APP下载

15q11.2-13.2微重复四倍体综合征1例并文献复习

2015-04-22李小燕王立文陈晓丽李尔珍钟建民

中国循证儿科杂志 2015年4期
关键词:四倍体拷贝数核型

李小燕 陈 倩 谢 华 王立文 陈晓丽 李尔珍 钟建民



·论著·

15q11.2-13.2微重复四倍体综合征1例并文献复习

李小燕1陈 倩2谢 华3王立文2陈晓丽3李尔珍2钟建民1

15q11.2-13.2微重复四倍体综合征; 发育迟缓; 孤独症; 额外标记染色体; 微阵列比较基因组杂交; 荧光原位杂交技术

1 病例资料

女, 2岁,因“自幼发育落后”于2014年8月13日就诊于首都儿科研究所。患儿系G2P2,因母亲妊娠期高血压于孕38周剖宫娩出,围生期无窒息缺氧史,出生体重2 700 g,身长49 cm。肌张力低下,5月龄抬头。尚不能独站、行走及有意识言语。能逗笑,不认人,不能交流,缺乏目光对视。未见抽搐,无侵略性行为。能跟着拍手和摇头,对音乐、汽车声音及发光的物体感兴趣,喜欢看手玩手,常有双手扭转,喜欢独处,不能使用任何工具。

查体:身长90 cm(P75),体重14 kg(P90)。双眼无神,鼻梁低平,外侧眼角下垂、内眦赘皮(图1)。

图1 本文患儿正侧面照

Fig 1 Clinical appearance of the patient

Notes She presented negative face,downslanting of the palpebral fissures, flat nasal bridge and epicanthic folds

母孕期未补充叶酸及钙。母亲本次妊娠年龄32岁,父亲37岁。患儿姐姐未见异常表型。

辅助检查: 脑电图、头颅MRI、血生化、甲状腺功能检查、血尿遗传代谢病筛查均未见异常。2次外院常规染色体核型检查(320带)分别为47,XX,+22和47,XX,+21。中国孤独症评量表(CARS)得分48分(诊断界值为30分)。0~6岁儿童神经心理发育测试量表(DST)发育商得分36分。

患儿监护人签署知情同意书后,采集患儿及其父母外周静脉血(肝素抗凝)行高分辨率染色体核型分析(400-550带)。取0.2 mL接种于2.5mL培养基中,37℃培养72 h,加秋水仙素继续培养3 h,离心抽取上清液收获细胞,滴片,在显微镜下观察细胞显带,合格后放入干燥箱干燥。干燥后进行染色体处理、风干和盖玻片封片。选择40个以上分裂相作众数分析。再用油镜选择染色体较长、带纹较清晰及交叉点低的分裂相行核型分析,每个样本分析至少20个核型。异常克隆标准为2个细胞具有相同的额外染色体或结构重排,或至少3个细胞至少丢失1个相同的染色体。核型异常按《人类细胞遗传学国际命名体制(ISCN 2013)》标准判定[1]。高分辨染色体核型分析显示,患儿较正常染色体核型多1条额外标记染色体(SMC),SMC可能来源于随体型D群染色体(13号,14号,15号染色体)或G群染色体(21号,22号染色体),核型为47,XX,+mar dn(图2)。患儿父亲高分辨率染色体核型分析提示为46,XY,母亲为46,XX。提示患儿携带的SMC为新生突变。

图2 本文患儿高分辨染色体核型分析结果(400-550带)

Fig 2 The result of high-resolution karyotype analysis (400-550 bands)

Notes The figure showed SMC marked by the red arrow

采集患儿外周静脉血2 mL(EDTA抗凝),并用酚-氯仿法抽提基因组DNA。获得吸光度值和浓度后,取1 μg DNA,37℃消化2.5 h(Alu Ⅰ和Rsa Ⅰ联合消化);用SureTag DNA Labeling Kit(Agilent公司)行荧光标记(Cy5标记对照标本,Cy3标记先证者标本),37℃ 2 h后终止反应;用MieroCon YM-30(Agilent公司)纯化荧光标记DNA后,将对照DNA和患儿DNA等量混合后加入杂交体系,95℃变性,37℃ 0.5 h,上样到Agilent 4×180K CNV+SNP定制芯片(Agilent公司),65℃杂交炉孵育36 h后先用洗脱液1洗脱5 min,再用洗脱液2洗脱1 min,行微阵列比较基因组杂交(array-CGH)扫描,采用Feature Extraction 9.0进行数据提取,DNA analystic 5.0软件进行CNVs分析。图3显示,本文患儿15q11.2-13.2区域存在8.0 Mb的微重复(hg19),且log2>1.25,提示该区域拷贝数可能为4倍体。该区域为Prader-Willi/Angelman综合征的典型致病区域,属临床致病性微缺失。

结合array-CGH结果,采用商业化Prader-Willi/Angelman综合征关键区域探针(UBE3A,D15S10:15q11.2红色)和15号染色体识别用控制探针(D15Z1:15p11.2蓝色,PML:15q22 绿色)直接杂交。实验步骤按照说明书,包括:培养、秋水仙素处理、低渗处理37℃水浴、卡诺氏固定、细胞滴下、载玻片预处理、染色体DNA变性、杂化(使用VYSIS探针)、对比染色和获取图像。

FISH结果可见SMC包括着丝粒信号D15Z1(蓝)2个,基因UBE3A/D15S10(红)信号2个(图4)。结合array-CGH结果,提示患儿SMC为15号染色体以长臂q13为断裂点的双着丝粒异常染色体,即为SMC(15)。FISH结果证实array-CGH 筛查出基因组微重复log数值>1.25的区域存在4个基因组拷贝。

图3 本文患儿array-CGH结果

Fig 3 The result of the array-CGH

Notes A: 8.0 Mb duplication in the 15q11.2-13.2 region (chr15:22684529-30730543, 8.0 Mb, hg19) was found, log2 ratio >1.25. The region contained 217 genes, includingUBE3A,GABRB3,GABRA5,GABRG3,ABPA2,CHRFAM7AandCHRNA7 associated with the disease

图4 本文患儿FISH结果

Fig 4 The result of FISH

Notes The red arrow showed SMC(15), containing 2 blue signals, 2 red signals and the white arrows showed two normal chromosome 15 including a blue signal,a red signal and a green signal

根据ISCN 2013[1],患儿的染色体核型定义为:47, XX, +mar dn.ish dic(15;15)(q13;q13) (D15Z1++,UBE3A/D15S10++).arr15q11.2-q13.2(22684529-30730543)×4.de novo,即为15q11.2-13.2微重复四倍体。

2 文献复习

3 讨论

本文患儿无法交流,缺乏目光对视。能跟着拍手和摇头,对音乐、汽车声音及发光的物体感兴趣,喜欢看手玩手,常有双手扭转,喜欢独处,不能使用任何工具。CARS评分48分、DST评分36分,符合DSM-Ⅳ中发育迟缓和孤独症的诊断标准。

本文患儿高分辨染色体检查存在核型异常,按ISCN 2013标准异常染色体为SMC。SMC指细胞核内46条正常染色体核型以外的染色体,是引起基因组拷贝数增加的重要原因之一。SMC多为染色体易位所致,约64%的复杂SMC来源于父母染色体平衡易位,36%为新生突变[14,15]。在活产婴儿中SMC发生率为0.014%~0.072%,智力缺陷患者中SMC的发生率为0.433%[16,17]。SMC携带者表型可从正常至严重异常,影响表型的因素有:①常染色体DNA所包含的内容;②嵌合程度;③SMC的单亲二倍体一致性[18,19]。本文患儿父母高分辨染色体核型分析正常,提示患儿SMC属于新生突变,文献报道SMC如为新生突变,则表型异常者占14%~30%[15]。

表1 既往报道和本研究中15q11.2-13.2微重复综合征临床表型[n/N(%)]
Tab 1 Clinical characteristics of 15q11.2-13.2 microduplication syndrome in the literatures and the case reported in this paper[n/N(%)]

SMC大小一般与G组20、21、22号染色体相似或更小,最常见来源于近端着丝粒染色体,大部分源于15号染色体(约60%)或22号染色体(约9%),多为母源性[20~22]。常规染色体核型检测一般无法区别21/22三体和SMC,容易误诊,本文患儿在外院曾误诊为21/22三体综合征,由于临床表型与基因型不符,遂再次进行高分辨染色体核型分析才发现为SMC,因此SMC需依靠高分辨染色体核型分析和(或)分子遗传学方法(如FISH、array-CGH)才能确诊[23,24]。21三体综合征表型主要为智力落后、特殊面容、生长发育迟缓,并可伴有多种畸形;特殊面容包括表情呆滞、眼裂小、眼距宽、双眼外眦上斜,可有内眦赘皮;鼻梁低平、外耳小、硬腭窄小;常张口伸舌,流涎多。22三体综合征主要临床表型为智力低下,伴多系统畸形,如单侧或双侧眼缺损、外侧眼角下垂、耳前畸形、心脏及肾脏畸形、肝门瘘管或(和)闭锁[25]。本文患儿有生长发育迟缓、孤独症样表现、表情呆滞、内眦赘皮,但无眼裂小、眼距宽、外眦上斜、张口伸舌、流涎和多种畸形,表型不符合21/22三体综合征。因此,当临床发现染色体核型分析结果与临床表型不相符时,需要进一步行高分辨染色体核型分析、array-CGH和FISH检测,明确核型异常的类型,避免诊误。

Array-CGH分析发现本文患儿的SMC为15q11.2-13.2区域存在8.0 Mb的微重复(log>1.25),提示该区域拷贝数可能为四倍体。拷贝数变异(CNV)由基因组重排所致,主要包括基因组片段的微缺失和微重复,片段大小为1 kb至Mb级。现有研究发现15.0%~21.4%的儿童精神心理发育异常由CNV所致[26,27]。FISH检测进一步明确SMC来源于15号染色体,且为四倍体。15号染色体长臂由于存在低拷贝重复序列,结构不稳定,倾向于各种基因重组,包括微缺失、微重复和易位。SMC(15)导致的15q微重复的重复倍数有3、4、5和6倍[5,12]。SMC(15)根据是否包含Prader-Willi/Angelman综合征的关键区域分为2组:一组为小片段的、除男性不孕外不导致其他临床表型;一组为大片段的、导致相关临床表现[10]。本文病例为15q11.2-13.2四倍体及双着丝粒组成的大片段的、导致相关临床表现的SMC(15)。根据基因组CNV起止点位置,15号染色体长臂可以分为5个断点(BP1-BP5)。根据断点,可将15号染色体长臂CNV分为3类:①15q11.2(BP1-BP2,chr15:22698322-23217655);②15q11.2-q13.1(BP2-BP3,chr15:23707400-28520300);③15q13.2-13.3(BP4-BP5,chr15: 30931844- 32510863)。Urraca 等[4]根据断点将微重复分为Ⅰ类和Ⅱ类,Ⅰ类为BP1-BP3,Ⅱ类为BP2-BP3,本文患儿为BP1-BP3,属于Ⅰ类。文献中迄今仅有16例报道有明确的起止点,根据断点分类均为Ⅰ类微重复[5,11,12]。

总之,对于SMC携带者,单纯依靠高分辨染色体核型检测,无法确定其基因组来源及拷贝数量化。如常规染色体核型结果和临床表型不符合,应行array-CGH检测确诊基因拷贝数变异位点;对于array-CGH所发现的基因组微重复,Log数值高于1.25~1.30,应行FISH、real-time PCR等以明确基因组拷贝数目、重组结构特点。这对遗传咨询和临床干预措施的制定均有重要的意义。

[1]Shaffer LG,McGowan-Jordan J,Schmid M.An international system for human cytogenetic nomenclature. Basel : Karger.2013:52-128

[2]Marini C, Cecconi A, Contini E, et al.Clinical and genetic study of a family wth a paternally inherited 15q11-q13 duplication. Am J Med Genet A, 2013,161A(6):1459-1464

[3] Castronovo C, Crippa M, Bestetti I,et al. Complex de novo chromosomal rearrangement at 15q11-q13 involving an intrachromosomal triplication in a patient with a severe neuropsychological phenotype: clinical report and review of the literature. Am J Med Genet A, 2015,167A(1):221-230

[4]Urraca N,Cleary J,Brewer V,et al.The interstitial duplication 15q11.2-q13 syndrome includes autism,mild facial anomalies and a characteristic EEG signature. Autism Res,2013,6(4):268-279

[5]Piard J,Philippe C,Marvier M,et al.Clinical and molecular characterization of a large family with an interstitial 15q11q13 duplication. Am J Med Genet A, 2010,152A(8):1933-1941

[6]Kitsiou-Tzeli S, Tzetis M, Sofocleous C,et al.De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: clinical description, array CGH Analysis, and review of the literature. Am J Med Genet A, 2010,152A(8):1925-1932

[7]Conant KD,Finucane B,Cleary N,et al.A survey of seizures and current treatments in 15q duplication syndrome.Epilepsia,2014,55(3):396-402

[8]Al Ageeli E, Drunat S, Delanoe C,et al. Duplication of the 15q11-q13 region: clinical and genetic study of 30 new cases. Eur J Med Genet,2014,57(1):5-14

[9]Park DH, Lim S, Park ES, et al.A nine-month-old boy with isodicentric chromosome 15: a case report. Ann Rehabil Med, 2013,37(2):291-294

[10]Kleefstra T, de Leeuw N,Wolf R,et al.Phenotypic spectrum of 20 novel patients with molecularly defined supernumerary marker chromosomes 15 and a review of the literature. Am J Med Genet A,2010,152A(9):2221-2229

[11]Yang J,Yang Y,Huang Y,et al.A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC Med Genet,2013,14:9

[12]Tan ES,Yong MH,Lim EC,et al.Chromosome 15q11-q13 copy number gain detected by array-CGH in two cases with a maternal methylation pattern.Mol Cytogenet,2014, 7:32

[13]Battaglia A,Parrini B,Tancredi R.The Behavioral Phenotype of the idic(15) syndrome. Am J Med Genet C Semin Med Genet,2010,154C(4):448-455

[14]Trifonov V, Fluri S, Binkert F,et al.Complex rearranged small supernumerary marker chromosomes (sSMC), three new cases; evidence for an underestimated entity. Mol Cytogenet,2008,1:6

[15]Malvestiti F,De Toffol S,Grimi B,et al.De novo small supernumerary marker chromosomes detected on 143 000 consecutive prenatal diagnoses: chromosomal distribution, frequencies, and characterization combining molecular cytogenetics approaches. Prenat Diagn, 2014, 34(5): 460-468

[16]Gardner RJ, Sutherland GR.Chromosome Abnormalities and genetic counseling,3rd ed.New York :Oxford University Press.2004:264-293

[17]Guilherme RS,Dutra AR,Perez AB,et al.First report of a small supernumerary der(8;14) marker chromosome.Cytogenet Genome Res,2013,139(4):284-248

[18]Dutta UR,Vempally S,Ranganath P,et al.A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22: Molecular characterization of the marker. Gene,2014,539(1):162-167

[19]Starke H,Nietzel A,Weise A,et al.Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification.Hum Genet,2003,114(1):51-67

[20]Ouldim K,Natiq A,Jonveaux P,et al.Tetrasomy 15q11-q13 Diagnosed by FISH in a Patient with Autistic Disorder. J Biomed Biotechnol,2007(3):61538

[21]Christofolini DM,Piazzon FB,Evo C,et al.Complex small supernumerary marker chromosome with a 15q/16p duplication: clinical implications. Mol Cytogenet, 2014,7:29

[22]Bélien V, Gérard-Blanluet M, Serero S,et al.Partial trisomy of chromosome 22 resulting from a supernumerary marker chromosome 22 in a child with features of cat eye syndrome. Am J Med Genet A,2008,146A(14):1871-1874

[23]Ou J, Wang W, Liehr T,et al.Characterization of three small supernumerary marker chromosomes(sSMC) in humans. J Matern Fetal Neonatal Med,2013,26(1):106-108

[24]Liehr T,Claussen U,Starke H.Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet Genome Res,2004,107(1-2):55-67

[25]Córdova-Fletes C, Domínguez MG, Vázquez-Cárdenas A, et al.de novo sSMC(22) Characterized by High-Resolution Arrays in a Girl with Cat-Eye Syndrome without Coloboma. Mol Syndromol,2012,3(3):131-135

[26]Bartnik M, Wisniowiecka-Kowalnik B, Nowakowska B, et al. The usefulness of array comparative genomic hybridization in clinical diagnostics of intellectual disability in children. Dev Period Med, 2014,18(3):307-317

[27]Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.Am J Hum Genet, 2010,86(5):749-764

[28]Battaglia A.The inv dup (15) or idic (15) syndrome (Tetrasomy 15q).Orphanet J Rare Dis,2008,3:30

[29]Schinzel A,Niedrist D.Chromosome imbalances associated with epilepsy. Am J Med Genet,2001,106(2):119-124

[30]Silva AE,Vayego-Lourenco SA,Fett-Conte AC,et al.Tetrasomy 15q11-q13 identified by fluorescence in situ hybridization in a patient with autistic disorder. Arq Neurop siquiatr, 2002,60(2-A):290-294

[31]Rocha J,Guerra C,Oliveira R,et,al.Late-onset Lennox-Gastaut syndrome as a phenotype of 15q11.1q13.3 duplication. Epileptic Disord,2012,14(2):159-162

(本文编辑:丁俊杰)

A case of 15q11.2-13.2 tetraploid microduplication syndrome and literature review

LIXiao-yan1,CHENQian2,XIEHua3,WANGLi-wen2,CHENXiao-li3,LIEr-zhen2,ZHONGJian-min1

(1DepartmentofPediatricNeurology,JiangxiChildren′sHospital,Nanchang330006; 2DepartmentofNeurology,AffiliatedChildren′sHospitalofCapitalInstituteofPediatrics,Beijing100020; 3BeijingMunicipalKeyLaboratoryofChildDevelopmentandNutriomics,CapitalInstituteofPediatrics,Beijing100020,China)

ZHONG Jian-min,E-mail:zhongjm@163.com;LI Er-zhen,E-mail: 13693355316@163.com

ObjectiveTo identify the underlying genetic causes with multiple molecular genetic techniques in a female patient with neuro-developmental delay and autism, who has ever been diagnosed as 21/22 trisomy with conventional karyotype analysis.MethodsThe peripheral blood was collected from the patient and her parents. Genomic DNA was extracted by phenol-chloroform method. The high-resolution karyotype analysis (400-550 bands) was performed to check the chromosome′s number and structure, and the array comparative genomic hybridization (array-CGH) was used to detect the whole genomic copy number variation.The fluorescent in situ hybridization was employed to localize and quantify the abnormal genomic copy numbers.ResultsA 2-year-old girl suffered from neuro-developmental delay and autism with downslanting of the palpebral fissures and epicanthic folds. The result of conventional karyotype analysis (320 bands) was 47,XX,+22 or 47,XX,+21.The high-resolution karyotype analysis (400-550 bands) detected a supernumerary marker chromosome(SMC) and her karyotype was 47,XX,+mar dn, which had ever been misdiagnosed as 21/22 trisomy.Her parents′ karyotype was 46,XY and 46,XX, respectively. The SMC was de novo. About 8.0 Mb duplication in the 15q11.2-13.2 region (chr15:22684529-30730543, 8.0 Mb,hg19) was found in the patient by array-CGH. FISH confirmed that the SMC was originated from chromosome 15, and consisted of two copies of the centromerics and 15q11.2-13.2 interval. The 15q11.2-13.2 tetraploid microduplication syndrome or Idic(15) syndrome was established after all. A literature review of the clinical phenotypes of the 15q11.2-13.2 microduplication was performed, which showed that intellectual disability/ developmental retardation, hypotpnia, autism/autism-like symptoms and epilepsy were the key clinical phenotypes in the Idic(15) syndrome.ConclusionThe de novo tetrasomy 15q11.2-13.2 is a genetic basis for neuro-developmental delay and autism in this case. The array-CGH can detect genomic micro-imbalance quickly and precisely.

15q11.2-q13.2 tetraploid microduplication syndrome; Neuro-developmental delay; Autism; Supernumerary marker chromosomes; Array comparative genomic hybridization; Fluorescent in situ hybridization

1 江西省儿童医院神经内科 南昌,330006;2 首都儿科研究所附属儿童医院神经内科 北京,100020;3 首都儿科研究所北京市儿童发展和营养组学重点实验室 北京,100020

钟建民,E-mail:zhongjm@163.com; 李尔珍,E-mail:13693355316@163.com

10.3969/j.issn.1673-5501.2015.04.011

2015-07-05

2015-07-17)

猜你喜欢

四倍体拷贝数核型
四倍体白掌新品种‘绿萌’的选育
线粒体DNA拷贝数在儿童脑性瘫痪患者中的表达及临床意义
四倍体长牡蛎的生产方法与生物学特性
抗核抗体荧光核型在原发性胆汁性胆管炎和自身免疫性肝炎筛查中的作用评估*
线粒体DNA拷贝数变异机制及疾病预测价值分析
骨髓增生异常综合征细胞遗传学特征与临床的关系
不同倍性芍药杂交亲和性及子代倍性1)
胎儿染色体组拷贝数变异与产前超声异常的相关性分析
染色体核型异常患者全基因组芯片扫描结果分析
染色体核型分析和荧光原位杂交技术用于产前诊断的价值