实时三维超声心动图评价二尖瓣形态的研究进展
2016-01-24孙琪李俊峡
孙琪,李俊峡
• 综述 •
实时三维超声心动图评价二尖瓣形态的研究进展
孙琪1,李俊峡1
近年来,实时三维超声心动图(RT3DE)取得了革命性的发展。许多研究已证明RT3DE可实时采集、快速成像、同步显示二尖瓣的立体解剖结构,尤其是三维经食道超声心动图(TEE)不受患者体位、肺内气体等因素影响,对二尖瓣立体结构的显示明显优于二维TEE[1]。目前,RT3DE已成为指导二尖瓣外科手术及导管介入治疗的首选影像学检查[2]。本文就RT3DE在二尖瓣疾病中应用的研究进展综述如下。
1 二尖瓣的解剖
1.1二尖瓣叶 正常二尖瓣为二叶,前叶比后叶大1.5倍,前叶与主动脉瓣的纤维相连续,后叶多呈新月形,前叶根部附着整个瓣环的前1/3,后叶根部附着后2/3。两瓣叶交界处位于前外和后内侧,称为内、外侧联合。通常根据Carpentier命名法对二尖瓣分区进行定位诊断,前叶外侧、中间部和内侧区分别命名为A1、A2、A3区,后叶外侧、中间部和内侧区分别命名P1、P2、P3区,前外侧交界命名为C1区,后内侧交界命名为C2区,共8个区域[3]。联合处前后叶瓣缘至瓣环的距离在5 mm以上[4],同时两瓣叶面积的总和大约是瓣环面积的140%,保证前后叶闭合时足够接触,有效防止收缩期二尖瓣反流[5]。
1.2二尖瓣瓣环 二尖瓣瓣环为一宽度长于前后径的椭圆形结构,与心脏的纤维骨架相连续,瓣环结构改变是引起二尖瓣反流的最主要原因之一。正常的二尖瓣瓣环前、后交界处位置较低,中点(瓣根处)位置较高,呈类似于马鞍的非平面双曲抛物面结构[6]。此“马鞍形”结构在舒张期相对平坦,而在心室收缩期,马鞍型结构深度加深,并向心尖部移动,能更好地承受收缩期左心室施加的压力,维持瓣叶的曲度,有利于瓣叶闭合[7,8]。研究证明,瓣环高度与宽度之比(AHCWR)在15%~25%范围内时,瓣叶所受的应力最低[5,6]。
1.3二尖瓣瓣下装置 二尖瓣瓣下装置包括腱索、乳头肌及部分室壁组织。病理条件下,腱索可拉长或断裂,引起严重二尖瓣反流。左心室扩大或变形时,心室壁向外移位,向心尖及后方牵拉腱索及二尖瓣,也可能导致功能性二尖瓣反流[9]。
2 RT3DE技术
经胸超声心动图检查时,通常在心尖四腔切面采集二尖瓣的三维图像,而TEE时采用食管中段切面[2]。采集模式有两种:一是实时或动态三维成像,为在一个心动周期内采集的金字塔型的容积数据集,通常显示帧速率>20 帧/秒,最好是30 帧/秒,此种模式能够减少心率及呼吸对数据采集的影响,但时间及空间分辨率偏低;二是门控多心动周期三维显像,为获取若干心动周期(2~7个)的窄容积数据,随后拼接在一起合并为一个容积数据集。此种模式可以提供更高的分辨率图像,但容易受呼吸运动、不规则心率的影响而产生图像干扰。模式的选择应根据临床需要,权衡空间-时间分辨率。
3 RT3DE在二尖瓣疾病形态定量中的应用
3.1二尖瓣脱垂 二维超声心动图诊断二尖瓣脱垂的定义为:胸骨长轴切面二尖瓣瓣叶脱向左心房,超过瓣环水平2 mm以上。由于瓣环呈马鞍形状,在心尖四腔心切面过多误诊了二尖瓣脱垂。而且,在胸骨旁左室长轴切面主要显示瓣叶的A2和P2区,使得二维超声心动图诊断瓣叶其它区域的脱垂受到限制。而在RT3DE,二尖瓣的颜色编码参数提供了有关瓣叶6个节段相对于马鞍形瓣环移位形态的数据,大大提高了诊断的准确性[5,18,19]。此外,三维量化二尖瓣可以更好识别其继发病变,如二尖瓣裂(裂深度≥50%瓣叶高度)和亚裂(裂深度<50%瓣叶高度)[20]。Lee等[5]在分析二尖瓣脱垂患者的RT3DE时发现:二尖瓣脱垂组瓣环前后径、前外后内径、周长、面积均较正常对照组显著增大,且增大程度越大,反流程度越重;并首次发现二尖瓣脱垂组瓣环高度与AHCWR减低,提示瓣环扁平化与瓣叶冗长、脱垂体积增加、腱索断裂和有效返流口(ERO)增大强烈相关。重要的是,二尖瓣脱垂患者即使在没有或轻度反流时,瓣环高度和AHCWR也是减低的,表明二尖瓣脱垂患者存在原发性的瓣环异常。AHCWR<15%提示“马鞍形瓣环结构扁平化,是二尖瓣脱垂患者出现二尖瓣反流的独立相关因素[5]。
3.2功能性或缺血性二尖瓣反流 功能性二尖瓣反流的定义为:无原发性二尖瓣异常时继发于左心室重塑的二尖瓣反流。瓣环扁平和扩张[21]、瓣叶牵拉[22]、左室压力上升速率减低以及左室收缩不同步[23,24]所致二尖瓣叶对合不良都可导致功能性二尖瓣反流。目前已有一些研究应用RT3DE的定量软件,手动或半自动地探索功能性二尖瓣反流的瓣环运动机制[7,8,25,26]。Grewal等[7]和Levack等[25]已发现缺血性瓣环比正常瓣环运动减低,同时收缩期瓣环的收缩面积、前后径缩短及马鞍形加深程度也显著减低。缺血性二尖瓣反流时,缺血部位与非缺血部位间不对称的牵拉二尖瓣导致瓣叶几何形状改变,不对称牵拉与二尖瓣反流的严重程度相关[27]。RT3DE研究也发现,继发于缺血/梗死、扩张型心肌病和慢性主动脉瓣关闭不全原因所致的左心室重构,瓣叶会相应扩大[28,29]。这些研究挑战了目前有关功能性二尖瓣反流仅仅与左心室重构相关的概念。RT3DE是无创监测和随访瓣叶病变的理想方法,期望为功能性二尖瓣反流提供新的预防及治疗措施。
3.3风湿性二尖瓣膜病 对于风湿性二尖瓣狭窄(MS)患者二尖瓣口面积的测量,目前认为三维超声比二维更准确[30]。三维超声心动图可以直视下准确评估瓣膜联合部的融合和钙化情况,而二维超声心动图常低估,低估率约1/5[31,32]。RT3DE研究已发现除瓣口面积外,瓣膜形状对过瓣的血流动力学也有潜在影响。Gilon等[33]使用3DE与激光色谱法证实,二尖瓣三维构型的变化导致压力梯度的变化,解剖面积和流量相同时,平坦瓣叶与“漏斗”状瓣膜相比,压力梯度差别可达40%以上,其研究结果表明仅用RT3DE形态定量就可以明确心脏结构、压力和血流之间的关系。风湿性二尖瓣关闭不全患者的瓣环面积及前、后叶均大于正常人,瓣环前后径越大、后叶角度越小,风湿性二尖瓣反流程度越严重[34]。乳头肌排列紊乱及腱索间角度狭小也会导致风湿性二尖瓣反流[35]。
4 RT3DE在二尖瓣疾病外科治疗中的应用
RT3DE不受二尖瓣环非平面特性的限制,可动态显示与外科手术视野方位一致的图像,明确术前病变、建立解剖模型、制定适宜的修补策略、提高手术成功率是三维影像学检查的最终目标。RT3DE定量技术可以精确计算瓣叶角度、面积、穹窿容积、瓣环结构、面积和乳头肌间距离[36]。从外科观点看,二尖瓣修补术使用马鞍形的瓣环成形更利于瓣叶对合[37,38],保证足够的二尖瓣闭合面积是体现手术近远期疗效的关键[15]。定量测量二尖瓣病变瓣膜脱垂或梿枷样运动部分瓣叶的高度和局部容积,可以帮助外科医师拟定瓣膜成形术手术方案,选择楔形切除瓣膜抑或折叠瓣体,且可根据这两项参数确定切除或折叠的范围,达到满意的手术效果[5,39,40]。fattouch等[41]报道,术前建立“截断锥体(truncated cone)”模型,可以提前计算出达到足够瓣叶闭合的乳头肌头部的新位置。
5 RT3DE在经皮导管二尖瓣介入术中的应用
Anwar等[42]提出了一种应用RT3DE在经皮导管二尖瓣成形术(PTMV)前,二尖瓣瓣叶厚度、不动度、钙化和瓣下结构的半定量评分。应用此评分随访PTMV患者1年后,二尖瓣再狭窄率、重度二尖瓣反流率及再干预率为17%,而应用Wilkins评分的患者则高达48%[42]。因此,使用RT3DE评分可帮助识别更多不宜行PTMV的患者。对于需要使用MitraClip系统经皮二尖瓣修补术的患者,三维TEE准确定量瓣叶脱垂部位、脱垂高度、宽度和容积对于选择应用是必要的[43]。介入治疗后,RT3DE更可作为一种多普勒的辅助评价工具,定量双口面积、评估有无狭窄[44]。
6 RT3DE的局限性与未来发展方向
目前,应用RT3DE在二尖瓣定量成像中的主要限制是在常规临床应用中耗时偏长,而且人工手动输入解剖标志往往会产生偏差、测量误差与变异。未来的研究目标应该提高智能化,自动识别解剖形态并准确量化,使二尖瓣的建模过程最大化地适用于日常诊断,并且确定出作为临床决策、影响患者预后的的参数正常值[45]。
[1] Lee AP,Fang F,Jin CN,et al. Quantification of mitral valve morphology with three-dimensional echocardiography-Can measurement lead to better management[J]. Circ J,2014,78(5):1029-37.
[2] Lang RM,Badano LP,Tsang W,et al. EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography[J]. J Am Soc Echocardiogr,2012,25(1):3-46.
[3] Agricola E,Oppizzi M,De Bonis,et al. Multiplane transesophageal echocardiography performed according to the Guidelines of the American Society of Echocardiography in patients with mitral prolapsed, flail, and endocarditis: diagnostic accuracy in the identification of mitral regurgitant defects by correlation with surgical findings[J]. J Am Soc Echocardiogr,2003,16(1):61-6.
[4] Looi JL,Lee AP,Wan S. Diagnosis of cleft mitral valve using realtime 3-dimensional transesophageal echocardiography[J]. Int J Cardiol,2013,168(2):1629-30.
[5] Lee AP,Hsiung MC,Salgo IS,et al. Quantitative analysis of mitral valve morphology in mitral valve prolapsed with real-time 3-dimensional echocardiography: Importance of annular saddle shape in the pathogenesis of mitral regurgitation[J]. Circulation,2013,127(7):832-41.
[6] Grewal J,Suri R,Mankad S,et al. Mitral annular dynamics in myxomatous valve disease: New insights with real-time 3-dimensional echocardiography[J]. Circulation,2010,121(12): 1423-31.
[7] Khabbaz KR,Mahmood F,Shakil O,et al. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation[J]. Ann Thorac Surg,2013,95(1):105-10.
[8] 周文艳,陈昕,杨军,等. 实时三维经食管超声心动图定量分析正常二尖瓣立体结构动态的变化[J]. 中国医学影像与技术,2014,30(12):1814-17.
[9] Lee AP,Acker M,Kubo SH,et al. Mechanisms of recurrent functional mitral regurgitation after mitral valve repair in nonischemic dilated cardiomyopathy: Importance of distal anterior leaflet tethering[J]. Circulation,2009,119(19):2606-14.
[10] Jassar AS,Brinster CJ,Vergnat M,et al. Quantitative mitral valve modeling using real-time three-dimensional echocardiography: Technique and repeatability[J]. Ann Thorac Surg, 2011,91(1):165-71.
[11] Andrawes MN,Feinman JW. 3-dimensional echocardiography and its role in preoperative mitral valve evaluation[J]. Cardiol Clin,2013,31(2):271-85.
[12] Metaxas D,Axel L. Functional imaging and modeling of the heart[M]. Springer Berlin Heidelberg,2011:215-22.
[13] Pouch A,Wang H,Takabe M,et al. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling[J]. Med Image Anal,2014,18:118-29.
[14] Sprouse C,Mukherjee R,Burlina P. Mitral valve closure predictionwith 3D personalized anatomical models and anisotropic hyperelastic tissue assumptions[J]. IEEE Trans Biomed Eng,2013,60(11):3238-47.
[15] Ahmed S,Nanda NC,Miller AP,et al. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapsed of the mitral valve[J]. Echocard iography,2003,20(2):203-9.
[16] Camara O,Mansi T,Pop M,et al. Statistical atlases and computational models of the heart. Imaging and modelling challenges[M]. Springer Berlin Heidelberg,2014:162-70.
[17] Fichtinger G,Martel A,Peters T. Medical image computing and computer-assisted intervention-MICCAI 2011[M]. Springer,Berlin,2011:504-11.
[18] Addetia K,Mor-Avi V,Weinert L,et al. A new definition for an old entity: Improved definition of mitral valve prolapsed using threedimensional echocardiography and color-coded parametric models[J]. J Am Soc Echocardiogr,2014,27(1):8-16.
[19] Chandra S,Salgo IS,Sugeng L,et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time threedimensional echocardiographic images: Objective insight into complexity and planning of mitral valve repair[J]. Circ Cardiovasc Imaging,2011,4(1):24-32.
[20] La Canna G,Arendar I,Maisano F,et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation[J]. Am J Cardiol,2011,107(9):1365-74.
[21] Topilsky Y,Vaturi O,Watanabe N,et al. Real-time 3-dimensional dynamics of functional mitral regurgitation: A prospective quantitative and mechanistic study[J]. J Am Heart Assoc,2013,2(3):e000039.
[22] 黄丹青,张连仲. 经食管实时三维超声心动图在二尖瓣疾病中应用研究进展[J]. 中华实用诊断与治疗杂志,2015,29(9):835-9.
[23] Levine RA,Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: From paradoxes to unifying concepts[J]. Circulation,2005,112(5):745-58.
[24] Liang YJ,Zhang Q,Fang F,et al. Incremental value of global systolic dyssynchrony in determining the occurrence of functional mitral regurgitation in patients with left ventricular systolic dysfunction[J]. Eur Heart J,2013,34(10):767-74.
[25] Levack MM,Jassar AS,Shang EK,et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: Implication for annuloplasty selection[J]. Circulation,2012,126 (11 Suppl1): S183-8.
[26] Bartels K,Thiele RH,Phillips-Bute B,et al. Dynamic indices of mitral valve function using perioperative three-dimensional transesophageal echocardiography[J]. J Cardiothorac Vasc Anesth,2014,28(1):18-24.
[27] Zeng X,Nunes MC,Dent J,et al. Asymmetric versus symmetric tethering patterns in ischemic mitral regurgitation: Geometric differences from three-dimensional transesophageal echocardiography[J]. J Am Soc Echocardiogr,2014,27(4):367-75.
[28] Saito K,Okura H,Watanabe N,et al. Influence of chronic tethering of the mitral valve on mitral leafletsize and coaptation in functional mitral regurgitation[J]. JACC Cardiovasc Imaging,2012,5(4):337-45.
[29] Beaudoin J,Handschumacher MD,Zeng X,et al. Mitral valve enlargement in chronic aortic regurgitation as a compensatory mechanism to prevent functional mitral regurgitation in the dilated left ventricle[J]. J Am Coll Cardiol,2013,61(17):1809-16.
[30] de Agustin JA,Mejia H,Viliani D,et al. Proximal flow convergence method by three-dimensional color Doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis[J]. J Am Soc Echocardiogr,2014,27(8):838-45.
[31] Schlosshan D,Aggarwal G,Mathur G,et al. Realtime 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis[J]. JACC Cardiovasc Imaging,2011,4(6):580-8.
[32] 马宁,李治安,杨娅. 经食管二维与实时三维超声结合在风湿性二尖瓣病变成形术中的应用[J]. 临床心血管病杂志,2011,27(12):890-3.
[33] Gilon D,Cape EG,Handschumacher MD,et al. Insights from threedimensional echocardiographic laser stereolithography: Effect of leaflet funnel geometry on the coefficient of orifice contraction,pressure loss, and the Gorlin formula in mitralstenosis[J]. Circulation,1996,94(3):452-9.
[34] Song JM,Jung YJ,Ji HW,et al. Three dimensional remodeling of mitral valve in patients with significant regurgitation secondary to rheumatic versus prolapse etiology[J]. Am J Cardiol, 2013,111(11):1631-7.
[35] Wong S,French R,Bolson E,et al. Morphologic features of the rheumatic mitral regurgitant valve by three-dimensional echocardiography[J]. Am Heart J,2001,142(5):897-907.
[36] Fattouch K,Castrovinci S,Murana G,et al. Multiplane twodimensional versus real time three-dimensional transesophageal echocardiography in ischemic mitral regurgitation[J]. Echocardiograp hy,2011,28(10):1125-32.
[37] Jensen MO,Jensen H,Levine Ra,et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry[J]. J Thorac Cardiovasc Surg,2011,142(3):697-703.
[38] Jensen MO,Jensen H,Smerup M,et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat ring[J]. Circulation,2008,118 (14Suppl):S250-5.
[39] Drake DH,Zimmerman KG,Hepner AM,et al. Echo-Guided Mitral Repair[J]. Circ Cardiovasc Imaging,2014,7(1):132-41.
[40] 胡丽艳. 经食管三维超声心动图对二尖瓣脱垂成形术的临床分析[J]. 中华全科医学,2015,13(9):1497-9.
[41] Fattouch K,Castrovinci S,Murana G,et al. Relocation of papillary muscles for ischemic mitral valve regurgitation: The role of threedimensional transesophagealechocardiography[J]. Innovations (Phila),2014,9(1):54-9.
[42] Anwar AM,Attia WM,Nosir YFM,et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography[J]. J Am Soc Echocardiogr,2010,23(1):13-22.
[43] Feldman T,Kar S,Elmariah S,et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II[J]. J Am Coll Cardiol,2015,66(25):2844-54.
[44] Biaggi P,Felix C,Gruner C,et al. Assessment of mitral valve area during percutaneous mitral valve repair using the MitraClip system: Comparison of different echocardiographic methods[J]. Circ Cardiovasc Imaging, 2013,6(6):1032-40.
[45] Noack T,Kiefer P,Ionasec R,et al. New concepts for mitral valve imaging[J]. Ann Cardiothorac Surg,2013,2(6):787-95.
本文编辑:阮燕萍
R540.45 【文献标志码】A
1674-4055(2016)05-0635-03
1100700 北京,陆军总医院心血管疾病研究所二区
孙琪,E-mail:18611984100@163.com
10.3969/j.issn.1674-4055.2016.05.40
目前,最常见的用于分析二尖瓣的两套软件系统是MVN A.I.(旧版本叫MVQ,美国Philips公司)和 4D-MV评价软件(德国TomTec影像公司)[10,11],可手动或半自动检测主要的解剖标志,随后使用几何网格曲面建立二尖瓣的形态模型。二维超声心动图是评价二尖瓣的常用方法,由于二尖瓣环的马鞍形结构,需要多个切面连续扫查,且对操作者依赖性强,探头轻微偏转、左心增大及左室发生几何重塑时,都会影响结果的判断。RT3DE不受二尖瓣环非平面特性的限制,可以动态显示与外科手术视野方位一致的图像,同时,局部放大成像模式可进行二尖瓣环及瓣叶局部放大,对图像进行旋转、切割以及增益的调节,较清晰显示瓣叶的整体形态。目前,应用RT3DE可较准确地自动定量分析瓣环和瓣叶的形状及其运动[12-14],而自动分析瓣叶联合部、腱索和乳头肌这些结构目前技术上仍有困难[15-17]。