对学生学法指导应做到“三到”
2015-07-22徐晓洲
徐晓洲
[摘 要] 学习方法的指导是数学教学的重要任务之一. 在对学生进行学法指导时,要让学生做到眼到、手到、耳到,并在这三到过程中伴随着学生积极的数学思维,这样就可以促进学生更有效地学习数学.
[关键词] 眼到;手到;耳到
数学是一门抽象的学科,学生只有掌握一定的学习方法,才能游刃有余地学习数学. 在以前的数学课堂上,教师只关注自己应该如何去教,没有考虑到学生应该如何去学,造成许多学生对学习数学望而生畏,时间一长,学生就会对数学学习失去信心与兴趣. 众所周知,学生数学学习的好与坏,除了与老师的教有关系,还与学生是否掌握一定的学法有重要的关系. 教师教得再好,如果学生不知道如何学习数学,掌握不了一定的学习技巧,那么学生的数学学习效果还是不会好. 有部分学生的数学学习成绩不好,其重要原因就是他们没有掌握一定的数学学习方法. 所以,对学生进行学法指导的教学已慢慢得到广大数学教师的认可. 许多数学教师认为,数学教学的重要任务之一就是让学生掌握一定的数学学习方法,只有学生具备了一定的学习方法,他们才能高效地进行学习. 笔者经过实践,认为对学生进行学法指导应做到“三到”.
眼到——让学生学会阅读
“眼到”就是让学生在学习数学时应学会多用眼睛去看、去读,这也是许多数学教师在指导学生数学学习方法时容易忽略的地方. 有部分教师认为,学生只要能够把题目解答出来,并且正确就可以了,而要想提高学生的解答能力,就要让学生多做题,让学生一见到这种题就马上知道思路. 正是受这种教学思想的影响,许多学生在解答数学题时,一看到题目就马上想到以前做过类似的题,题目还没有读完,就开始解答了. 殊不知,一些题目虽然从表面上看与学习过的知识有关,但仔细推敲就会发现,题目中的条件与问题已经与原来不一样了. 这样,不多读题的坏习惯最终会让学生解答错误. 比如,学习完乘法结合律之后让学生解答24×8÷24×8,许多学生会错误地解答出“1”,是什么原因造成的呢?其主要原因就在于,学生没有仔细读题,一看到前面与后面都是24×8,马上联想到乘法结合律,于是把四则混合运算顺序抛之脑后. 如果我们让学生多读几遍题目,学生就会边读题边思考,从而想到运算顺序,这样也就不会出现错误了. 所以,在培养学生眼到的学习习惯时,我们要做到以下几点.
首先,要多读. 学生只有在多读过程中,才能慢慢领悟文字中的意思,才能更好地理解题目中数字的含义. 比如,教学“分数乘法”时,教材中有一道题:同学们要植120棵树,第一天植了,其中是六年级植的,第一天六年级植树多少棵?许多学生一见到这一道试题,纷纷拿120乘,问他们为什么这样理解,有的学生说,其中就是指这120棵树的,所以应该拿120乘. 我没有纠正学生的错误解法,而是让他们多读几遍题,说一说每句话的意思. 这时,有的学生站起来说,其中的是指第一天植树的,而不是120的. 这样,通过让学生多读几遍,学生自然就可以理解题中的意思,也就可以想到正确的解答方法了.
其次,要精读. 阅读数学文字时,我们只有抓住了其中的重点词语,才能正确地理解一些数学概念与数学规律的含义,解答时才不会出现错误. 如果我们只是囫囵吞枣式地阅读,抓不住重点词语去精读,就会造成对题目的错解. 比如,方程的概念是“含有未知数的等式叫方程”,在这一句话里,有两个关键词,一个是未知数,另一个是等式,二者缺一不可. 如果学生能够通过精读真正理解这两个词语,那么在判断一个式子是不是方程时就应首先符合这两个要点,即含未知数,且是等式. 所以,让学生阅读时,要抓住数学语句中的核心词语,一字一字地去品读,力求明白每一个词语的意思,这样才能真正理解数学概念与题目的意思.
耳到——让学生学会听讲
许多家长都重视家庭教育,课堂上所要学习的内容往往学生在家中已经自学过,这就造成部分学生课堂上不注意听讲的坏习惯. 课堂上教师的要求还没有提出来,有的学生就迫不及待地举手回答. 他们的大脑只想着要表现自己,没有把注意力集中到听好教师的每一句话上,这也是许多学生学习效果不好的重要原因. 家庭中的学习毕竟是粗糙的,不系统的,也不可能注意到学习内容中的关键之处,而课堂上不注意听讲,就会让学生直接遗漏一些知识. 时间长了,这些遗漏的知识越积越多,就会造成学生不会学习. 比如,教学“倒数”这一概念时,学生由于受前面自学的影响,只记得倒数有一个特征,即它们的乘积是1,所以在课堂上,教师还没有讲到倒数的概念时,就有学生举手说倒数就是乘积为1的两个数,以致后面教师反复强调“互为”两个字时,也没有学生注意听. 在后面,教师问这样一个问题:因为5×=1,所以 5是倒数,是倒数时,许多学生都说是正确的. 造成这一错误的一个重要原因就是因为学生没有认真听教师讲解,没有注意到在这一句话中有一个关键词“互为”. 只有当学生理解这一词语的意思了,才能知道倒数不是孤立存在的,而是两个数相对而言的. 所以,培养学生的学习方法时,还要让学生学会如何听.
首先,要培养学生学会听重点. 在一堂课中,教师的讲解与学生交流中所谈的语言,有一些非常重要,学生只有听明白这些语言的意思,才能更好地理解本节课的内容,从而学好新授知识. 比如,教学长方形与正方形面积时,如果学生只听到长方形的面积=长×宽,正方形的面积=边长×边长,那么他们在解答这一类题目时,只会呆板地运用这两个公式. 一旦图形发生变化,让学生综合运用这些知识时,学生也许就不知道如何解答了. 而如果学生注意听教师讲解公式的推导过程,那么学生就会理解公式,从而灵活运用公式.
其次,要让学生学会听解题思路. 每一道题都有它的合理解题思路,学生如果能听懂解题思路,那么他们在以后解决数学问题时,才能用这一思路来灵活解答问题. 而如果学生只注重听别人的解题方法,而不注意听这种方法是如何得来的,那么同一道数学题,如果适当变形,也许学生就不一定能解答出来了.
手到——让学生学会记录
俗话说,眼过千遍,不如手过一遍. 在数学学习过程中,我们要让学生学会用手记录. 在课堂上,我们应让学生把一些重点内容或自己似懂非懂的内容记录下来. 这样,可以方便学生以后定期拿出来读一读,从而起到温故而知新的效果. 相反,如果学生学不会记录,那么前面学习过的内容经过一段时间新知识的学习之后,也许就会遗忘前面所学的内容. 这时,如果学生有了一个课堂笔记,他们就会在没事的时候翻阅这些笔记,也就可以迅速勾起学生的回忆,从而加深数学知识在学生脑海中的印象,并会随着翻阅资料的增加,在学生的脑海中生根.
比如,教学“比的应用”时,教师出示了一道题:甲、乙两班一共有学生90人,乙班的学生人数是甲班的,甲班有多少人?(用不同的方法来解答)结果,学生想出了许多种方法.
第一种:90÷1+=50(人).
第二种:90×=50(人).
第三种:90÷(5+4)×5=50(人).
第四种:设甲班有学生x人,x+x=90,解得x=50.
这些方法也许是许多学生分别想出来的(学生一个人是很难想出这么多方法),这时,如果学生把这些方法都记录下来,那么在以后的学习时间里,经常把这一内容拿过来翻阅,就会在脑海中形成一题多解的思路. 在以后碰到类似的题目时,学生就知道可以从不同的角度来思考这一问题,从而丰富自己的解法,发展数学思维.
所以,在课堂教学时,我们要引导学生学会记录,只有这样,学生才可以有效积累数学经验,巩固所学知识,并在以后的学习过程中不断扩大自己解决数学问题的视角. 当然,让学生记录,并不是把所有内容都记录下来,而是让学生把自己认为最精华的部分记录下来.
总之,在对学生的学法进行指导时,要让学生在学习过程中养成眼到、手到、耳到的习惯,并在这些过程中让学生学会独立思考、自由思考. 只有这样,才能让学生拥有更好的数学学习方法,从而调动学生学习数学的积极性,并从根本上提升学生的数学学习质量.endprint