APP下载

前路手术治疗颈椎后纵韧带骨化并发硬脊膜破裂的危险因素及治疗进展

2016-01-23孙祥耀海涌

中国骨与关节杂志 2016年11期
关键词:脊膜破口骨化

孙祥耀 海涌

Risk factors and research progress in the treatment of incidental durotomy in anterior cervical spine surgery for the patients with ossification of the posterior longitudinal ligament

SUN Xiang-yao, HAI Yong. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC

. 综述 Review .

前路手术治疗颈椎后纵韧带骨化并发硬脊膜破裂的危险因素及治疗进展

孙祥耀海涌

Risk factors and research progress in the treatment of incidental durotomy in anterior cervical spine surgery for the patients with ossification of the posterior longitudinal ligament

SUN Xiang-yao, HAI Yong. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC

颈椎;后纵韧带骨化;外科手术;脑脊液漏;危险因素;诊断

硬脊膜破裂 ( incidental durotomy,ID ) 在脊柱外科的整体发生率为 1%~17%[1]。颈椎手术硬脊膜破裂的整体发生率为 0.5%~3%[2-4],其中颈椎前路减压手术引起硬脊膜破裂和脑脊液漏的发生率为 0.5%~3%[2,5-9],对于有后纵韧带骨化的病例,发生率明显增高,为 4.3%~32%[1,10-15]。与后路手术相比,前路手术可能出现的创伤性操作会增加脑脊液漏发生的风险,这是因为椎板成形术和椎板切除术避免了对骨化的后纵韧带进行直接操作;因此,尽管在应用颈椎前路手术治疗颈椎管狭窄等疾病时,通过切除骨化的后纵韧带和前路融合对脊髓进行前方减压能够比后路手术取得更加满意的治疗效果,外科医生必须考虑到硬脊膜破裂的风险[14,16]。

一、颈椎前路手术并发硬脊膜破裂概述

( 一 ) 颈椎特殊解剖结构

1. “过渡区” ( transitional zone ) 的概念:上位颈椎的稳定结构十分复杂,在 C0~2层面的硬脊膜与周围的韧带粘连紧密,并通过多层结缔组织进行加强;然而,C2椎体下1 / 3 平面以下对应的硬脊膜仅有后纵韧带覆盖,此结构延续到枢椎下节段直到脊髓全长[17]。Beretta 等[18]认为,“过渡区”位于上述 C0~2节段与枢椎下颈椎节段之间,为C2~3椎间盘平面与 C3椎体后壁上 1 / 3 之间的区域。

2. “过渡区”的意义:枢椎平面以下硬脊膜与上位颈椎平面与硬脊膜粘连的韧带结构及坚韧的结缔组织所形成的相反的弹性力,使“移行区”成了颈椎硬脊膜的薄弱区域,容易受到损伤出现硬脊膜破裂[18]。对于 C0~2复合体及其硬脊膜的分离,会引起“过渡区”C3水平硬脊膜薄弱处的破裂,从而将脑脊液引流入硬脊膜外间隙。由于上位颈椎的解剖特点以及“移行区”的存在,脑脊液漏引起的硬脊膜外间隙脑脊液积聚,较少出现在 C0~2水平,而较易从 C2~3层面向下蔓延,甚至可达上位胸椎水平硬脊膜外间隙[19]。

( 二 ) 颈椎前路手术硬脊膜破裂危险因素

Epstein 等[20]发现颈椎手术引起硬脊膜破裂的整体发生率为 1%;硬脊膜破裂的重要危险因素为老龄、风湿性关节炎、后纵韧带骨化、手术时间较长、手术颈椎节段较多、神经功能较差、术式为椎体次全切除术以及再次手术;老龄及后纵韧带骨化不仅是硬脊膜破裂的重要危险因素,也是硬脊膜破裂直接缝合修补失败的重要危险因素。其中老龄患者因为硬膜变薄弱,容易出现硬脊膜破裂[19-21]。类风湿关节炎也是危险因素,可能原因是在炎症状态下会造成硬脊膜与周围组织更严重的粘连以及使硬脊膜变得更加薄弱;术前神经功能较差也是重要危险因素,这可能是因为其需要进行更加复杂的手术才能达到治疗目的,从而增加了硬脊膜破裂的风险[22]。Hannallah 等[8]报道后纵韧带骨化是前路减压手术后出现脑脊液漏的最重要的危险因素,并且患有后纵韧带骨化的患者出现脑脊液漏的发生率是没有后纵韧带骨化患者的 13.7 倍。后纵韧带骨化的病例中,硬脊膜经常发生骨化或钙化,并与后纵韧带融合在一起,因此增加了在进行去除后纵韧带骨化块的手术操作时出现脑脊液漏和脊髓或神经根损伤的可能性[23]。

( 三 ) 颈椎手术并发脑脊液漏的预后

既往文献描述了多种与颈椎手术后脑脊液漏相关的并发症,包括脑脊髓膜炎[24]、伤口延迟愈合、气道阻塞[3-4]、脑脊液皮瘘[23]以及假性硬脊膜膨出[3,25-26]。术后立即出现的威胁生命的脑脊液漏并不常见,但是其需要早期诊断和迅速干预。处理得当的脑脊液漏预后较好,然而 Saxler 等[27]发现伴有硬脊膜破裂的患者预后较差 ( 他们会面临更高的再手术风险,经受更严重的疼痛和疼痛相关的功能受限 ),其他作者报道脑脊液漏产生的长期有害作用有限[9-12]。

二、颈椎前路手术硬脊膜破裂的治疗

颈椎前路硬脊膜破裂的修补技术包括直接缝合修补,使用吸收性明胶海绵[1]、纤维蛋白胶[4,22,28]、胶原蛋白基质[29-30]、脂肪和筋膜移植[31-32]、生物型补片[33]、合成材料[34-35]以及使用硬膜外自体血填充技术[36]进行修补,放置腰部引流[8,37]或腰部-腹腔和伤口-腹腔分流术[3,33]、脑室引流术[24,26]、激光技术[38]和显微硬脊膜缝合器缝合[15]。笔者将常用的术中处理方法和术后特殊处理方法分别进行阐述。

( 一 ) 术中处理策略

1. 硬脊膜直接缝合修补:尽管在整个脊柱区域,大多数的硬脊膜破裂引发脑脊液漏病例中直接缝合修补是最佳的处理方法[39-42],当其出现在颈椎前路手术治疗后纵韧带骨化时,通常会因为暴露不充分从而使直接缝合修补变得困难[43]。直接修补技术的主要目的是为硬脊膜破裂提供水密性封闭。如果技术上允许,提倡使用缝合的方法进行直接缝合修补。然而据报道,这种修补技术的失败率为5%~10%[2,44]。当硬脊膜发生骨化并与后纵韧带出现粘连并不易分离时,硬脊膜破裂将更易发生;这些硬脊膜破裂产生的组织缺口不适于进行直接缝合修补[16]。骨化的硬膜可以通过术前 CT 进行诊断,表现为硬脊膜上均质的骨化块与后纵韧带粘连或前方及后方骨化边缘被肥厚的后纵韧带的高密度区分开形成双层征[45]。可能导致直接缝合修补失败的另一个原因是缝合产生的针眼大小的硬脊膜破裂,使脑脊液从硬脊膜漏出[30,46-47]。对较小的硬脊膜破口进行一期缝合封闭的潜在风险在于,其将低压力的破口转变为由缝针引起的高压力针眼[30]。

2. 化学密封剂和生物材料移植:常用的化学密封剂有吸收性明胶海绵[44]、纤维蛋白胶[48]、胶原蛋白基质[33],水明胶[68]等。化学封闭剂可以被用来克服针眼处出现脑脊液漏的问题[30]。

吸收性明胶海绵为有孔材料,水密性差,但是可以与直接缝合相配合修补破口[44]。使用时可以使用甲泼尼龙浸泡防止与周围组织粘连[25]。相关研究表明,颈椎前路手术致硬脊膜破裂脑脊液漏的患者,术中采用吸收性明胶海绵联合缝合修补可以达到较好的疗效,并且有效防止感染的发生[49]。

纤维蛋白胶被证明在防止直接修补引起的脑脊液漏方面有效[28]。实验数据表明,经单纯缝合的方法修补的硬脊膜破裂会在生理压力下出现脑脊液漏,然而使用纤维蛋白胶等密封剂辅助修补后的硬脊膜破裂能在术后承受更高的压力[28,31,48]。由于纤维蛋白密封剂在被吸收之前只能保持性状 5~7 天,它应当与硬脊膜移植修补术合用,从而保证术后早期的水密性封闭。

Narotam 等[30]报道了在硬脊膜破裂修补中使用胶原蛋白基质外置非缝合移植物,并取得了成功。胶原蛋白基质不需要缝合固定,黏附能力较好,能降低局部反应,在2~3 个月被自身组织取代[20]。

水凝胶修补硬脊膜破口的成功率可达 98.2%[50]。水凝胶在使用后体积会增大 50%,因此其禁用于神经结构丰富的狭小骨性区域中,以避免对周围结构造成压迫[51]。国内报道了对无明显硬脊膜缺损的患者,使用氰基丙烯酸酯医用胶[52]和人工硬脊膜联合生物蛋白胶[53]治疗脑脊液漏,疗效较好。

常用于移植修补的生物材料包括脂肪组织[54]、肌肉组织[55]、自体筋膜[54]以及牛心包膜[44]等。脂肪移植是最早应用于硬脊膜破裂的移植物,其不透水,容易获得,不易与周围神经结构粘连,并且能够有效预防瘢痕的产生;最常应用的筋膜移植物包括阔筋膜和切口周围的筋膜[54]。最常用于颈椎前路手术的肌肉组织移植方法为带蒂胸锁乳突肌皮瓣移植[55-56]。该皮瓣用途极为广泛,Benazzo 等[56]曾经使用这种皮瓣治疗颈椎前路手术造成的食管破裂,并取得了成功。牛心包膜为常用的异体组织移植物,有相关研究表明,硬膜环形撕裂使用自体阔筋膜移植或牛心包膜进行联合修补,治疗效果较好[44]。Epstein[15,33]描述了一项使用缝合或显微硬膜缝合器来确保心包膜移植到硬脊膜破口处的技术,均在应用中取得成功;这项技术通常需要使用纤维蛋白密封剂和硬膜基质移植以及伤口-腹腔或腰部-腹腔分流术进行辅助治疗。

3. 伤口引流:使用筋膜下引流处理术中出现的脑脊液漏尚有争议。采用这种引流方式能够在术后早期将积聚的浆液性渗出液、创面出血或脑脊液引流出来,并消除无效腔;当患者术后活动时,脑脊液内静水压力的增加促进脑脊液在短时间内溢出到筋膜下的空隙;当使用如胶原蛋白基质等有孔的移植材料时,脑脊液的溢出风险会增加,这在术后化学封闭形成和移植物与周围组织接合之前的几天中尤为明显[30]。尽管有学者不建议使用引流[25],大多数的研究表明,硬脊膜-皮肤瘘管的形成的发生率不会随引流的使用而增加[5,57]。

( 二 ) 术后处理方法

术中修补硬脊膜破口虽然是首选方法,但是由于其操作难度大,往往不易完成,因此硬脊膜破裂引起脑脊液漏的术后处理十分重要[23]。笔者将其分为蛛网膜下腔闭式引流术、伤口-腹腔分流术或腰部-腹腔分流术、硬脊膜外间隙自体血填充技术等特殊治疗方法分别进行阐述。

1. 蛛网膜下腔闭式引流术:采用将脑脊液进行分流的方法在治疗脑脊液漏方面有较为全面的文献记录。据报道成功率为 83%~100%[12,37];将颈椎前路减压治疗后纵韧带骨化引起脑脊液漏,在术中放置腰部蛛网膜下腔闭式引流或分流术,以及不作处理的患者进行治疗效果的比较,发现采用腰部蛛网膜下腔闭式引流及或分流术的患者没有出现脑脊液瘘管或假性脊膜膨出形成,也没有出现需要再次手术治疗的病例。采用脑脊液分流治疗硬脊膜破裂的原理为通过将脑脊液优先从引流管引出,降低破口处脑脊液的压力差,或者通过降低硬脊膜破口边缘的张力,促进破口的愈合[37,44]。

在放置引流管时,应当在无菌的条件下采用侧卧位进行操作,在 L2及 L3之间进行穿针;在引流时可以预防性静脉滴注头孢类抗生素或哌拉西林;引流量控制在 5~15 ml / h 或 12~360 ml / 天;使用硅胶引流管防止引流管闭塞,保留引流管 5~10 天[44]。

对于在术后处理过程中诊断脑脊液漏的患者 ( 例如患者引流管流出脑脊液或出现脑脊液皮肤瘘管形成 ),单纯的卧床休息往往疗效不佳[25]。尽管直接缝合修补是有效的治疗方法,但是其需要二次手术,从而使其应用受到限制。很多学者建议使用腰部蛛网膜下腔闭式引流术而不采用二次手术进行硬脊膜破口的直接修补[37]。其它的方法,如脑脊液漏区域直接持续加压等方法疗效较差[16]。尽管腰部蛛网膜下腔闭式引流在治疗脑脊液漏的治疗方面有效,但是据报道其感染的发生率为 5%[58-60]。除此之外,腰部蛛网膜下腔闭式引流是重力依赖型系统,患者体位的改变会引起脑脊液的大量引出[61]。有报道指出引流后会出现颅内积气伴脑干受压;其它与过度引流相关的并发症包括头痛、恶心,呕吐[62]。此外,为防止因患者体位变化出现过度引流而采取长期制动处理,会增加术后深静脉血栓形成和肺栓塞的风险[63]。流量控制型脑脊液引流系统的应用可以克服以上所述的潜在问题,该系统使用一个容量泵设备控制脑脊液的引流速度[30,51-52,55,64-66],一个低压力控制阀[29],或者联合使用容量和压力控制系统。

2. 伤口-腹腔分流术或腰部-腹腔分流术:很多复杂硬脊膜破裂需要进一步切除周围骨质才能显露破口、完成直接修补;这往往需要加用闭合的伤口-腹腔或腰部-腹腔分流系统[29]。Epstein[33]报道了对接受多节段颈椎前路椎体次全切除、椎间植骨融合术治疗后纵韧带骨化,术中出现脑脊液漏的患者采用一期硬脊膜修补,联合伤口-腹腔分流和腰部-腹腔分流置入的复杂方法治疗,最终表明放置腰部-腹腔分流能够有效防止伤口-腹腔引流失败或阻塞。

分流术是一种有创性治疗方法,会给患者带来很多问题,如引流过度或不足,近端或远端分流管道移位或阻塞,感染以及分流器故障,随着时间的推移,这些问题需要翻修手术来解决[67]。因此,在其它方法都失败的情况下才放置永久性分流进行治疗。

3. 硬脊膜外间隙自体血填充技术:硬脊膜外间隙自体血填充技术通过自体血的填充作用可以降低硬脊膜破口处的压力差,从而使脑脊液流入颅内,进而升高颅内脑脊液的压力;同时脑脊液的移位改变了脑部血流状态,进而使静脉扩张减轻;自体血能够覆盖在硬脊膜破口处,脑脊液漏停止,并且通过自身纤维化进行修复[49,68-74]。

应用于治疗颈椎前路手术硬脊膜破裂引发脑脊液漏的硬脊膜外间隙自体血填充技术包括:徒手硬脊膜外间隙自体血填充技术[70]、X 线引导下硬脊膜外间隙自体血填充技术[71]、CT 引导下硬脊膜外间隙自体血填充技术[70]、超声引导下硬脊膜外间隙自体血填充技术[72]。徒手硬膜外间隙自体血填充因为定位不准确,操作风险较大,现在已被影像学定位后穿刺自体血填充技术取代[70]。X 线引导下硬脊膜外间隙自体血填充技术可以通过局部麻醉,在 X 线引导下,使用 18-G 或 20-G 图伊针经椎间孔入路到达脊髓前方的硬脊膜破口处,将与造影剂混合的自体静脉血进行注入填充[71];其自体血使用剂量尚无标准,往往患者症状明显缓解,注射局部稍有膨胀感即可,一般 10~35 ml[73]。CT 引导下硬脊膜外间隙自体血填充技术中可以应用 CT 脊髓造影技术,从而将穿刺针头准确引导到硬脊膜破裂部位,从而减少了损伤脊髓的风险,并且可以在保证填充效果的前提下,适量减少自体血的注入量[70]。X 线等放射检查方法在穿刺定位中发挥了重要的作用,但是这些方法会带来辐射风险。随着超声检查技术的发展,超声引导下硬脊膜外间隙自体血填充技术已经开始应用,该技术通过在操作中观察硬脊膜外间隙的空间变化从而确定进针部位以及自体血注入剂量[72]。

三、硬脊膜破裂的预防

前路漂浮技术:“前路漂浮法”和它的改良技术已被用来降低后纵韧带骨化患者进行前路手术时出现硬脊膜破裂的发生率[75-76]。总的来说,这些方法保留了已经变薄的椎体后壁中部和骨化的后纵韧带,而围绕它进行侧方减压,因此骨化的后纵韧带成为硬脊膜上“自由漂浮”的团块。Epstein[77]指出,在使用磨钻进行钻削的过程中,应当保证后纵韧带骨化块与椎体次全切缺损的边缘相连,从而保证骨化块的稳定,直到后纵韧带的中部已被处理得足够薄。当后纵韧带骨化块从骨性边缘分离以后,必须小心谨慎地使后纵韧带骨化块进一步变薄。少数与硬脊膜粘连紧密的骨化块保留在原处,从而降低了脑脊液漏的发生率[25]。一组研究报道了标准前路全切法治疗后纵韧带骨化出现术后脑脊液漏的发生率为 16%~25%[77],而与之相比前路漂浮法的发生率只有 5.1%[76]。

四、总结

因为上位颈椎“过渡区”的存在,需要手术医生在此区域进行颈椎前路手术操作时提高警惕,防止操作不当引起硬脊膜破裂。多节段、广泛的后纵韧带骨化增加了硬脊膜骨化的风险,因而增加了硬脊膜破裂的发生率。颈椎前路手术硬脊膜破裂诊断需根据术中及术后表现进行综合评价。在治疗过程中除非骨化的后纵韧带能与下面的硬脊膜分离,否则应当采用术前放置腰部蛛网膜下腔闭式引流并在术中采取前路漂浮技术预防硬脊膜破裂。当发生硬脊膜破裂时,可以将多种辅助修补材料联合使用进行直接修补。直接缝合修补适用于硬脊膜破口较小,破口显露充分的病例。如果脑脊液漏无法在术中通过使用辅助修补材料进行有效控制,建议在手术结束之前放置腰部蛛网膜下腔闭式引流。在上述治疗方法都失败的情况下才放置永久性分流进行治疗。

[1] Kalevski SK, Peev NA, Haritonov DG. Incidental Dural Tears in lumbar decompressive surgery: Incidence, causes, treatment, results. Asian J Neurosurg, 2010, 5(1):54-59.

[2] Nandyala SV, Elboghdady IM, Marquez-Lara A, et al. Cost analysis of incidental durotomy in spine surgery. Spine, 2014, 39(17):E1042-1051.

[3] Andrew SA, Sidhu KS. Cervical-peritoneal shunt placement for postoperative cervical pseudomeningocele. J Spinal Disord Tech, 2005, 18(3):290-292.

[4] Chang HS, Kondo S, Mizuno J, et al. Airway obstruction caused by cerebrospinal fluid leakage after anterior cervical spine surgery. Areport of two cases. J Bone Joint Surg Am, 2004, 86-A(2):370-372.

[5] Gruskay JA, Fu M, Basques BA, et al. Factors affecting length of stay and complications after elective anterior cervical discectomy and fusion: A study of 2164 patients from The American College of Surgeons National Surgical Quality Improvement Project Database (ACS NSQIP). Clin Spine Surg, 2016, 29(1):E34-42.

[6] Heidari Pahlavian S, Bunck AC, Thyagaraj S, et al. Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation. Ann Biomed Eng, 2016.

[7] Kasimatis GB, Panagiotopoulos E, Gliatis J, et al. Complications of anterior surgery in cervical spine trauma: an overview. Clin Neurol Neurosurg, 2009, 111(1):18-27.

[8] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervical spine surgery. J Bone Joint Surg Am, 2008, 90(5):1101-1105.

[9] Hida K, Yano S, Iwasaki Y. Considerations in the treatment of cervical ossification of the posterior longitudinal ligament. Clin Neurosurg, 2008, 55:126-132.

[10] Chen Y, Guo Y, Chen D, et al. Diagnosis and surgery of ossification of posterior longitudinal ligament associated with dural ossification in the cervical spine. Eur Spine J, 2009, 18(10):1541-1547.

[11] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervical corpectomy for ossified posterior longitudinal ligament: incidence, management, and outcome. Spine, 2009, 34(5):491-494.

[12] Min JH, Jang JS, Lee SH. Clinical results of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine treated by anterior decompression. J Spinal Disord Tech, 2008, 21(2):116-119.

[13] Choi S, Lee SH, Lee JY, et al. Factors affecting prognosis of patients who underwent corpectomy and fusion for treatment of cervical ossification of the posterior longitudinal ligament: analysis of 47 patients. J Spinal Disord Tech, 2005, 18(4):309-314.

[14] Mizuno J, Nakagawa H, Matsuo N, et al. Dural ossification associated with cervical ossification of the posterior longitudinal ligament: frequency of dural ossification and comparison of neuroimaging modalities in ability to identify the disease. J Neurosurg Spine, 2005, 2(4):425-430.

[15] Epstein N. Anterior approaches to cervical spondylosis and ossification of the posterior longitudinal ligament: review of operative technique and assessment of 65 multilevel circumferential procedures. Surg Neurol, 2001, 55(6):313-324.

[16] Tani T, Ushida T, Ishida K, et al. Relative safety of anterior microsurgical decompression versus laminoplasty for cervical myelopathy with a massive ossified posterior longitudinal ligament. Spine, 2002, 27(22):2491-2498.

[17] Debernardi A, D’Aliberti G, Talamonti G, et al. The craniovertebral junction area and the role of the ligaments and membranes. Neurosurgery, 2015, 76(Suppl 1):S22-32.

[18] Beretta F, Bernucci C, D’Aliberti G. Anterior spinal pseudomeningocele after C0-C2 traumatic injuries: role of the“dural transitional zone” in the etiopathogenesis. Eur Spine J, 2013, 22(Suppl 6):S889-893.

[19] Sin AH, Caldito G, Smith D, et al. Predictive factors for duraltear and cerebrospinal fluid leakage in patients undergoing lumbar surgery. J Neurosurg Spine, 2006, 5(3):224-227.

[20] Epstein NE. The frequency and etiology of intraoperative dural tears in 110 predominantly geriatric patients undergoing multilevel laminectomy with noninstrumented fusions. J Spinal Disord Tech, 2007, 20(5):380-386.

[21] Takahashi Y, Sato T, Hyodo H, et al. Incidental durotomy during lumbar spine surgery: risk factors and anatomic locations: clinical article. J Neurosurg Spine, 2013, 18(2):165-169.

[22] Nakajima S, Fukuda T, Hasue M, et al. New technique for application of fibrin sealant: rubbing method devised to prevent cerebrospinal fluid leakage from dura mater sites repaired with expanded polytetrafluoroethylene surgical membranes. Neurosurgery, 2001, 49(1):117-123.

[23] Mazur M, Jost GF, Schmidt MH, et al. Management of cerebrospinal fluid leaks after anterior decompression for ossification of the posterior longitudinal ligament: a review of the literature. Neurosurg Focus, 2011, 30(3):E13.

[24] McCallum J, Maroon JC, Jannetta PJ. Treatment of postoperative cerebrospinal fluid fistulas by subarachnoid drainage. J Neurosurg, 1975, 42(4):434-437.

[25] Eismont FJ, Wiesel SW, Rothman RH. Treatment of dural tears associated with spinal surgery. J Bone Joint Surg Am, 1981, 63(7):1132-1136.

[26] Kala M. Cerebrospinal fluid pseudocyst after anterior stabilization for cervical spine injury treated by ventricular drainage: case report. Surg Neurol, 1996, 45(3):293-295.

[27] Saxler G, Krämer J, Barden B, et al. The long-term clinical sequelae of incidental durotomy in lumbar disc surgery. Spine, 2005, 30(20):2298-2302.

[28] Shaffrey CI, Spotnitz WD, Shaffrey ME, et al. Neurosurgical applications of fibrin glue: augmentation of dural closure in 134 patients. Neurosurgery, 1990, 26(2):207-210.

[29] Epstein NE, Hollingsworth R. Anterior cervical micro-dural repair of cerebrospinal fluid fistula after surgery for ossification of the posterior longitudinal ligament. Technical note. Surg Neurol, 1999, 52(5):511-514.

[30] Narotam PK, José S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine, 2004, 29(24):2861-2867.

[31] Cain JE Jr, Rosenthal HG, Broom MJ, et al. Quantification of leakage pressures after durotomy repairs in the canine. Spine, 1990, 15(9):969-970.

[32] Parízek J, Mĕricka P, Husek Z, et al. Detailed evaluation of 2959 allogeneic and xenogeneic dense connective tissue grafts (fascia lata, pericardium, and dura mater) used in the course of 20 years for duraplasty in neurosurgery. Acta Neurochir (Wien), 1997, 139(9):827-838.

[33] Epstein NE. Wound-peritoneal shunts: part of the complex management of anterior dural lacerations in patients with ossification of the posterior longitudinal ligament. Surg Neurol, 2009, 72(6):630-634.

[34] DiFazio FA, Nichols JB, Pope MH, et al. The use of expanded polytetrafluoroethylene as an interpositional membrane after lumbar laminectomy. Spine, 1995, 20(9):986-991.

[35] Yuguchi T, Kohmura E, Yoshimine T. PTFE-fascia patch inlay method for the anterior approach for cervical intradural spinal lesion. Spinal Cord, 2002, 40(11):601-603.

[36] Longmire S, Joyce TH 3rd. Treatment of a duro-cutaneous fistula secondary to attempted epidural anesthesia with an epidural autologous blood patch. Anesthesiology, 1984, 60(1):63-64.

[37] Kitchel SH, Eismont FJ, Green BA. Closed subarachnoid drainage for management of cerebrospinal fluid leakage after an operation on the spine. J Bone Joint Surg Am, 1989, 71(7):984-987.

[38] Foyt D, Johnson JP, Kirsch AJ, et al. Dural closure with laser tissue welding. Otolaryngol Head Neck Surg, 1996, 115(6):513-518.

[39] 龚少峰, 齐理华. 脊柱手术后脑脊液漏的治疗体会. 中国保健营养, 2016, 26(10):132.

[40] 贺爱军. 脊柱手术后脑脊液漏的治疗. 当代医学, 2015, 21(5): 36-37.

[41] 于滨生, 郑召民, 庄新明, 等. 脊柱手术后脑脊液漏的治疗. 中国脊柱脊髓杂志, 2009, 19(2):113-116.

[42] 张昌茂, 陈祖星, 刘国铭. 41例脊柱手术后脑脊液漏的治疗.医药前沿, 2014, (2):185.

[43] 于凤宾, 陈德玉, 王新伟, 等. 颈前路后纵韧带骨化切除术并发脑脊液漏的处理及疗效分析. 中国脊柱脊髓杂志, 2012, 22(10):889-893.

[44] Bosacco SJ, Gardner MJ, Guille JT. Evaluation and treatment of dural tears in lumbar spine surgery: a review. Clin Orthop Relat Res, 2001, (389):238-247.

[45] Graham JJ. Complications of cervical spine surgery. A five-year report on a survey of the membership of the Cervical Spine Research Society by the Morbidity and Mortality Committee. Spine, 1989, 14(10):1046-1050.

[46] Hodges SD, Humphreys SC, Eck JC, et al. Management of incidental durotomy without mandatory bed rest. A retrospective review of 20 cases. Spine, 1999, 24(19):2062-2064.

[47] Kogias E, Klingler JH, Franco Jimenez P, et al. Incidental durotomy in open vs. tubular revision microdiscectomy: a retrospective controlled study on incidence, management and outcome. Clin Spine Surg, 2016.

[48] Cain JE Jr, Dryer RF, Barton BR. Evaluation of dural closure techniques. Suture methods, fibrin adhesive sealant, and cyanoacrylate polymer. Spine, 1988, 13(7):720-725.

[49] Vakharia SB, Thomas PS, Rosenbaum AE, et al. Magnetic resonance imaging of cerebrospinal fluid leak and tamponade effect of blood patch in postdural puncture headache. Anesth Analg, 1997, 84(3):585-590.

[50] 彭立军, 羊明智, 陈伟. 颈椎前路手术致脑脊液漏的处理及疗效观察. 山东医药, 2014, 54(40):60-61.

[51] Biroli F, Esposito F, Fusco M, et al. Novel equine collagen-only dural substitute. Neurosurgery, 2008, 62(3 Suppl 1):273-274.

[52] Kim KD, Wright NM. Polyethylene glycol hydrogel spinal sealant (DuraSeal Spinal Sealant) as an adjunct to sutured duralrepair in the spine: results of a prospective, multicenter, randomized controlled study. Spine, 2011, 36(23):1906-1912.

[53] 于淼, 江晓兵, 姚珍松, 等. 氰基丙烯酸酯医用胶预防脑脊液漏的疗效观察. 中国修复重建外科杂志, 2013, 27(12):1471-1474.

[54] 廖晖, 徐卫国, 李锋, 等. 人工硬脊膜联合生物蛋白胶修复颈椎术中硬脊膜损伤. 生物骨科材料与临床研究, 2012, 9(4):17-19.

[55] Mayfield FH, Kurokawa K. Watertight closure of spinal dura mater. Technical note. J Neurosurg, 1975, 43(5):639-640.

[56] Benazzo M, Spasiano R, Bertino G, et al. Sternocleidomastoid muscle flap in esophageal perforation repair after cervical spine surgery: concepts, techniques, and personal experience. J Spinal Disord Tech, 2008, 21(8):597-605.

[57] Lien JR, Patel RD, Graziano GP. Sternocleidomastoid muscular flap: treatment of persistent cerebrospinal fluid leak after anterior cervical spine surgery. J Spinal Disord Tech, 2013, 26(8):449-453.

[58] Harsh GR 4th, Sypert GW, Weinstein PR, et al. Cervical spine stenosis secondary to ossification of the posterior longitudinal ligament. J Neurosurg, 1987, 67(3):349-357.

[59] Shapiro SA, Scully T. Closed continuous drainage of cerebrospinal fluid via a lumbar subarachnoid catheter for treatmentor prevention of cranial/spinal cerebrospinal fluid fistula. Neurosurgery, 1992, 30(2):241-245.

[60] Coplin WM, Avellino AM, Kim DK, et al. Bacterial meningitis associated with lumbar drains: a retrospective cohort study. J Neurol Neurosurg Psychiatry, 1999, 67(4):468-473.

[61] Houle PJ, Vender JR, Fountas K, et al. Pump-regulated lumbar subarachnoid drainage. Neurosurgery, 2000, 46(4):929-932.

[62] Graf CJ, Gross CE, Beck DW. Complications of spinal drainage in the management of cerebrospinal fluid fistula. J Neurosurg, 1981, 54(3):392-395.

[63] Weill-Engerer S, Meaume S, Lahlou A, et al. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. J Am Geriatr Soc, 2004, 52(8):1299-1304.

[64] Fountas KN, Kapsalaki EZ, Johnston KW. Cerebrospinal fluid fistula secondary to dural tear in anterior cervical discectomy and fusion: case report. Spine, 2005, 30(10):E277-280.

[65] Hershman S, Cuellar VG, Bendo JA. Delayed presentation of incidental durotomy. Bull Hosp Jt Dis (2013), 2013, 71(3): 231-234.

[66] Narotam PK, Reddy K, Fewer D, et al. Collagen matrix duraplasty for cranial and spinal surgery: a clinical and imaging study. J Neurosurg, 2007, 106(1):45-51.

[67] Lehman RM. Complications of lumboperitoneal shunts. Neurosurgery, 2008, 63(2):E376.

[68] Franzini A, Messina G, Nazzi V, et al. Spontaneous intracranial hypotension syndrome: a novel speculative physiopathological hypothesis and a novel patch method in a series of 28 consecutive patients. J Neurosurg, 2010, 112(2):300-306.

[69] Harrington BE. Postdural puncture headache and the development of the epidural blood patch. Reg Anesth Pain Med, 2004, 29(2):136-163.

[70] Wendl CM, Schambach F, Zimmer C, et al. CT myelography for the planning and guidance of targeted epidural blood patches in patients with persistent spinal CSF leakage. AJNR Am J Neuroradiol, 2012, 33(3):541-544.

[71] Walega D, McComb E, Rosenow J. Bilateral cervicothoracic transforaminal blood patches for persistent headache from spontaneous intracranial hypotension: a case report and review. Clin J Pain, 2011, 27(4):357-364.

[72] Karmakar MK, Li X, Ho AM, et al. Real-time ultrasoundguided paramedian epidural access: evaluation of a novel inplane technique. Br J Anaesth, 2009, 102(6):845-854.

[73] Hannerz J, Dahlgren G, Irestedt L, et al. Treatment of idiopathic intracranial hypotension: cervicothoracic and lumbar blood patch and peroral steroid treatment. Headache, 2006, 46(3):508-511.

[74] Ferrante E, Arpino I, Citterio A, et al. Epidural blood patch in Trendelenburg position pre-medicated with acetazolamide to treat spontaneous intracranial hypotension. Eur J Neurol, 2010, 17(5):715-719.

[75] Matsuoka T, Yamaura I, Kurosa Y, et al. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Spine, 2001, 26(3):241-248.

[76] Sakai K, Okawa A, Takahashi M, et al. Five-year followup evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine, 2012, 37(5):367-376.

[77] Epstein N. The surgical management of ossification of the posterior longitudinal ligament in 51 patients. J Spinal Disord, 1993, 6(5):432-454.

( 本文编辑:王萌 )

Anterior cervical spine surgery is commonly performed with low complication rates. One potentially serious complication is incidental durotomy ( ID ), which may cause cerebrospinal fluid ( CSF ) leak. Compared with posterior cervical spine surgery, anterior cervical spine surgery may increase the risk of ID by traumatic procedures. Direct operation on ossificated longitudinal ligament can be avoided due to posterior laminoplasty or laminectomy. The risk factors for ID in anterior cervical spine surgery include peculiar anatomical structure, transitional zone, old age, rheumatoid arthritis, longer operative time and so on. The complications related to CSF leak after cervical spine surgery include cerebrospinal meningitis, delayed wound healing, airway obstruction, cerebrospinal fluid fistula and pseudomeningocele. There is no consensus on the treatment principle of ID in anterior cervical spine surgery. The treatment methods include intraoperative suture technique without adjuncts, implantation with chemical sealants and biological materials, intraoperative wound drainage, lumbar subarachnoid drainage, wound-enterocoelia shunt or lumbar-enterocoelia shunt, epidural blood patch and general symptom management in the postoperative period. Simultaneously, anterior floating method can also help to prevent the appearance of ID in the operation.

Cervical vertebrae; Ossification of posterior longitudinal ligament; Surgical procedures, operative; Cerebrospinal fluid leak; Risk factors; Diagnosis

10.3969/j.issn.2095-252X.2016.11.009

R681.5

100020 北京,首都医科大学附属北京朝阳医院骨科

2016-04-11 )

猜你喜欢

脊膜破口骨化
华龙一号蒸汽发生器传热管6mm破口事故放射性后果分析
基于“华龙一号”大破口事故先进安注箱研究
仙灵骨葆胶囊联合阿法骨化醇片治疗骨质疏松症的临床观察
黄韧带骨化患者硬脊膜骨化与椎管狭窄的关系
破口
人枕下区肌硬膜桥及其连接形式的扫描电镜观察❋
产科患者硬脊膜穿刺后头痛防治
膝关节胫侧副韧带Ⅲ度损伤并发异位骨化的临床研究①
创伤性骨化性肌炎中医治疗概述
AP1000核电厂直接注射管线双端断裂小破口失水事故计算