定量磁敏感成像与磁敏感加权成像在原发性高血压患者脑内微出血中的诊断应用
2016-01-24赛音乌其日拉牛广明
赛音乌其日拉,牛广明
定量磁敏感成像与磁敏感加权成像在原发性高血压患者脑内微出血中的诊断应用
赛音乌其日拉,牛广明
脑内微出血是脑内微小血管病变所导致的脑实质亚临床损害,主要特征为脑实质内微小出血灶,临床无明确的症状与体征,常出现在脑和神经变性疾病如脑淀粉样血管病、阿尔茨海默病、高血压,也可在正常老年人群中发现,表示潜在的血管病理改变。作者就定量磁敏感成像和磁敏感加权成像应用于脑内微出血中的临床进展作一综述。
磁共振成像;磁敏感加权成像;定量磁敏感成像;脑内微出血;原发性高血压
目前,脑内微出血(cerebral microbleeds,CMBs)的临床意义越来越引起学者们的注意,而对其有效的检查只能依靠影像学方法实现。较早时,学者们试图通过MRI中的弥散加权成像(diffusion weighted imaging,DWI)来显示CMBs。DWI序列属功能成像,通过组织内水分子扩散运动显示病灶,反映的是组织内水分子的运动情况,但CMBs病灶最典型病理变化为在其漫长而缓慢的形成过程中,随时间变化所含血液内的含铁血黄素在CMBs病灶内的沉积,很多学者已证实DWI效果不如梯度回波T2∗加权成像以及后来的磁敏感加权成像(susceptibility weighted imaging,SWI)[1-3]。梯度回波 T2∗加权成像与SWI是诊断CMBs最主要的检查方式,利用CMBs内含铁血黄素引起的局部磁场的改变来显示病灶。磁感性是物质的基本物理特性之一,可由磁化率表示[4]。随着MRI后处理技术的不断发展,利用人体内磁感性物质的信息反映疾病状况的探索得到了长足的进步。SWI优势在于幅度信号损耗和相位信息,该方法依靠组织之间的磁化率差异产生的相位变化,提高了图像的对比度,揭示关于组织和静脉脉管解剖和生理信息。定量磁敏感成像(quantitative susceptibility mapping,QSM)是SWI序列的发展与延伸,通过数值计算解决了逆源效应问题,从测得的磁场分布得到局部组织的磁化率源头,是反映相位信息的梯度回波序列[5]。
1 CMBs
CMBs是脑内微小血管病变所导致的脑实质亚临床损害,主要特征为脑实质内微小出血灶,临床无明确的症状与体征[6]。首次由Scharf等[7]在1994年提出,当时使用出血性腔隙综合征(haemorrhagic lacunes,HL)这一名称,发现脑出血(intracerebral hemorrhage,ICH)组比非ICH组更高频率发生HL,存在HL的患者脑出血的风险较高。CMBs最初的定义为梯度回波序列上直径2~5 mm的信号缺失区,周围无水肿带,也有学者认为其上限应为10 mm[8]。Greenberg等[9]认为CMBs常出现在脑和神经变性疾病,如脑淀粉样血管病(cerebral amyloid angiopathy,CAA)、阿尔茨海默病(Alzheimer’s disease,AD);也可在正常老年人群中发现,表示潜在的血管病理改变。CMBs在CAA与AD患者中的发现率分别为80%和30%。Pettersen等[6]认为CAA和AD患者认知功能减退的程度与CMBs位置及程度有关,脑梗死患者的发生率为18%~65%,自发性ICH中发生率为47%~80%[10-11],正常老年人群中的发病率可高达23.5%[12],这些现象引起对CMBs的病理意义的关注。神经影像学领域关注到CMBs与血管危险因素(年龄、高血压)和小血管病变间关系,如腔隙性梗死和脑白质高信号,并已经注意到缺血性脑梗死和出血性脑梗死患者的CMBs的高发生率[13]。上述结果都强烈支持CMBs可作为小血管病变的额外标志[14]。一些组织病理学研究反映了CMBs相关的血管异常,老年CMBs与CAA和高血压导致的血管病变有关[15-17]。CAA由β淀粉样肽在皮质和软脑膜动脉血管壁上积聚引起,而脑血管长期在高血压的影响下,小血管管壁发生脂质成纤维玻璃样变性,从而影响大多数深部动脉。因CAA与高血压所影响的血管分布区域不同,CMBs预期会遵循以下分布特点:①CAA多位于皮质-皮质下区;②高血压则多位于深部白质、基底节、丘脑、脑干、小脑部位[18]。有研究报道,患有皮质-皮质下区CMBs的老年人体内载脂蛋白Eε4等位基因高度表达,更容易出现CAA[12]。相比之下,深部CMBs与血管危险因素腔隙性梗死和脑白质信号增高有关,而与载脂蛋白Eε4等位基因表达的关系不大,进一步印证了CMBs的空间分布可能存在的某种规律。Brundel等[19]已通过病理学证实了CMBs周围存在组织损伤。Schäfer等[20]提出,CMBs的存在可能是华法林相关原发性脑内出血的一个独立危险因素。在患者脑内有大量CMBs时,传统观念中比抗凝剂更加安全的抗血小板剂仍会提高ICH的风险[21-22],因此对CMBs患者进行合理的、个体化的抗凝治疗非常必要。
虽然CMBs病因可能有多种,但CMBs的出现与高血压有密切关系[23-26]。高血压作为脑血管疾病的危险因素,可导致微血管壁发生变性,使微量血液从变形的血管壁渗出,引发CMBs。有研究指出,发生在基底节区及幕下的CMBs与收缩压增高有关[27]。作为CMBs的独立危险因素,高血压是引起CMBs最重要的危险因素,并能为高血压性ICH的预测提供可靠信息[28],提示症状性ICH的风险增高[29-30],CMBs可用来预警患潜在出血倾向的脑血管疾病。已有研究通过观察CMBs病灶的数目、直径、分布部位对CMBs病灶进行诊断,但目前尚未建立对CMBs病灶客观定量测量的方法[31]。一旦发生CMBs,就会诱发临近的多处正常小动脉管壁的变性,并最终形成更多的CMBs。随着时间推移,CMBs数量会累积,CMBs的形成以及其数量可预测新CMBs形成的风险[32-33]。CMBs和ICH之间可能存在一个出血体积转化阈值,当CMBs体积达到这一阈值,就有可能转变为ICH[34-36]。
2 CMBs检测方法的发展演变
磁化率是指物质进入外磁场后,该物质的磁化强度与外磁场强度的比率,磁化率越大物质的磁感性越大,磁化率能够准确地反映组织内成分[37-38]。出血后,红细胞的一小部分可能被小胶质细胞或巨噬细胞所吞噬,大部分红细胞最终裂解,血红蛋白降解成高铁血红蛋白和含铁血黄素。出血初期,氧合血红蛋白内的铁辅基与卟啉环位于一个平面,此时氧合血红蛋白是弱抗磁性的;氧合血红蛋白丢失2个氧分子后,卟啉环位置改变,使得铁辅基暴露,变成强顺磁性脱氧血红蛋白。临床上,影像学方法是唯一能对CMBs作出诊断的方法。CMBs作为直径≤10 mm微小病变,其诊断方法要满足高灵敏度和高空间精度的基本要求。因对含铁血黄素等血液降解产物内顺磁性铁的高度敏感性,T2∗加权梯度回波序列广泛应用于CMBs的诊断[9],这些序列能检出直径200 μm的出血灶[15]。在幅度图上,CMBs显示为小类圆形信号减低区域,但幅度图无法有效区分顺磁性铁与其他能改变局部磁场的物质,如钙化。而且,去相位效应导致幅度图上的信号减低范围大于实际含铁沉积物所占区域,往往造成对CMBs病灶实际大小的放大、高估,并妨碍相互比邻的多发CMBs病灶的区分。
SWI被公认为目前最成熟的CMBs检查方法,由Haacke等[39]于1997年发明。该成像方法将分别采集到的强度数据以及相位数据相互叠加,经后处理计算得到图像。该方法优势在于幅度信号损耗和相位信息,揭示关于组织和静脉脉管解剖和生理信息,依靠由于组织之间的磁化率差异产生的相位变化,提高图像的对比度[40]。但不足之处在于:①SWI无法提供磁化率的定量数据,而随着现代医学发展,只对组织内顺磁性物质的定性分析已不能满足临床医学的发展。在SWI的基础上,对组织的磁化率定量分析已成为工作重点[40-41]。②SWI序列通过结合幅度图与相位信息,放大脑内含铁区域的组织对比度[42],但是梯度回波序列里的相位图和SWI相位分布之间的关系是非局域性的,其相位同时依赖于磁化率的空间分布和相对于主磁场的方向,此外相位值取决于病变的几何形状,以及它在主磁场的相对位置[20]。③因“开花效应”[43-44]的存在,可导致SWI幅度图中CMBs的大小超出实际大小约300%[45-46]。磁敏感加权图像中的相位图提供了出色的组织对比度。然而,相位图受组织几何形状以及组织在主磁场相位B0中相对位置的影响,相位值变化会超出磁感性的变化范围[6,20]。
因此,有学者利用逆傅立叶为基础的方法分析人脑、人脑切片、狨猴脑切片,发现用此方法所计算出来的平均磁化率值接近真实的组织磁化率值[47]。另一项研究则显示,QSM能够区分抗磁性物质与顺磁性物质[48-49]。而且,含铁病变磁化率涉及铁的浓度,QSM也可以非侵入性定量CMBs等病变内的铁浓度。Barbosa等[50]利用电子顺磁共振(一个能够准确量化顺磁离子浓度并且提供有关的顺磁中心电子结构信息设备)对死亡患者脑组织内金属离子测量,并与定量磁敏感成像进行比较,证实QSM测量铁离子的敏感性,是目前唯一能够对体内金属含量与磁化率定量的影像学方法[51-52],可应用于诊断脑铁沉积[53-55]、组织钙化[56]、脑部微出血[57]等;也可以非创伤性手段测量,如检测白质束和皮质灰质中的髓鞘[58]、缺氧或功能退化血液中的铁含量、非氯化血红素铁沉积[12,59]等。因此,QSM已被建议作为体内量化脑中的金属浓度最敏感的技术,比SWI、相位图、幅度图更适合精确地识别CMBs。
总之,CMBs是脑内小血管病变的标志,能为临床提供诊断或预测信息。虽然近十年来对CMBs病理临床意义了解加深了许多,但仍有很多问题没得到充分揭示,新MRI技术的诞生(如QSM)可能从其内部成分与磁化率等新角度揭示CMBs。虽然精确无创检测铁浓度仍然困难,但QSM至少校正了梯度回波幅度、相位和SWI图像中的非局部影响,可能成为实验模型和临床CMBs的一个重要诊断工具。
[1]黄琰.磁敏感加权成像及扩散加权成像在高血压颅内微出血中的临床价值[J].中国煤炭工业医学杂志,2013,16(10):1673-1676.
[2]亓恒新,徐宁,韩曾泰,等.弥散加权成像B0图显示脑微出血灶效果观察[J].山东医药,2015,55(38):40-41.
[3]Sehgal V,Delproposto Z,Haacke EM,et al.Clinical applications of neuroimaging with susceptibility-weighted imaging[J].J Magn Reson Imaging,2005,22(4):439-450.
[4]Reichenbach JR,Schweser F,Serres B,et al.Quantitative susceptibility mapping:concepts and applications[J].Clin Neuroradiol,2015,25 Suppl 2:225-230.
[5]Liu C,Li W,Tong KA,et al.Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain [J].J Magn Reson Imaging,2015,42(1):23-41.
[6]Pettersen JA,Sathiyamoorthy G,Gao FQ,et al.Microbleed topography,leukoaraiosis,and cognition in probable Alzheimer disease from the Sunnybrook dementia study[J].Arch Neurol,2008,65(6):790-795.
[7]Scharf J,Bräuherr E,Forsting M,et al.Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage[J]. Neuroradiology,1994,36(7):504-508.
[8]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[9]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[10]Naka H,Nomura E,Wakabayashi S,et al.Frequency of asymptomatic microbleeds on T2∗-weighted MR images of patients with recurrent stroke:association with combination of stroke subtypes and leukoaraiosis[J].AJNR Am J Neuroradiol,2004,25(5):714-719.
[11]Lee SH,Bae HJ,Kwon SJ,et al.Cerebral microbleeds are regionally associated with intracerebral hemorrhage[J]. Neurology,2004,62(1):72-76.
[12]Vernooij MW,van der Lugt A,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:the Rotterdam scan study[J].Neurology,2008,70(14):1208-1214.
[13]Koennecke HC.Cerebral microbleeds on MRI:prevalence,associations,and potential clinical implications[J].Neurology,2006,66(2):165-171.
[14]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
[15]Tanaka A,Ueno Y,Nakayama Y,et al.Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas[J].Stroke,1999,30(8): 1637-1642.
[16]Fazekas F,Kleinert R,Roob G,et al.Histopathologic analysis of foci of signal loss on gradient-echo T2∗-weighted MR images in patients with spontaneous intracerebral hemorrhage:evidence of microangiopathy-related microbleeds[J].AJNR Am J Neuroradiol,1999,20(4):637-642.
[17]Tatsumi S,Shinohara M,Yamamoto T.Direct comparison of histology of microbleeds with postmortem MR images:a case report[J].Cerebrovasc Dis,2008,26(2):142-146.
[18]Greenberg SM,Finklestein SP,Schaefer PW.Petechial hemorrhages accompanying lobar hemorrhage:detection by gradient-echo MRI[J].Neurology,1996,46(6):1751-1754.
[19]Brundel M,Heringa SM,de Bresser J,et al.High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease[J].J Alzheimers Dis,2012,31(2):259-263.
[20]Schäfer A,Wharton S,Gowland P,et al.Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI[J].Neuroimage,2009,48(1): 126-137.
[21]Soo YO,Yang SR,Lam WW,et al.Risk vs benefit of antithrombotic therapy in ischaemic stroke patients with cerebral microbleeds[J].J Neurol,2008,255(11):1679-1686.
[22]Biffi A,Halpin A,Towfighi A,et al.Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy [J].Neurology,2010,75(8):693-698.
[23]Roob G,Schmidt R,Kapeller P,et al.MRI evidence of past cerebral microbleeds in a healthy elderly population [J].Neurology,1999,52(5):991-994.
[24]Jeerakathil T,Wolf PA,Beiser A,et al.Cerebral microbleeds:prevalence and associations with cardiovascular risk factors in the Framingham study[J].Stroke,2004,35(8): 1831-1835.
[25]Sveinbjornsdottir S,Sigurdsson S,Aspelund T,et al.Cerebral microbleeds in the population based AGES-Reykjavik study:prevalence and location[J].J Neurol Neurosurg Psychiatry,2008,79(9):1002-1006.
[26]Poels MM,Vernooij MW,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:an update of the Rotterdam scan study[J].Stroke,2010,41(10 Suppl):S103-S106.
[27]Jia Z,Mohammed W,Qiu Y,et al.Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery:a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors[J].J Stroke Cerebrovasc Dis,2014,23 (1):e5-e11.
[28]Vernooij MW.Cerebral microbleeds:do they really predict macrobleeding?[J].Int J Stroke,2012,7(7):565-566.
[29]Wei TM,Zhou LM,Ji JS,et al.Cerebral microbleeds detected on T2-weighted gradient echo magnetic resonance and its clinical significance[J].Zhonghua Yi Xue Za Zhi,2013,93(37):2979-2981.
[30]刘德国,于台飞,王光彬,等.磁敏感加权成像检测脑微出血的临床价值研究[J].磁共振成像,2011,2(6):420-425.
[31]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[32]Gregoire SM,Brown MM,Kallis C,et al.MRI detection of new microbleeds in patients with ischemic stroke:five-year cohort follow-up study[J].Stroke,2010,41(1):184-186.
[33]Poels MM,Ikram MA,van der Lugt A,et al.Incidence of cerebral microbleeds in the general population:the Rotterdam scan study[J].Stroke,2011,42(3):656-661.
[34]杨昂,张雪林,陈燕萍,等.SWI在高血压患者伴发脑内微出血的诊断应用[J].临床放射学杂志,2009,28(8): 1055-1059.
[35]陈颖.1.5TMRI-SWI序列对高血压性脑微出血的诊断价值[J].中国CT和MRI杂志,2013,11(2):7-9.
[36]唐小平.中老年脑微出血与心脑血管危险因素相关性研究[D].南昌:南昌大学,2009.
[37]Shmueli K,de Zwart JA,van Gelderen P,et al.Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[J].Magn Reson Med,2009,62(6):1510-1522.
[38]Deistung A,Schweser F,Wiestler B,et al.Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One,2013,8(3):e57924.
[39]Haacke EM,Lai S,Reichenbach JR,et al.In vivo measurement of blood oxygen saturation using magnetic resonance imaging:a direct validation of the blood oxygen level-dependent concept in functional brain imaging[J].Human Brain Mapp,1997,5(5):341-346.
[40]Port JD,Pomper MG.Quantification and minimization of magnetic susceptibility artifacts on GRE images[J].J Comput Assist Tomogr,2000,24(6):958-964.
[41]Li L,Leigh JS.Quantifying arbitrary magnetic susceptibility distributions with MR[J].Magn Reson Med,2004,51 (5):1077-1082.
1)目标点的坐标计算。用目标点的水平距离与其平均值之间偏差绝对值的最大值作为检定结果。目标点之间每一组水平距离li,k的计算公式为
[42]Reichenbach JR,Venkatesan R,Schillinger DJ,et al.Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J].Radiology,1997,204(1):272-277.
[43]范敬争,田亚楠,周蕾,等.自发性脑出血患者脑微出血MR磁化率与体积的相关性研究[J].临床放射学杂志,2012,31(12):1694-1698.
[44]Stojanov D,Vojinovic S,Aracki-Trenkic A,et al.Imaging characteristics of cerebral autosomal dominant arteriopathy with subcorticalinfarctsandleucoencephalopathy(CADASIL) [J].Bosn J Basic Med Sci,2015,15(1):1-8.
[45]Klohs J,Deistung A,Schweser F,et al.Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis[J]. J Cereb Blood Flow Metab,2011,31(12):2282-2292.
[46]Schrag M,McAuley G,Pomakian J,et al.Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy:a postmortem MRI study[J].Acta Neuropathol,2010,119(3):291-302.
[47]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[48]Schweser F,Deistung A,Lehr BW,et al.Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase:an approach to in vivo brain iron metabolism? [J].Neuroimage,2011,54(4):2789-2807.
[50]Barbosa JH,Emídio R,Alho AT,et al.Correlation between paramagnetic ions and quantitative susceptibility values of postmortem brain study[EB/OL].(2015-09-01)[2016-02-08].https://www.researchgate.net/publication/277477174_CORRELATION_BETWEEN_PARAMAGNETIC_IONS_AND_QUANTITATIVE_SUSCEPTIBILITY_VALUES_OF_POSTMORTEM_BRAIN_STUDY.
[51]Haller S,Bartsch A,Nguyen D,et al.Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment[J].Radiology,2010,257(3):764-773.
[52]Schenck JF.The role of magnetic susceptibility in magnetic resonance imaging:MRI magnetic compatibility of the first and second kinds[J].Med Phys,1996,23(6):815-850.
[53]Bilgic B,Pfefferbaum A,Rohlfing T,et al.MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J].Neuroimage,2012,59(3): 2625-2635.
[54]Tan H,Liu T,Wu Y,et al.Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping[J].Invest Radiol,2014,49(7):498-504.
[55]Lim IA,Faria AV,Li X,et al.Human brain atlas for automated region of interest selection in quantitative susceptibility mapping:application to determine iron content in deep gray matter structures[J].Neuroimage,2013,82: 449-469.
[56]Chen W,Zhu W,Kovanlikaya I,et al.Intracranial calcifications and hemorrhages:characterization with quantitative susceptibility mapping[J].Radiology,2014,270(2):496-505.
[57]Liu T,Surapaneni K,Lou M,et al.Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[J].Radiology,2012,262(1):269-278.
[58]Salomir R,de Senneville BD,Moonen CT.A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J].Magnetic Resonance Engineering,2003,19B(1):26-34.
[59]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
The application of susceptibility weighted imaging and quantitative susceptibility mapping in essential hypertension complicated by cerebral microbleeds
Saiyinwuqirila,NIU Guangming
(Department of Medical Imaging,Affiliated Hospital of Inner Mongolia Medical University,Hohhot Inner Mongolia 010050,China)
Cerebral microbleeds(CMBs)are the essence of subclinical brain damage of tiny blood vessels in the brain caused by the disease,mainly characterized by small parenchymal hemorrhage,no clear clinical symptoms and signs.It often appears in the brain and neurodegenerative diseases,such as cerebral amyloid angiopathy(CAA),Alzheimer’s disease(AD),essential hypertension(EH),also finds in normal elderly population.It represents a potential change of vascular pathology.This article reviews the clinical progression of susceptibility weighted imaging(SWI)and quantitative magnetic susceptibility mapping(QSM)applied in CMBs.
Magnetic resonance imaging(MRI);Susceptibility weighted imaging(SWI);Quantitative magnetic susceptibility mapping(QSM);Cerebral microbleeds(CMBs);Essential hypertension(EH)
R445.2;R743
A
2095-3097(2016)06-0376-05
10.3969/j.issn.2095-3097.2016.06.015
2016-03-31 本文编辑:冯 博)
国家自然科学基金(81460259)
010050内蒙古呼和浩特,内蒙古医科大学附属医院影像科(赛音乌其日拉,牛广明)