(4):307-324. [12]Block, H W and Basu, A P. A continuous bivariate exponential extension[J].Journal of the American Statistical Association,1974,69:1031-1037. [13]Nadarajah S,Gupta A K.Friday and Patil’s bivariate exponential distribution with application to drought data[J] ].Water Res. Manag. 2006,20:749-759. [14]Friday D S,Patil G. P.A bivariate exponential model with applications to reliability and computer generation of random variables [C] . in: C.P. Tsokos, I. Shimi (Eds.), Theory and Applications of Reliability, vol. I, New York :Academic Press, 1977:527-549. Sums, Minus, Products, Quotients, and Ratios for Weinman’s Bivariate Exponential Distribution LIGuo-an (Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, China) Abstract:Motivated by hydrological applications,the exact distribution of U=X+Y,Z=X-Y, when X and Y follow Weinman’s bivariate exponential distribution is derived in this paper;also, The exact distribution of V=XY,T=XY when X and Y follow Weinman’s bivariate exponential distribution is calculated, the results can be applied to hydrological sciences. Key words:Weinman’s bivariate exponential distribution; sums; products; ratios; hydrological sciences [中图分类号]O212.4 [文献标识码]C [文章编号]1672-1454(2015)05-0114-06 [基金项目]宁波大学学科项目(XKL14D2037) [收稿日期]2014-11-02