乳酸和氢盐水联合后适应减轻心肌细胞凋亡
2015-10-21张国明刘科卫李晓燕许琳孙媛媛谈红沈虹王晓菲
张国明 刘科卫 李晓燕 许琳 孙媛媛 谈红 沈虹 王晓菲
DOI:10.3760/cma.j.issn.1671-0282.2015.03.014
基金項目:国家自然科学基金(30740080);济南军区总医院院长青年基金(2011Q08)
作者单位: 250031 济南,济南军区总医院心内科(张国明、刘科卫、李晓燕、许琳、谈红、沈虹),超声科(孙媛媛),联勤部门诊部(王晓菲)
通信作者: 谈红,Email:tanhongpaper@126.com
【摘要】目的 探讨乳酸和饱和氢盐水能否模拟后适应通过丝裂原活化蛋白激酶途径(MAPK)减轻心肌细胞凋亡。方法 在济南军区总医院108 只SD大鼠随机(随机数字法)分为假手术组、缺血-再灌注组(R/I组, 移除球囊后立即在缺血部位分三点注射生理盐水共计60 μL,而后持续再灌注)、后适应组(M-Post组,后适应处理方案为20/20 s×4, 移除球囊后立即在缺血部位分三点注射生理盐水共计60 μL,而后持续再灌注)、乳酸组(Lac组,再灌注即刻微量注射器在缺血心肌部位分三点注射乳酸60 μL,而后持续再灌注)、饱和氢盐水组(Hyd组,再灌注即刻微量注射器在缺血心肌部位分三点注射氢盐水60 μL,而后持续再灌注)、乳酸+饱和氢盐水组(Lac+Hyd组,再灌注即刻微量注射器在缺血心肌部位分三点注射乳酸和氢盐水各60 μL,而后持续再灌注),每组18只。心肌缺血45 min制作急性心肌梗死模型,测定每只大鼠再灌注3 min后右心房血浆pH值。再灌注3 min后每组取6只处死,取心肌组织采用硫代巴比妥酸法和分光光度计法测定心肌组织MDA含量和SOD活性。另再灌注30 min后每组取6只处死,取心肌组织用Western blot方法分别测定磷酸化MAPK(p38/JNK 和ERK)、TNF-α、Caspase-8的表达。另再灌注24 h后各组剩余6只大鼠测定血流动力学,处死后取心脏进行TUNEL凋亡检测。统计学多组间比较应用单因素方差分析,如组间差异显著则两两比较应用q检验。结果 Lac+Hyd组再灌注后3 min 右心房血浆pH值显著低于R/I组(7.32±0.06)vs.(7.43±0.03),P<0.05;MDA含量显著低于R/I组(1.14±0.16)nmol/mgpro vs.(1.56±0.21)nmol/mgpro,P<0.05;SOD含量显著高于R/I组(57.92±15.12)U/mgpro vs.(35.48±12.46)U/mgpro,P<0.05。Lac+Hyd组再灌注30 min后心肌组织P-p38(0.46±0.06)vs.(2.18±0.32), P<0.05;和P-JNK含量(0.59±0.03)vs.(1.62±0.29), P<0.05,显著低于R/I 组,TNF-α含量(0.34±0.08)vs.(1.78±0.31), P<0.05;和Caspase-8含量(0.31±0.07)vs.(1.52±0.28), P<0.05,均显著低于R/I 组;心肌细胞凋亡指数显著低于R/I组(9.50±1.51)% vs.(15.21±1.91)%, P<0.05。以上指标均与M-Post组相比均差异无统计学意义(P>0.05)。再灌注30 min后缺血心肌组织P-ERK含量Lac+Hyd组与R/I组相似(0.55±0.13)vs.(0.57±0.05),P>0.05;Hyd组显著低于R/I组(0.30±0.09)vs.(0.57±0.05),P<0.05;Lac、Hyd和Lac+Hyd组P-ERK表达均显著低于M-Post组(1.21±0.13),(0.30±0.09),(0.55±0.13)vs.(1.96±0.39),P<0.05。结论 乳酸和饱和氢盐水联合使用可较好模拟后适应上游触发因子,抑制p38/JNK和ERK的磷酸化,减轻心肌细胞凋亡。
【关键词】 凋亡;药物后适应;乳酸;氢盐水;再灌注损伤;丝裂原活化蛋白激酶
Pharmacological post-conditioning with lactic acid and saturated hydrogen saline could attenuate myocardial apoptosis
Zhang Guoming,Liu Kewei,Li Xiaoyan,Xu Ling,Sun Yuanyuan, Tan Hong, Shen Hong, Wang Xiaofei.Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031,China
Corresponding author:Tan Hong,Email:tanhongpaper@126.com
【Abstract】Objective To study the hypothesis about the pharmacological post-conditioning with lactic acid and saturated hydrogen saline after ischemic injury of myocardium instead of post-conditioning with mechanical dilatation of severely occluded coronary vessels to attenuate apoptosis of cardiocyte by mitogen-activated protein kinases (MAPK) pathway. Methods A total of 108 rats were randomly(random number) divided into 6 groups (n=18 in each group): sham operated group (received 60 μL normal saline without ischemia), reperfusion/injury group(R/I, received 60 μL normal saline solution and routine ischemic-reperfusion [IR] procedure), post-conditioning group (M-Post, received 60 μL normal saline and post-conditioning treatment, 4 cycles of 20/20 s of reperfusion/re-occlusion), lactic acid group (Lac, received 60 μL lactic acid and routine IR procedure), saturated hydrogen saline group (Hyd, received 60 μL hydrogen rich saline and routine IR procedure), and lactic acid + saturated hydrogen saline group (Lac+Hyd, received a combination of 60 μL of lactic acid and 60 μL of hydrogen rich saline along with routine IR procedure). Acute myocardial infarction model was made by ischemia for 45 min, and pH value of blood from right atrium was detected in rats of all groups. After 3 min reperfusion, 6 rats of each group were sacrificed and myocardial tissue was taken out to measure the level of MDA and SOD. After 30 min reperfusion, other 6 rats of each group were sacrificed and myocardial tissue was taken out to measure the level of phosphorylated MAPK (p38/JNK and ERK), TNF- α, Caspase-8 by Western-blot method. After 24 h reperfusion, there were only 6 rats in each group, and hemodynamics were measured in each rat, and then rats were sacrificed and hearts were taken out to detect cell apoptosis by TUNEL method. A one-way analysis of variance (ANOVA) was used, and q tests were employed to determine if any significant differences in individual variable existed between groups.Results The pH of blood from right atrium after 3 min of reperfusion in Lac+Hyd group was significantly lower than that in R/I group (7.32±0.06 vs. 7.43±0.03,P<0.05), the content of MDA was lower(1.14±0.16 vs.1.56±0.21,P<0.05)and the content of SOD was higher in Lac+Hyd group than those in R/I group (57.92±15.12 vs.35.48±12.46,P<0.05). Apoptotic index of Lac+Hyd group was much lower than that of R/I group (9.50±1.51)% vs. (15.21±1.91)%, P<0.05. After 30 min of reperfusion, the level of P-p38 in ischemic myocardia in Lac+Hyd group was significantly lower than that in R/I group (0.46±0.06 vs.2.18±0.32, P<0.05), the levels of P-JNK (0.59±0.03 vs.1.62±0.29, P<0.05), TNFα (0.34±0.08 vs.1.78±0.31, P<0.05) and Caspase-8 (0.31±0.07 vs.1.52±0.28, P<0.05) were all lower than those in R/I group. However, there were no significant differences in levels of all above variables between Lac+Hyd group and M-Post group(P>0.05). After 30 min of reperfusion, there was no significant difference in the level of P-ERK between Lac+Hyd group and R/I group (0.55±0.13 vs.0.57±0.05, P>0.05),and the level of P-ERK in Hyd group was significantly lower than that in R/I group(0.30±0.09 vs.0.57±0.05, P<0.05), And the level of P-ERK in Lac、Hyd and Lac+Hyd groups was significantly lower than that in M-Post group (1.21±0.13,0.30±0.09, 0.55±0.13 vs.1.96±0.39, P<0.05).Conclusion Pharmacological post-conditioning with lactic acid and saturated hydrogen saline could be used instead of mechanical post-conditioning to inhibit the phosphorylation of p38/JNK and ERK, attenuating myocardial cell apoptosis.
【Key words】Apoptosis;Pharmacological postconditioning;Lactic acid;Hydrogen;Reperfusion injury;Mitogen activated protein kinase
再灌注治疗是影响急性心肌梗死急诊介入和溶栓治疗疗效的重要因素,Zhao等[1]发现的缺血后适应可有效降低心肌梗死面积、减轻细胞凋亡、改善血管内皮功能,在多种属研究中均发现后适应具有保护作用[2-6]。但在临床应用中,闭塞部位反复机械扩张和堵塞,容易导致冠脉斑块碎裂、远端栓塞乃至冠脉夹层等并发症,存在一定风险。故国内外学者提出了药物后适应的概念,即使用药物模拟机械后适应的细胞保护机制,无需机械刺激却发挥同样的心肌保护作用。
机械后适应的最上游触发因子目前尚未完全明确Penna 等[7]和Cohen等[8]提出的酸中毒和适量氧自由基假说引起了学者关注。既往研究发现在缺血心肌局部注射乳酸可较好模拟心肌酸中毒[9];另外,近年来多项研究发现氢气可有效清除羟自由基(·OH)和过氧亚硝基阴离子(ONOO-),而对超氧负离子(O2-)和双氧水(H2O2)等无抑制作用[10-13]。造成组织损伤的自由基主要是羟自由基和过氧亚硝基阴离子,而超氧负离子和双氧水可激活多条细胞保护通路。因此本研究拟在活体大鼠急性心肌梗死再灌注模型中,使用乳酸和饱和氢盐水模拟Cohen提出的触发因子,并重点观察上述药物对心肌细胞凋亡以及MAPK 途径的影响,以进一步探讨后适应保护机制的上游触发因子。
1 材料与方法
1.1 实验动物及分组
1.1.1 实验分组 健康雄性SPF级SD大鼠108 只,购于山东大学实验动物中心,随机(随机数字法)分为6 组。(1)假手术组(Sham):开胸并分离左冠状动脉,穿線但不结扎,旷置45 min后在心脏前壁注射生理盐水60 μL;(2)缺血-再灌注组(R/I):缺血45 min后将压力泵压力调至0 atm(1 atm=101.325 Pa),移除球囊后立即在缺血部位分三点注射生理盐水共计60 μL,而后持续再灌注;(3)后适应组(M-Post):缺血45 min后、再灌注前通过球囊放气-充盈实现再灌注和缺血反复4 轮,其时间为20/20 s×4,移除球囊后立即在缺血部位分三点注射生理盐水共计60 μL,而后持续再灌注;(4)乳酸组(Lac):缺血45 min移除球囊后,立即在缺血部位分三点注射乳酸共计60 μL,而后持续再灌注;(5)氢饱和盐水组(Hyd):缺血45 min移除球囊后,立即在缺血部位分三点注射氢饱和盐水60 μL,而后持续再灌注;(6)乳酸+氢饱和盐水组(Lac+Hyd):缺血45 min移除球囊后,立即在缺血部位分三点注射乳酸和氢饱和盐水稀释液各60 μL,而后持续再灌注。
1.1.2 模型制备 大鼠称质量后腹腔注射麻醉(2%戊巴比妥钠, 0.23 mL/100 g),气管插管成功后呼吸机辅助呼吸(HX-200 型小动物呼吸机,潮气量 30 mL/ kg ,频率50~60 次/min ,吸呼比1∶2)开胸显示心脏后,于左心耳下缘与肺动脉圆锥间用5-0无创带针缝合线穿过前降支深部,将后扩张冠脉球囊垫于血管与结扎线之间用力结扎(Grip,3.0×12 mm,Acrostak 公司,瑞士,压力调为1 atm),而后迅速调整为12 atm。45 min后压力迅速减为0 atm,根据分组给予不同处理。再灌注3 min后以1 mL注射器抽取右心房血液0.5 mL,立即使用血气分析仪测定pH值。术后24 h再次麻醉后经右颈总动脉插入左心室导管,使用生物信号及压力测试系统监测主动脉及左心室血流动力学参数。最后通过颈动脉插管抽取血3~4 mL,处死大鼠取心脏,准备行心肌细胞凋亡检测。另术后30 min每组各取6只大鼠直接处死取左心室缺血心肌组织冷冻后,拟行Western blot检测。
1.1.3 主要试剂 乳酸(北京化学试剂公司,中国)为分析纯产品,注射前使用4 mol/L NaOH滴定pH至5.5备用;氢气饱和盐水按文献[14]方法制作, 将高压氢气(输出压力0.4 MPa)通人0.9%氯化钠6 h以达到饱和,4 ℃保存,3 d内使用;注射用生理盐水使用4 mol/L NaOH滴定pH至7.4备用。微量丙二醛(malondialdehyde,MDA)和超氧化物岐化酶(superoxide dismutase ,SOD)试剂盒购自南京建成科技有限公司。凋亡检测试剂盒购自Promega公司(美国)。P-ERK、P-p38、P-JNK、TNF-α、Caspase-8多克隆抗体购自Santa Cruz公司(美国),相应二抗购自Amersham公司(瑞典)。
1.1.4 指标测定 血流动力学监测:再灌注后24 h大鼠腹腔注射麻醉后,经右颈总动脉插入左心室导管,使用生物信号及压力测试系统描记颈动脉和左心室压力曲线,以MFL lab 200软件分析心率、平均主动脉压(mean artery pressure, MAP)、左心室内压最大上升速率(+dp/dtmax)和左心室内压最大下降速率(-dp/dtmax)。
血浆pH值测定:再灌注3 min后,以1 mL注射器抽取右心房血液0.5 mL,立即使用血气分析仪测定pH值,同时无菌棉球填塞止血。
缺血心肌组织丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性的测定:分别采用硫代巴比妥酸法和分光光度计法测定心肌组织MDA含量和SOD活性,操作严格按照试剂盒说明书进行检测。
心肌细胞凋亡指数的检测:处死大鼠取缺血心肌组织置于中性甲醛固定24 h, 常规石蜡包埋, 用末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记法进行心肌组织切片细胞凋亡的原位检测。每张切片于凋亡细胞分布区域各取5个高倍视野,计算平均每100个细胞中的凋亡细胞数,并以百分数(%)表示心肌细胞凋亡指数。
既往研究发现缺血后适应可通过MAPK途径发挥保护作用,后适应可增强ERK磷酸化,抑制p38和JNK的磷酸化[15-18],继而通过抑制TNF-α进一步抑制NF-κB等,从而抑制凋亡信号瀑布的激活[19]。本研究发现Lac+Hyd組P-p38/JNK浓度显著低于R/I组,同M-Post组相似,上述结果进一步验证了乳酸和氢盐水组合模拟机械后适应的细胞保护机制。但Lac+Hyd组P-ERK较M-Post组显著降低,同R/I组相似;同时Hyd组P-ERK显著低于R/I组,以上结果同Cardinal等[20]关于氢气对ERK磷酸化的影响相一致。虽P-ERK的激活上同机械后适应不同,但在下游TNF-α、Caspase-8表达方面,Lac+Hyd组同M-Post组相似,最终凋亡指数也同M-Post组相似。上述结果再次说明缺血后适应和氢盐水减轻细胞凋亡机制的复杂性。
本研究的不足之处是未能测定缺血心肌组织的pH值,而是使用右心房血浆pH值作为替代指标;另外,未能直接测量羟自由基、超氧阴离子和双氧水的浓度,未能直接判断其对下游信号分子的影响,这也是本研究的不足之处。
综上所述,本研究发现乳酸和饱和氢盐水联合使用可较好模拟机械后适应的上游触发因子,有效减轻心肌细胞凋亡;但会抑制ERK的磷酸化,故具体保护机制还需要进一步探讨。
参考文献
[1]Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol,2003,285(2):H579-588.
[2]Philipp S, Yang XM, Cui L, et al. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade[J]. Cardiovasc Res,2006,70(2):308-314.
[3]Hansen PR, Thibault H, Abdulla J. Postconditioning during primary percutaneous coronary intervention: a review and meta-analysis[J]. Int J Cardiol,2010,144(1):22-25.
[4]Thuny F, Lairez O, Roubille F, et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol,2012,59(24):2175-2181.
[5]张国明, 王禹, 李天德, 等. 渐进延长后适应通过MAPK途径减轻再灌注损伤[J]. 中华急诊医学杂志,2013,22(8):859-864.
[6]江莹, 夏中元, 高瑾, 等. 缺血后处理对大鼠缺血-再灌注肺损伤血红素加氧酶-1表达的影响[J]. 中华急诊医学杂志,2012,21(10):1122-1126.
[7]Penna C, Perrelli MG, Tullio F, et al. Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation[J]. Pflugers Arch, 2011,462(2):219-233.
[8]Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis[J]. Circulation,2007,115(14):1895-1903.
[9]张国明, 王禹, 李晓燕, 等. 乳酸和低剂量依达拉奉联合药物后适应通过线粒体途径减轻大鼠心肌缺血再灌注损伤[J]. 中华心血管病杂志,2013,41(8):647-753.
[10]Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med,2007,13(6):688-694.
[11]Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases[J]. Biochim Biophys Acta,2012,1820(5):586-594.
[12]Oharazawa H, Igarashi T, Yokota T, et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury[J]. Invest Ophthalmol Vis Sci,2010,51(1):487-492.
[13]Sun Q, Kang Z, Cai J, et al. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats[J]. Exp Biol Med (Maywood),2009,234(10):1212-1219.
[14]Zhang Hl, Liu YF, Luo XR, et al. Saturated hydrogen saline protects rats from acutelung injury induced by paraquat[J]. World J Emerg Med,2011,2(2):149-153.
[15]張国明, 苏绍萍, 王禹, 等. 大鼠心肌缺血后适应对p38丝裂原活化蛋白激酶及细胞凋亡影响的研究[J]. 中国医学科学院学报,2010,32(5):526-532.
[16]张国明, 王禹, 李天德, 等. 应激活化蛋白激酶在大鼠缺血后适应中的变化及其对细胞凋亡影响的研究[J]. 浙江大学学报(医学版),2009,38(6):611-619.
[17]Krolikowski JG, Weihrauch D, Bienengraeber M, et al. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo[J]. Can J Anaesth, 2006,53(2):174-182.
[18]Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs[J]. Am J Physiol Heart Circ Physiol,2006,290(3):H1011-1018.
[19]Ballard-Croft C, White DJ, Maass DL, et al. Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-alpha[J]. Am J Physiol,2001,280(5):H1970-1981.
[20]Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats[J]. Kidney Int,2010,77(2):101-109.
(收稿日期:2014-07-21)
(本文编辑:郑辛甜)
P293-296