《有理数的加法》课堂教学设计
2015-07-20郭凤琴
郭凤琴
一、教学目标
1.通过实例,让学生来了解有理数加法的意义。
2.使学生能够正确地进行有理数的加法运算。
3.还要使学生能运用有理数加法来解决生活实际问题。二、教学重点
了解有理数加法的意义之所在,会根据有理数加法法则进行有理数的加法运算。
三、教学难点
就是有理数加法中的异号两数如何进行加法运算。
四、教具准备
课件、小黑板等。
五、教时安排
1课时。
六、教学过程
(一)激情导入,引入新课
师:同学们,我们的数学课就是来学算数的。过去我们学的都是正数的运算,可是在实际生活问题当中,做加法运算的书有可能超出正数范围。比如说,在足球循环赛中,我们把踢进球数记为正数,失球数记为负数,而把它们的和则叫做净胜球数。下面请大家一下章前言中,有红队进4个球,失了2个球;蓝队进了1个球;失了1个球。
于是乎红队的净胜球数是:4+(-2)。
蓝队的净胜球数是:1+(-1)。我们看一下,这里就用到正数和负数的加法了。这也是我们今天要学习的内容:《有理数的加法》。(板书课题,引入新课)
(二)讲授新课,过程设计
师:(教师提出问题,请学生来进行思考)有理数如何进行加法运算,有理数加法有几种情况?
生:参与学习,可小组讨论研究,发表见解。最后归结为三种情况:(1)同号两数相加;(2)异号两数相加;(3)一个数和0相加。
(三)师生互动,拓展新知
教师请同学按照老师指令进行表演,并且结合数周来说明两正数的加法。
(教师设计意图):在一条直线上的两次运动的实例中,要说明以下几点:(1)原点是第一次运动的起点;(2)第二次运动的起点是第一次运动的终点;(3)由第二次运动的终点与原点的相对位置得出两次运动的结果;(4)如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的运动问题。具体活动内容:在黑板上挂上事先写好题的小黑板,请学生一起来看问题。
例题1:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。
假如物体先向右运动5m,在向右运动3m,那么,两次运动后总的结果是什么?
让学生充分观察后,进行判断回答:学生争相发言。
归结统一答案:两次运动后物体从起点向右运动了8m。写成算是就是:5+3=8。
接着请学生继续参与表演,并类比两正数的加法说明两负数的加法。
例题二:如果物体先向左运动3m,那么两次运动后总的结果是什么?其结果为:两次运动后物体从起点向左运动了8m。写成算是就是(-5)+(-3)=-8.
补充说明:这个运算也可以用数轴表示,这其中假设原点为运动起点(见教科书图1.3-1)。
教师继续让学生进行表演,还要结合数轴进行诠释说明。通过学生的表演、结合数轴,我们的用意是让学生了解用数轴表示加法运算的方法,从而为后面利用数轴探究其它情况做准备。
再次出示小黑板,展示例题三。
假如物体先向右运动5m,在向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算是就是5+(-3)=2.
补充说明:这个运算也可以用数轴表示,这其中假设原点为运动起点(见教科书图1.3-2).
拓展探究:利用数轴,求以下情况时物体两次运动的结果:
(1)先向右运动3m,在向左运动5m,物体从起点向___运动了___m;
(2)先向右运动5m,在向左运动5m,物体从起点向___运动了___m;
(3)先向左运动5m,在向右运动5m,物体从起点向___运动了___m;
让学生自己来完成填写计算。归结明确:这三种情况运动的算式如下:
3+(-5)=-2.
5+(-5)=___0.
(-5)+5___=___0.
发挥主体作用,练习、巩固所学有理数加法知识
利用小黑板展示练习题:在足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,计算各队的净胜球数。且看:三场比赛中,红队共进4个球,失2个球,净胜球数为:
(+4)+(-2)=___+(___4___-___2___)=___;
黄队共进2个球,失4个球,净胜球数为:
(+2)+(-4)=___-(___4___-___2___)=___2;
蓝队共进____球,失___球,净胜球数为___=___.
课堂练习:教科书第22页练习第1、2题.
总结所学:
师:这节课我们学习了那些知识?你能说说嘛?生:回答(略)
布置作业:
教科书习题1.3第2、4、8题。
参考文献:
[1]田宇.浅谈七年级数学“有理数加法”的教学[J].中学生数理化,2009,(03).